diff options
author | Marcel Ziswiler <marcel.ziswiler@toradex.com> | 2014-03-31 17:50:10 +0200 |
---|---|---|
committer | Marcel Ziswiler <marcel.ziswiler@toradex.com> | 2014-03-31 17:50:10 +0200 |
commit | 1a0ab01fdd5104255dcfdeb0527e7001d28e3345 (patch) | |
tree | 079423542e915e361ff6c6473772fe57dc353e50 /drivers | |
parent | 2eec76f580983daa4248b5e1bb5971b420230491 (diff) |
igb: integrate igb driver 5.1.2
Integrate latest igb driver version 5.1.2
(igb-5.1.2.tar.gz from e1000.sf.net).
Diffstat (limited to 'drivers')
36 files changed, 29246 insertions, 8027 deletions
diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig index 1c3fac524474..8e7c0a322645 100644 --- a/drivers/net/Kconfig +++ b/drivers/net/Kconfig @@ -2139,6 +2139,8 @@ config IP1000 config IGB tristate "Intel(R) 82575/82576 PCI-Express Gigabit Ethernet support" depends on PCI + select I2C + select I2C_ALGOBIT ---help--- This driver supports Intel(R) 82575/82576 gigabit ethernet family of adapters. For more information on how to identify your adapter, go @@ -2157,6 +2159,17 @@ config IGB To compile this driver as a module, choose M here. The module will be called igb. +config IGB_HWMON + bool "Intel(R) PCI-Express Gigabit adapters HWMON support" + default y + depends on IGB && HWMON && !(IGB=y && HWMON=m) + ---help--- + Say Y if you want to expose thermal sensor data on Intel devices. + + Some of our devices contain thermal sensors, both external and internal. + This data is available via the hwmon sysfs interface and exposes + the onboard sensors. + config IGB_DCA bool "Direct Cache Access (DCA) Support" default y diff --git a/drivers/net/igb/Makefile b/drivers/net/igb/Makefile index 01193b8460fc..5d7462b8b0ef 100644 --- a/drivers/net/igb/Makefile +++ b/drivers/net/igb/Makefile @@ -1,7 +1,7 @@ ################################################################################ # # Intel 82575 PCI-Express Ethernet Linux driver -# Copyright(c) 1999 - 2011 Intel Corporation. +# Copyright(c) 1999 - 2013 Intel Corporation. # # This program is free software; you can redistribute it and/or modify it # under the terms and conditions of the GNU General Public License, @@ -34,5 +34,6 @@ obj-$(CONFIG_IGB) += igb.o igb-objs := igb_main.o igb_ethtool.o e1000_82575.o \ e1000_mac.o e1000_nvm.o e1000_phy.o e1000_mbx.o \ - e1000_i210.o - + e1000_i210.o \ + e1000_manage.o igb_param.o kcompat.o e1000_api.o \ + igb_vmdq.o igb_procfs.o igb_hwmon.o igb_debugfs.o diff --git a/drivers/net/igb/e1000_82575.c b/drivers/net/igb/e1000_82575.c index ad3bf1792d7c..6130005fd4f6 100644 --- a/drivers/net/igb/e1000_82575.c +++ b/drivers/net/igb/e1000_82575.c @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2011 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -25,85 +25,123 @@ *******************************************************************************/ -/* e1000_82575 - * e1000_82576 +/* + * 82575EB Gigabit Network Connection + * 82575EB Gigabit Backplane Connection + * 82575GB Gigabit Network Connection + * 82576 Gigabit Network Connection + * 82576 Quad Port Gigabit Mezzanine Adapter + * 82580 Gigabit Network Connection + * I350 Gigabit Network Connection */ -#include <linux/types.h> -#include <linux/if_ether.h> - -#include "e1000_mac.h" -#include "e1000_82575.h" +#include "e1000_api.h" #include "e1000_i210.h" -static s32 igb_get_invariants_82575(struct e1000_hw *); -static s32 igb_acquire_phy_82575(struct e1000_hw *); -static void igb_release_phy_82575(struct e1000_hw *); -static s32 igb_acquire_nvm_82575(struct e1000_hw *); -static void igb_release_nvm_82575(struct e1000_hw *); -static s32 igb_check_for_link_82575(struct e1000_hw *); -static s32 igb_get_cfg_done_82575(struct e1000_hw *); -static s32 igb_init_hw_82575(struct e1000_hw *); -static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); -static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); -static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *); -static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16); -static s32 igb_reset_hw_82575(struct e1000_hw *); -static s32 igb_reset_hw_82580(struct e1000_hw *); -static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); -static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool); -static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool); -static s32 igb_setup_copper_link_82575(struct e1000_hw *); -static s32 igb_setup_serdes_link_82575(struct e1000_hw *); -static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); -static void igb_clear_hw_cntrs_82575(struct e1000_hw *); -static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); -static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, - u16 *); -static s32 igb_get_phy_id_82575(struct e1000_hw *); -static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); -static bool igb_sgmii_active_82575(struct e1000_hw *); -static s32 igb_reset_init_script_82575(struct e1000_hw *); -static s32 igb_read_mac_addr_82575(struct e1000_hw *); -static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw); -static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw); -static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw); -static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw); -static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, - u16 offset); -static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, - u16 offset); -static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw); -static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw); -static const u16 e1000_82580_rxpbs_table[] = - { 36, 72, 144, 1, 2, 4, 8, 16, - 35, 70, 140 }; +static s32 e1000_init_phy_params_82575(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82575(struct e1000_hw *hw); +static s32 e1000_acquire_phy_82575(struct e1000_hw *hw); +static void e1000_release_phy_82575(struct e1000_hw *hw); +static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw); +static void e1000_release_nvm_82575(struct e1000_hw *hw); +static s32 e1000_check_for_link_82575(struct e1000_hw *hw); +static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw); +static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +static s32 e1000_init_hw_82575(struct e1000_hw *hw); +static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 *data); +static s32 e1000_reset_hw_82575(struct e1000_hw *hw); +static s32 e1000_reset_hw_82580(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, + u32 offset, u16 *data); +static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, + u32 