summaryrefslogtreecommitdiff
path: root/Documentation/memory-barriers.txt
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2008-05-17 17:12:24 +0200
committerThomas Gleixner <tglx@linutronix.de>2008-05-17 17:12:24 +0200
commit538f0fd0f210c2ce5c585799f18d0e5c7cf6155e (patch)
treee9fa2b10ce5d92ac6bcd8ac55af1cd97bda3ec5d /Documentation/memory-barriers.txt
parent3bb6fbf9969a8bbe4892968659239273d092e78a (diff)
parentf26a3988917913b3d11b2bd741601a2c64ab9204 (diff)
Merge branch 'linus' into x86/garttip-x86-gart-2008-05-17-15-12-25
Diffstat (limited to 'Documentation/memory-barriers.txt')
-rw-r--r--Documentation/memory-barriers.txt12
1 files changed, 11 insertions, 1 deletions
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index e5a819a4f0c9..f5b7127f54ac 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -994,7 +994,17 @@ The Linux kernel has eight basic CPU memory barriers:
DATA DEPENDENCY read_barrier_depends() smp_read_barrier_depends()
-All CPU memory barriers unconditionally imply compiler barriers.
+All memory barriers except the data dependency barriers imply a compiler
+barrier. Data dependencies do not impose any additional compiler ordering.
+
+Aside: In the case of data dependencies, the compiler would be expected to
+issue the loads in the correct order (eg. `a[b]` would have to load the value
+of b before loading a[b]), however there is no guarantee in the C specification
+that the compiler may not speculate the value of b (eg. is equal to 1) and load
+a before b (eg. tmp = a[1]; if (b != 1) tmp = a[b]; ). There is also the
+problem of a compiler reloading b after having loaded a[b], thus having a newer
+copy of b than a[b]. A consensus has not yet been reached about these problems,
+however the ACCESS_ONCE macro is a good place to start looking.
SMP memory barriers are reduced to compiler barriers on uniprocessor compiled
systems because it is assumed that a CPU will appear to be self-consistent,