offset, u16 data); +static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, + bool active); +static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, + bool active); +static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, + bool active); +static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw); +static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw); +static s32 e1000_get_media_type_82575(struct e1000_hw *hw); +static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw); +static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data); +static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, + u32 offset, u16 data); +static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw); +static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask); +static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +static s32 e1000_get_phy_id_82575(struct e1000_hw *hw); +static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask); +static bool e1000_sgmii_active_82575(struct e1000_hw *hw); +static s32 e1000_reset_init_script_82575(struct e1000_hw *hw); +static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw); +static void e1000_config_collision_dist_82575(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw); +static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw); +static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw); +static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw); +static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw); +static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw); +static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw); +static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, + u16 offset); +static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, + u16 offset); +static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw); +static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw); +static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value); +static void e1000_clear_vfta_i350(struct e1000_hw *hw); + +static void e1000_i2c_start(struct e1000_hw *hw); +static void e1000_i2c_stop(struct e1000_hw *hw); +static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data); +static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data); +static s32 e1000_get_i2c_ack(struct e1000_hw *hw); +static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data); +static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data); +static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); +static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); +static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data); +static bool e1000_get_i2c_data(u32 *i2cctl); + +static const u16 e1000_82580_rxpbs_table[] = { + 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; #define E1000_82580_RXPBS_TABLE_SIZE \ (sizeof(e1000_82580_rxpbs_table)/sizeof(u16)) + /** - * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO + * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO * @hw: pointer to the HW structure * * Called to determine if the I2C pins are being used for I2C or as an * external MDIO interface since the two options are mutually exclusive. **/ -static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw) +static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw) { u32 reg = 0; bool ext_mdio = false; + DEBUGFUNC("e1000_sgmii_uses_mdio_82575"); + switch (hw->mac.type) { case e1000_82575: case e1000_82576: - reg = rd32(E1000_MDIC); + reg = E1000_READ_REG(hw, E1000_MDIC); ext_mdio = !!(reg & E1000_MDIC_DEST); break; case e1000_82580: case e1000_i350: + case e1000_i354: case e1000_i210: case e1000_i211: - reg = rd32(E1000_MDICNFG); + reg = E1000_READ_REG(hw, E1000_MDICNFG); ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); break; default: @@ -112,367 +150,399 @@ static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw) return ext_mdio; } -static s32 igb_get_invariants_82575(struct e1000_hw *hw) +/** + * e1000_init_phy_params_82575 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82575(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_mac_info *mac = &hw->mac; - struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575; - u32 eecd; - s32 ret_val; - u16 size; - u32 ctrl_ext = 0; + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext; - switch (hw->device_id) { - case E1000_DEV_ID_82575EB_COPPER: - case E1000_DEV_ID_82575EB_FIBER_SERDES: - case E1000_DEV_ID_82575GB_QUAD_COPPER: - mac->type = e1000_82575; - break; - case E1000_DEV_ID_82576: - case E1000_DEV_ID_82576_NS: - case E1000_DEV_ID_82576_NS_SERDES: - case E1000_DEV_ID_82576_FIBER: - case E1000_DEV_ID_82576_SERDES: - case E1000_DEV_ID_82576_QUAD_COPPER: - case E1000_DEV_ID_82576_QUAD_COPPER_ET2: - case E1000_DEV_ID_82576_SERDES_QUAD: - mac->type = e1000_82576; - break; - case E1000_DEV_ID_82580_COPPER: - case E1000_DEV_ID_82580_FIBER: - case E1000_DEV_ID_82580_QUAD_FIBER: - case E1000_DEV_ID_82580_SERDES: - case E1000_DEV_ID_82580_SGMII: - case E1000_DEV_ID_82580_COPPER_DUAL: - case E1000_DEV_ID_DH89XXCC_SGMII: - case E1000_DEV_ID_DH89XXCC_SERDES: - case E1000_DEV_ID_DH89XXCC_BACKPLANE: - case E1000_DEV_ID_DH89XXCC_SFP: - mac->type = e1000_82580; - break; - case E1000_DEV_ID_I350_COPPER: - case E1000_DEV_ID_I350_FIBER: - case E1000_DEV_ID_I350_SERDES: - case E1000_DEV_ID_I350_SGMII: - mac->type = e1000_i350; - break; - case E1000_DEV_ID_I210_COPPER: - case E1000_DEV_ID_I210_COPPER_OEM1: - case E1000_DEV_ID_I210_COPPER_IT: - case E1000_DEV_ID_I210_FIBER: - case E1000_DEV_ID_I210_SERDES: - case E1000_DEV_ID_I210_SGMII: - mac->type = e1000_i210; - break; - case E1000_DEV_ID_I211_COPPER: - mac->type = e1000_i211; - break; - default: - return -E1000_ERR_MAC_INIT; - break; + DEBUGFUNC("e1000_init_phy_params_82575"); + + phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic; + phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic; + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + goto out; } - /* Set media type */ - /* - * The 82575 uses bits 22:23 for link mode. The mode can be changed - * based on the EEPROM. We cannot rely upon device ID. There - * is no distinguishable difference between fiber and internal - * SerDes mode on the 82575. There can be an external PHY attached - * on the SGMII interface. For this, we'll set sgmii_active to true. - */ - phy->media_type = e1000_media_type_copper; - dev_spec->sgmii_active = false; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82575; - ctrl_ext = rd32(E1000_CTRL_EXT); - switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { - case E1000_CTRL_EXT_LINK_MODE_SGMII: - dev_spec->sgmii_active = true; - break; - case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: - case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: - hw->phy.media_type = e1000_media_type_internal_serdes; - break; - default: - break; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + + phy->ops.acquire = e1000_acquire_phy_82575; + phy->ops.check_reset_block = e1000_check_reset_block_generic; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.get_cfg_done = e1000_get_cfg_done_82575; + phy->ops.release = e1000_release_phy_82575; + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + + if (e1000_sgmii_active_82575(hw)) { + phy->ops.reset = e1000_phy_hw_reset_sgmii_82575; + ctrl_ext |= E1000_CTRL_I2C_ENA; + } else { + phy->ops.reset = e1000_phy_hw_reset_generic; + ctrl_ext &= ~E1000_CTRL_I2C_ENA; } - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set rar entry count */ - switch (mac->type) { - case e1000_82576: - mac->rar_entry_count = E1000_RAR_ENTRIES_82576; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + e1000_reset_mdicnfg_82580(hw); + + if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) { + phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575; + phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575; + } else { + switch (hw->mac.type) { + case e1000_82580: + case e1000_i350: + case e1000_i354: + phy->ops.read_reg = e1000_read_phy_reg_82580; + phy->ops.write_reg = e1000_write_phy_reg_82580; + break; + case e1000_i210: + case e1000_i211: + phy->ops.read_reg = e1000_read_phy_reg_gs40g; + phy->ops.write_reg = e1000_write_phy_reg_gs40g; + break; + default: + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.write_reg = e1000_write_phy_reg_igp; + } + } + + /* Set phy->phy_addr and phy->id. */ + ret_val = e1000_get_phy_id_82575(hw); + + /* Verify phy id and set remaining function pointers */ + switch (phy->id) { + case M88E1543_E_PHY_ID: + case M88E1512_E_PHY_ID: + case I347AT4_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case M88E1111_I_PHY_ID: + phy->type = e1000_phy_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + if (phy->id == I347AT4_E_PHY_ID || + phy->id == M88E1112_E_PHY_ID || + phy->id == M88E1340M_E_PHY_ID) + phy->ops.get_cable_length = + e1000_get_cable_length_m88_gen2; + else if (phy->id == M88E1543_E_PHY_ID || + phy->id == M88E1512_E_PHY_ID) + phy->ops.get_cable_length = + e1000_get_cable_length_m88_gen2; + else + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + /* Check if this PHY is confgured for media swap. */ + if (phy->id == M88E1112_E_PHY_ID) { + u16 data; + + ret_val = phy->ops.write_reg(hw, + E1000_M88E1112_PAGE_ADDR, + 2); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, + E1000_M88E1112_MAC_CTRL_1, + &data); + if (ret_val) + goto out; + + data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >> + E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT; + if (data == E1000_M88E1112_AUTO_COPPER_SGMII || + data == E1000_M88E1112_AUTO_COPPER_BASEX) + hw->mac.ops.check_for_link = + e1000_check_for_link_media_swap; + } + if (phy->id == M88E1512_E_PHY_ID) { + ret_val = e1000_initialize_M88E1512_phy(hw); + if (ret_val) + goto out; + } break; - case e1000_82580: - mac->rar_entry_count = E1000_RAR_ENTRIES_82580; + case IGP03E1000_E_PHY_ID: + case IGP04E1000_E_PHY_ID: + phy->type = e1000_phy_igp_3; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.get_cable_length = e1000_get_cable_length_igp_2; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; break; - case e1000_i350: - case e1000_i210: - case e1000_i211: - mac->rar_entry_count = E1000_RAR_ENTRIES_I350; + case I82580_I_PHY_ID: + case I350_I_PHY_ID: + phy->type = e1000_phy_82580; + phy->ops.check_polarity = e1000_check_polarity_82577; + phy->ops.force_speed_duplex = + e1000_phy_force_speed_duplex_82577; + phy->ops.get_cable_length = e1000_get_cable_length_82577; + phy->ops.get_info = e1000_get_phy_info_82577; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; break; - default: - mac->rar_entry_count = E1000_RAR_ENTRIES_82575; + case I210_I_PHY_ID: + phy->type = e1000_phy_i210; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; break; + default: + ret_val = -E1000_ERR_PHY; + goto out; } - /* reset */ - if (mac->type >= e1000_82580) - mac->ops.reset_hw = igb_reset_hw_82580; - else - mac->ops.reset_hw = igb_reset_hw_82575; - if (mac->type >= e1000_i210) { - mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210; - mac->ops.release_swfw_sync = igb_release_swfw_sync_i210; - } else { - mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575; - mac->ops.release_swfw_sync = igb_release_swfw_sync_82575; - } +out: + return ret_val; +} - /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; - /* Set if manageability features are enabled. */ - mac->arc_subsystem_valid = - (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) - ? true : false; - /* enable EEE on i350 parts and later parts */ - if (mac->type >= e1000_i350) - dev_spec->eee_disable = false; - else - dev_spec->eee_disable = true; - /* physical interface link setup */ - mac->ops.setup_physical_interface = - (hw->phy.media_type == e1000_media_type_copper) - ? igb_setup_copper_link_82575 - : igb_setup_serdes_link_82575; +/** + * e1000_init_nvm_params_82575 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +s32 e1000_init_nvm_params_82575(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_82575"); - /* NVM initialization */ - eecd = rd32(E1000_EECD); size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> E1000_EECD_SIZE_EX_SHIFT); - /* * Added to a constant, "size" becomes the left-shift value * for setting word_size. */ size += NVM_WORD_SIZE_BASE_SHIFT; + /* Just in case size is out of range, cap it to the largest + * EEPROM size supported + */ + if (size > 15) + size = 15; + nvm->word_size = 1 << size; if (hw->mac.type < e1000_i210) { - nvm->opcode_bits = 8; - nvm->delay_usec = 1; + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + switch (nvm->override) { case e1000_nvm_override_spi_large: - nvm->page_size = 32; + nvm->page_size = 32; nvm->address_bits = 16; break; case e1000_nvm_override_spi_small: - nvm->page_size = 8; + nvm->page_size = 8; nvm->address_bits = 8; break; default: - nvm->page_size = eecd - & E1000_EECD_ADDR_BITS ? 32 : 8; - nvm->address_bits = eecd - & E1000_EECD_ADDR_BITS ? 16 : 8; + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? + 16 : 8; break; } if (nvm->word_size == (1 << 15)) nvm->page_size = 128; nvm->type = e1000_nvm_eeprom_spi; - } else + } else { nvm->type = e1000_nvm_flash_hw; - - /* - * Check for invalid size - */ - if ((hw->mac.type == e1000_82576) && (size > 15)) { - printk("igb: The NVM size is not valid, " - "defaulting to 32K.\n"); - size = 15; } - /* NVM Function Pointers */ + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_82575; + nvm->ops.release = e1000_release_nvm_82575; + if (nvm->word_size < (1 << 15)) + nvm->ops.read = e1000_read_nvm_eerd; + else + nvm->ops.read = e1000_read_nvm_spi; + + nvm->ops.write = e1000_write_nvm_spi; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_82575; + + /* override generic family function pointers for specific descendants */ switch (hw->mac.type) { case e1000_82580: - nvm->ops.validate = igb_validate_nvm_checksum_82580; - nvm->ops.update = igb_update_nvm_checksum_82580; - nvm->ops.acquire = igb_acquire_nvm_82575; - nvm->ops.release = igb_release_nvm_82575; - if (nvm->word_size < (1 << 15)) - nvm->ops.read = igb_read_nvm_eerd; - else - nvm->ops.read = igb_read_nvm_spi; - nvm->ops.write = igb_write_nvm_spi; + nvm->ops.validate = e1000_validate_nvm_checksum_82580; + nvm->ops.update = e1000_update_nvm_checksum_82580; break; case e1000_i350: - nvm->ops.validate = igb_validate_nvm_checksum_i350; - nvm->ops.update = igb_update_nvm_checksum_i350; - nvm->ops.acquire = igb_acquire_nvm_82575; - nvm->ops.release = igb_release_nvm_82575; - if (nvm->word_size < (1 << 15)) - nvm->ops.read = igb_read_nvm_eerd; - else - nvm->ops.read = igb_read_nvm_spi; - nvm->ops.write = igb_write_nvm_spi; - break; - case e1000_i210: - nvm->ops.validate = igb_validate_nvm_checksum_i210; - nvm->ops.update = igb_update_nvm_checksum_i210; - nvm->ops.acquire = igb_acquire_nvm_i210; - nvm->ops.release = igb_release_nvm_i210; - nvm->ops.read = igb_read_nvm_srrd_i210; - nvm->ops.valid_led_default = igb_valid_led_default_i210; - break; - case e1000_i211: - nvm->ops.acquire = igb_acquire_nvm_i210; - nvm->ops.release = igb_release_nvm_i210; - nvm->ops.read = igb_read_nvm_i211; - nvm->ops.valid_led_default = igb_valid_led_default_i210; - nvm->ops.validate = NULL; - nvm->ops.update = NULL; - nvm->ops.write = NULL; + case e1000_i354: + nvm->ops.validate = e1000_validate_nvm_checksum_i350; + nvm->ops.update = e1000_update_nvm_checksum_i350; break; default: - nvm->ops.validate = igb_validate_nvm_checksum; - nvm->ops.update = igb_update_nvm_checksum; - nvm->ops.acquire = igb_acquire_nvm_82575; - nvm->ops.release = igb_release_nvm_82575; - if (nvm->word_size < (1 << 15)) - nvm->ops.read = igb_read_nvm_eerd; - else - nvm->ops.read = igb_read_nvm_spi; - nvm->ops.write = igb_write_nvm_spi; break; } - /* if part supports SR-IOV then initialize mailbox parameters */ - switch (mac->type) { - case e1000_82576: - case e1000_i350: - igb_init_mbx_params_pf(hw); - break; - default: - break; - } + return E1000_SUCCESS; +} - /* setup PHY parameters */ - if (phy->media_type != e1000_media_type_copper) { - phy->type = e1000_phy_none; - return 0; - } +/** + * e1000_init_mac_params_82575 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82575(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 100; + DEBUGFUNC("e1000_init_mac_params_82575"); - ctrl_ext = rd32(E1000_CTRL_EXT); + /* Derives media type */ + e1000_get_media_type_82575(hw); + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set uta register count */ + mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES_82575; + if (mac->type == e1000_82576) + mac->rar_entry_count = E1000_RAR_ENTRIES_82576; + if (mac->type == e1000_82580) + mac->rar_entry_count = E1000_RAR_ENTRIES_82580; + if (mac->type == e1000_i350 || mac->type == e1000_i354) + mac->rar_entry_count = E1000_RAR_ENTRIES_I350; - /* PHY function pointers */ - if (igb_sgmii_active_82575(hw)) { - phy->ops.reset = igb_phy_hw_reset_sgmii_82575; - ctrl_ext |= E1000_CTRL_I2C_ENA; - } else { - phy->ops.reset = igb_phy_hw_reset; - ctrl_ext &= ~E1000_CTRL_I2C_ENA; - } + /* Enable EEE default settings for EEE supported devices */ + if (mac->type >= e1000_i350) + dev_spec->eee_disable = false; - wr32(E1000_CTRL_EXT, ctrl_ext); - igb_reset_mdicnfg_82580(hw); + /* Allow a single clear of the SW semaphore on I210 and newer */ + if (mac->type >= e1000_i210) + dev_spec->clear_semaphore_once = true; - if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) { - phy->ops.read_reg = igb_read_phy_reg_sgmii_82575; - phy->ops.write_reg = igb_write_phy_reg_sgmii_82575; - } else if ((hw->mac.type == e1000_82580) - || (hw->mac.type == e1000_i350)) { - phy->ops.read_reg = igb_read_phy_reg_82580; - phy->ops.write_reg = igb_write_phy_reg_82580; - } else if (hw->phy.type >= e1000_phy_i210) { - phy->ops.read_reg = igb_read_phy_reg_gs40g; - phy->ops.write_reg = igb_write_phy_reg_gs40g; - } else { - phy->ops.read_reg = igb_read_phy_reg_igp; - phy->ops.write_reg = igb_write_phy_reg_igp; - } + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = true; + /* FWSM register */ + mac->has_fwsm = true; + /* ARC supported; valid only if manageability features are enabled. */ + mac->arc_subsystem_valid = + !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK); - /* set lan id */ - hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >> - E1000_STATUS_FUNC_SHIFT; + /* Function pointers */ - /* Set phy->phy_addr and phy->id. */ - ret_val = igb_get_phy_id_82575(hw); - if (ret_val) - return ret_val; + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; + /* reset */ + if (mac->type >= e1000_82580) + mac->ops.reset_hw = e1000_reset_hw_82580; + else + mac->ops.reset_hw = e1000_reset_hw_82575; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82575; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface link setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575; + /* physical interface shutdown */ + mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575; + /* physical interface power up */ + mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_link_82575; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82575; + /* configure collision distance */ + mac->ops.config_collision_dist = e1000_config_collision_dist_82575; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) { + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_i350; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_i350; + } else { + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + } + if (hw->mac.type >= e1000_82580) + mac->ops.validate_mdi_setting = + e1000_validate_mdi_setting_crossover_generic; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* blink LED */ + mac->ops.blink_led = e1000_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_82575; + /* get thermal sensor data */ + mac->ops.get_thermal_sensor_data = + e1000_get_thermal_sensor_data_generic; + mac->ops.init_thermal_sensor_thresh = + e1000_init_thermal_sensor_thresh_generic; + /* acquire SW_FW sync */ + mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575; + mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575; + if (mac->type >= e1000_i210) { + mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210; + mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210; + } - /* Verify phy id and set remaining function pointers */ - switch (phy->id) { - case I347AT4_E_PHY_ID: - case M88E1112_E_PHY_ID: - case M88E1111_I_PHY_ID: - phy->type = e1000_phy_m88; - phy->ops.get_phy_info = igb_get_phy_info_m88; + /* set lan id for port to determine which phy lock to use */ + hw->mac.ops.set_lan_id(hw); - if (phy->id == I347AT4_E_PHY_ID || - phy->id == M88E1112_E_PHY_ID) - phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; - else - phy->ops.get_cable_length = igb_get_cable_length_m88; + return E1000_SUCCESS; +} - if (phy->id == I210_I_PHY_ID) { - phy->ops.get_cable_length = - igb_get_cable_length_m88_gen2; - phy->ops.set_d0_lplu_state = - igb_set_d0_lplu_state_82580; - phy->ops.set_d3_lplu_state = - igb_set_d3_lplu_state_82580; - } - phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; - break; - case IGP03E1000_E_PHY_ID: - phy->type = e1000_phy_igp_3; - phy->ops.get_phy_info = igb_get_phy_info_igp; - phy->ops.get_cable_length = igb_get_cable_length_igp_2; - phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; - phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575; - phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state; - break; - case I82580_I_PHY_ID: - case I350_I_PHY_ID: - phy->type = e1000_phy_82580; - phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580; - phy->ops.get_cable_length = igb_get_cable_length_82580; - phy->ops.get_phy_info = igb_get_phy_info_82580; - phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; - phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; - break; - case I210_I_PHY_ID: - phy->type = e1000_phy_i210; - phy->ops.get_phy_info = igb_get_phy_info_m88; - phy->ops.check_polarity = igb_check_polarity_m88; - phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; - phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; - phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; - phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; - break; - default: - return -E1000_ERR_PHY; - } +/** + * e1000_init_function_pointers_82575 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82575"); - return 0; + hw->mac.ops.init_params = e1000_init_mac_params_82575; + hw->nvm.ops.init_params = e1000_init_nvm_params_82575; + hw->phy.ops.init_params = e1000_init_phy_params_82575; + hw->mbx.ops.init_params = e1000_init_mbx_params_pf; } /** - * igb_acquire_phy_82575 - Acquire rights to access PHY + * e1000_acquire_phy_82575 - Acquire rights to access PHY * @hw: pointer to the HW structure * - * Acquire access rights to the correct PHY. This is a - * function pointer entry point called by the api module. + * Acquire access rights to the correct PHY. **/ -static s32 igb_acquire_phy_82575(struct e1000_hw *hw) +static s32 e1000_acquire_phy_82575(struct e1000_hw *hw) { u16 mask = E1000_SWFW_PHY0_SM; + DEBUGFUNC("e1000_acquire_phy_82575"); + if (hw->bus.func == E1000_FUNC_1) mask = E1000_SWFW_PHY1_SM; else if (hw->bus.func == E1000_FUNC_2) @@ -484,16 +554,17 @@ static s32 igb_acquire_phy_82575(struct e1000_hw *hw) } /** - * igb_release_phy_82575 - Release rights to access PHY + * e1000_release_phy_82575 - Release rights to access PHY * @hw: pointer to the HW structure * - * A wrapper to release access rights to the correct PHY. This is a - * function pointer entry point called by the api module. + * A wrapper to release access rights to the correct PHY. **/ -static void igb_release_phy_82575(struct e1000_hw *hw) +static void e1000_release_phy_82575(struct e1000_hw *hw) { u16 mask = E1000_SWFW_PHY0_SM; + DEBUGFUNC("e1000_release_phy_82575"); + if (hw->bus.func == E1000_FUNC_1) mask = E1000_SWFW_PHY1_SM; else if (hw->bus.func == E1000_FUNC_2) @@ -505,7 +576,7 @@ static void igb_release_phy_82575(struct e1000_hw *hw) } /** - * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii + * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data @@ -513,13 +584,15 @@ static void igb_release_phy_82575(struct e1000_hw *hw) * Reads the PHY register at offset using the serial gigabit media independent * interface and stores the retrieved information in data. **/ -static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, +static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val = -E1000_ERR_PARAM; + DEBUGFUNC("e1000_read_phy_reg_sgmii_82575"); + if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { - hw_dbg("PHY Address %u is out of range\n", offset); + DEBUGOUT1("PHY Address %u is out of range\n", offset); goto out; } @@ -527,7 +600,7 @@ static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, if (ret_val) goto out; - ret_val = igb_read_phy_reg_i2c(hw, offset, data); + ret_val = e1000_read_phy_reg_i2c(hw, offset, data); hw->phy.ops.release(hw); @@ -536,7 +609,7 @@ out: } /** - * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii + * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset @@ -544,14 +617,15 @@ out: * Writes the data to PHY register at the offset using the serial gigabit * media independent interface. **/ -static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, +static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val = -E1000_ERR_PARAM; + DEBUGFUNC("e1000_write_phy_reg_sgmii_82575"); if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { - hw_dbg("PHY Address %d is out of range\n", offset); + DEBUGOUT1("PHY Address %d is out of range\n", offset); goto out; } @@ -559,7 +633,7 @@ static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, if (ret_val) goto out; - ret_val = igb_write_phy_reg_i2c(hw, offset, data); + ret_val = e1000_write_phy_reg_i2c(hw, offset, data); hw->phy.ops.release(hw); @@ -568,20 +642,26 @@ out: } /** - * igb_get_phy_id_82575 - Retrieve PHY addr and id + * e1000_get_phy_id_82575 - Retrieve PHY addr and id * @hw: pointer to the HW structure * * Retrieves the PHY address and ID for both PHY's which do and do not use * sgmi interface. **/ -static s32 igb_get_phy_id_82575(struct e1000_hw *hw) +static s32 e1000_get_phy_id_82575(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; u16 phy_id; u32 ctrl_ext; u32 mdic; + DEBUGFUNC("e1000_get_phy_id_82575"); + + /* some i354 devices need an extra read for phy id */ + if (hw->mac.type == e1000_i354) + e1000_get_phy_id(hw); + /* * For SGMII PHYs, we try the list of possible addresses until * we find one that works. For non-SGMII PHYs @@ -589,25 +669,26 @@ static s32 igb_get_phy_id_82575(struct e1000_hw *hw) * work. The result of this function should mean phy->phy_addr * and phy->id are set correctly. */ - if (!(igb_sgmii_active_82575(hw))) { + if (!e1000_sgmii_active_82575(hw)) { phy->addr = 1; - ret_val = igb_get_phy_id(hw); + ret_val = e1000_get_phy_id(hw); goto out; } - if (igb_sgmii_uses_mdio_82575(hw)) { + if (e1000_sgmii_uses_mdio_82575(hw)) { switch (hw->mac.type) { case e1000_82575: case e1000_82576: - mdic = rd32(E1000_MDIC); + mdic = E1000_READ_REG(hw, E1000_MDIC); mdic &= E1000_MDIC_PHY_MASK; phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; break; case e1000_82580: case e1000_i350: + case e1000_i354: case e1000_i210: case e1000_i211: - mdic = rd32(E1000_MDICNFG); + mdic = E1000_READ_REG(hw, E1000_MDICNFG); mdic &= E1000_MDICNFG_PHY_MASK; phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; break; @@ -616,25 +697,26 @@ static s32 igb_get_phy_id_82575(struct e1000_hw *hw) goto out; break; } - ret_val = igb_get_phy_id(hw); + ret_val = e1000_get_phy_id(hw); goto out; } /* Power on sgmii phy if it is disabled */ - ctrl_ext = rd32(E1000_CTRL_EXT); - wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); - wrfl(); - msleep(300); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, + ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); + E1000_WRITE_FLUSH(hw); + msec_delay(300); /* * The address field in the I2CCMD register is 3 bits and 0 is invalid. * Therefore, we need to test 1-7 */ for (phy->addr = 1; phy->addr < 8; phy->addr++) { - ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); - if (ret_val == 0) { - hw_dbg("Vendor ID 0x%08X read at address %u\n", - phy_id, phy->addr); + ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); + if (ret_val == E1000_SUCCESS) { + DEBUGOUT2("Vendor ID 0x%08X read at address %u\n", + phy_id, phy->addr); /* * At the time of this writing, The M88 part is * the only supported SGMII PHY product. @@ -642,7 +724,8 @@ static s32 igb_get_phy_id_82575(struct e1000_hw *hw) if (phy_id == M88_VENDOR) break; } else { - hw_dbg("PHY address %u was unreadable\n", phy->addr); + DEBUGOUT1("PHY address %u was unreadable\n", + phy->addr); } } @@ -650,34 +733,39 @@ static s32 igb_get_phy_id_82575(struct e1000_hw *hw) if (phy->addr == 8) { phy->addr = 0; ret_val = -E1000_ERR_PHY; - goto out; } else { - ret_val = igb_get_phy_id(hw); + ret_val = e1000_get_phy_id(hw); } /* restore previous sfp cage power state */ - wr32(E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); out: return ret_val; } /** - * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset + * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset * @hw: pointer to the HW structure * * Resets the PHY using the serial gigabit media independent interface. **/ -static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) +static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) { - s32 ret_val; + s32 ret_val = E1000_SUCCESS; + struct e1000_phy_info *phy = &hw->phy; + + DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575"); /* * This isn't a true "hard" reset, but is the only reset * available to us at this time. */ - hw_dbg("Soft resetting SGMII attached PHY...\n"); + DEBUGOUT("Soft resetting SGMII attached PHY...\n"); + + if (!(hw->phy.ops.write_reg)) + goto out; /* * SFP documentation requires the following to configure the SPF module @@ -687,14 +775,18 @@ static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) if (ret_val) goto out; - ret_val = igb_phy_sw_reset(hw); + ret_val = hw->phy.ops.commit(hw); + if (ret_val) + goto out; + if (phy->id == M88E1512_E_PHY_ID) + ret_val = e1000_initialize_M88E1512_phy(hw); out: return ret_val; } /** - * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state + * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * @@ -706,12 +798,17 @@ out: * This is a function pointer entry point only called by * PHY setup routines. **/ -static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) +static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; + s32 ret_val = E1000_SUCCESS; u16 data; + DEBUGFUNC("e1000_set_d0_lplu_state_82575"); + + if (!(hw->phy.ops.read_reg)) + goto out; + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); if (ret_val) goto out; @@ -719,22 +816,22 @@ static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) if (active) { data |= IGP02E1000_PM_D0_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); + data); if (ret_val) goto out; /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); + &data); data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - data); + data); if (ret_val) goto out; } else { data &= ~IGP02E1000_PM_D0_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); + data); /* * LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most @@ -743,24 +840,28 @@ static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, &data); + IGP01E1000_PHY_PORT_CONFIG, + &data); if (ret_val) goto out; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, data); + IGP01E1000_PHY_PORT_CONFIG, + data); if (ret_val) goto out; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, &data); + IGP01E1000_PHY_PORT_CONFIG, + &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, data); + IGP01E1000_PHY_PORT_CONFIG, + data); if (ret_val) goto out; } @@ -771,7 +872,7 @@ out: } /** - * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state + * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * @@ -783,13 +884,15 @@ out: * This is a function pointer entry point only called by * PHY setup routines. **/ -static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) +static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = 0; - u16 data; + s32 ret_val = E1000_SUCCESS; + u32 data; - data = rd32(E1000_82580_PHY_POWER_MGMT); + DEBUGFUNC("e1000_set_d0_lplu_state_82580"); + + data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); if (active) { data |= E1000_82580_PM_D0_LPLU; @@ -808,14 +911,15 @@ static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) if (phy->smart_speed == e1000_smart_speed_on) data |= E1000_82580_PM_SPD; else if (phy->smart_speed == e1000_smart_speed_off) - data &= ~E1000_82580_PM_SPD; } + data &= ~E1000_82580_PM_SPD; + } - wr32(E1000_82580_PHY_POWER_MGMT, data); + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); return ret_val; } /** - * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3 + * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * @@ -828,13 +932,15 @@ static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) * During driver activity, SmartSpeed should be enabled so performance is * maintained. **/ -s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) +s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = 0; - u16 data; + s32 ret_val = E1000_SUCCESS; + u32 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_82580"); - data = rd32(E1000_82580_PHY_POWER_MGMT); + data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); if (!active) { data &= ~E1000_82580_PM_D3_LPLU; @@ -856,12 +962,12 @@ s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) data &= ~E1000_82580_PM_SPD; } - wr32(E1000_82580_PHY_POWER_MGMT, data); + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); return ret_val; } /** - * igb_acquire_nvm_82575 - Request for access to EEPROM + * e1000_acquire_nvm_82575 - Request for access to EEPROM * @hw: pointer to the HW structure * * Acquire the necessary semaphores for exclusive access to the EEPROM. @@ -869,59 +975,90 @@ s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) * Return successful if access grant bit set, else clear the request for * EEPROM access and return -E1000_ERR_NVM (-1). **/ -static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) +static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw) { s32 ret_val; - ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM); + DEBUGFUNC("e1000_acquire_nvm_82575"); + + ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); if (ret_val) goto out; - ret_val = igb_acquire_nvm(hw); + /* + * Check if there is some access + * error this access may hook on + */ + if (hw->mac.type == e1000_i350) { + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT | + E1000_EECD_TIMEOUT)) { + /* Clear all access error flags */ + E1000_WRITE_REG(hw, E1000_EECD, eecd | + E1000_EECD_ERROR_CLR); + DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); + } + } + if (hw->mac.type == e1000_82580) { + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & E1000_EECD_BLOCKED) { + /* Clear access error flag */ + E1000_WRITE_REG(hw, E1000_EECD, eecd | + E1000_EECD_BLOCKED); + DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); + } + } + + ret_val = e1000_acquire_nvm_generic(hw); if (ret_val) - hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); + e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); out: return ret_val; } /** - * igb_release_nvm_82575 - Release exclusive access to EEPROM + * e1000_release_nvm_82575 - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit, * then release the semaphores acquired. **/ -static void igb_release_nvm_82575(struct e1000_hw *hw) +static void e1000_release_nvm_82575(struct e1000_hw *hw) { - igb_release_nvm(hw); - hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); + DEBUGFUNC("e1000_release_nvm_82575"); + + e1000_release_nvm_generic(hw); + + e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); } /** - * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore + * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Acquire the SW/FW semaphore to access the PHY or NVM. The mask * will also specify which port we're acquiring the lock for. **/ -static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) +static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; u32 swmask = mask; u32 fwmask = mask << 16; - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ + DEBUGFUNC("e1000_acquire_swfw_sync_82575"); + while (i < timeout) { - if (igb_get_hw_semaphore(hw)) { + if (e1000_get_hw_semaphore_generic(hw)) { ret_val = -E1000_ERR_SWFW_SYNC; goto out; } - swfw_sync = rd32(E1000_SW_FW_SYNC); + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); if (!(swfw_sync & (fwmask | swmask))) break; @@ -929,146 +1066,244 @@ static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) * Firmware currently using resource (fwmask) * or other software thread using resource (swmask) */ - igb_put_hw_semaphore(hw); - mdelay(5); + e1000_put_hw_semaphore_generic(hw); + msec_delay_irq(5); i++; } if (i == timeout) { - hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); ret_val = -E1000_ERR_SWFW_SYNC; goto out; } swfw_sync |= swmask; - wr32(E1000_SW_FW_SYNC, swfw_sync); + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - igb_put_hw_semaphore(hw); + e1000_put_hw_semaphore_generic(hw); out: return ret_val; } /** - * igb_release_swfw_sync_82575 - Release SW/FW semaphore + * e1000_release_swfw_sync_82575 - Release SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Release the SW/FW semaphore used to access the PHY or NVM. The mask * will also specify which port we're releasing the lock for. **/ -static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) +static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; - while (igb_get_hw_semaphore(hw) != 0); - /* Empty */ + DEBUGFUNC("e1000_release_swfw_sync_82575"); - swfw_sync = rd32(E1000_SW_FW_SYNC); + while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) + ; /* Empty */ + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); swfw_sync &= ~mask; - wr32(E1000_SW_FW_SYNC, swfw_sync); + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - igb_put_hw_semaphore(hw); + e1000_put_hw_semaphore_generic(hw); } /** - * igb_get_cfg_done_82575 - Read config done bit + * e1000_get_cfg_done_82575 - Read config done bit * @hw: pointer to the HW structure * * Read the management control register for the config done bit for * completion status. NOTE: silicon which is EEPROM-less will fail trying * to read the config done bit, so an error is *ONLY* logged and returns - * 0. If we were to return with error, EEPROM-less silicon + * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon * would not be able to be reset or change link. **/ -static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) +static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw) { s32 timeout = PHY_CFG_TIMEOUT; - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; u32 mask = E1000_NVM_CFG_DONE_PORT_0; - if (hw->bus.func == 1) + DEBUGFUNC("e1000_get_cfg_done_82575"); + + if (hw->bus.func == E1000_FUNC_1) mask = E1000_NVM_CFG_DONE_PORT_1; else if (hw->bus.func == E1000_FUNC_2) mask = E1000_NVM_CFG_DONE_PORT_2; else if (hw->bus.func == E1000_FUNC_3) mask = E1000_NVM_CFG_DONE_PORT_3; - while (timeout) { - if (rd32(E1000_EEMNGCTL) & mask) + if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) break; - msleep(1); + msec_delay(1); timeout--; } if (!timeout) - hw_dbg("MNG configuration cycle has not completed.\n"); + DEBUGOUT("MNG configuration cycle has not completed.\n"); /* If EEPROM is not marked present, init the PHY manually */ - if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && (hw->phy.type == e1000_phy_igp_3)) - igb_phy_init_script_igp3(hw); + e1000_phy_init_script_igp3(hw); return ret_val; } /** - * igb_check_for_link_82575 - Check for link + * e1000_get_link_up_info_82575 - Get link speed/duplex info + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * This is a wrapper function, if using the serial gigabit media independent + * interface, use PCS to retrieve the link speed and duplex information. + * Otherwise, use the generic function to get the link speed and duplex info. + **/ +static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_link_up_info_82575"); + + if (hw->phy.media_type != e1000_media_type_copper) + ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed, + duplex); + else + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, + duplex); + + return ret_val; +} + +/** + * e1000_check_for_link_82575 - Check for link * @hw: pointer to the HW structure * * If sgmii is enabled, then use the pcs register to determine link, otherwise * use the generic interface for determining link. **/ -static s32 igb_check_for_link_82575(struct e1000_hw *hw) +static s32 e1000_check_for_link_82575(struct e1000_hw *hw) { s32 ret_val; u16 speed, duplex; + DEBUGFUNC("e1000_check_for_link_82575"); + if (hw->phy.media_type != e1000_media_type_copper) { - ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, - &duplex); + ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed, + &duplex); /* * Use this flag to determine if link needs to be checked or - * not. If we have link clear the flag so that we do not + * not. If we have link clear the flag so that we do not * continue to check for link. */ hw->mac.get_link_status = !hw->mac.serdes_has_link; + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) + DEBUGOUT("Error configuring flow control\n"); } else { - ret_val = igb_check_for_copper_link(hw); + ret_val = e1000_check_for_copper_link_generic(hw); } return ret_val; } /** - * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown + * e1000_check_for_link_media_swap - Check which M88E1112 interface linked + * @hw: pointer to the HW structure + * + * Poll the M88E1112 interfaces to see which interface achieved link. + */ +static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + u8 port = 0; + + DEBUGFUNC("e1000_check_for_link_media_swap"); + + /* Check the copper medium. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); + if (ret_val) + return ret_val; + + if (data & E1000_M88E1112_STATUS_LINK) + port = E1000_MEDIA_PORT_COPPER; + + /* Check the other medium. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); + if (ret_val) + return ret_val; + + /* reset page to 0 */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); + if (ret_val) + return ret_val; + + if (data & E1000_M88E1112_STATUS_LINK) + port = E1000_MEDIA_PORT_OTHER; + + /* Determine if a swap needs to happen. */ + if (port && (hw->dev_spec._82575.media_port != port)) { + hw->dev_spec._82575.media_port = port; + hw->dev_spec._82575.media_changed = true; + } else { + ret_val = e1000_check_for_link_82575(hw); + } + + return E1000_SUCCESS; +} + +/** + * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown * @hw: pointer to the HW structure **/ -void igb_power_up_serdes_link_82575(struct e1000_hw *hw) +static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw) { u32 reg; + DEBUGFUNC("e1000_power_up_serdes_link_82575"); if ((hw->phy.media_type != e1000_media_type_internal_serdes) && - !igb_sgmii_active_82575(hw)) + !e1000_sgmii_active_82575(hw)) return; /* Enable PCS to turn on link */ - reg = rd32(E1000_PCS_CFG0); + reg = E1000_READ_REG(hw, E1000_PCS_CFG0); reg |= E1000_PCS_CFG_PCS_EN; - wr32(E1000_PCS_CFG0, reg); + E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); /* Power up the laser */ - reg = rd32(E1000_CTRL_EXT); + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg &= ~E1000_CTRL_EXT_SDP3_DATA; - wr32(E1000_CTRL_EXT, reg); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); /* flush the write to verify completion */ - wrfl(); - msleep(1); + E1000_WRITE_FLUSH(hw); + msec_delay(1); } /** - * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex + * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex @@ -1076,186 +1311,206 @@ void igb_power_up_serdes_link_82575(struct e1000_hw *hw) * Using the physical coding sub-layer (PCS), retrieve the current speed and * duplex, then store the values in the pointers provided. **/ -static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, - u16 *duplex) +static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, + u16 *speed, u16 *duplex) { struct e1000_mac_info *mac = &hw->mac; u32 pcs; + u32 status; - /* Set up defaults for the return values of this function */ - mac->serdes_has_link = false; - *speed = 0; - *duplex = 0; + DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575"); /* * Read the PCS Status register for link state. For non-copper mode, * the status register is not accurate. The PCS status register is * used instead. */ - pcs = rd32(E1000_PCS_LSTAT); + pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT); /* - * The link up bit determines when link is up on autoneg. The sync ok - * gets set once both sides sync up and agree upon link. Stable link - * can be determined by checking for both link up and link sync ok + * The link up bit determines when link is up on autoneg. */ - if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { + if (pcs & E1000_PCS_LSTS_LINK_OK) { mac->serdes_has_link = true; /* Detect and store PCS speed */ - if (pcs & E1000_PCS_LSTS_SPEED_1000) { + if (pcs & E1000_PCS_LSTS_SPEED_1000) *speed = SPEED_1000; - } else if (pcs & E1000_PCS_LSTS_SPEED_100) { + else if (pcs & E1000_PCS_LSTS_SPEED_100) *speed = SPEED_100; - } else { + else *speed = SPEED_10; - } /* Detect and store PCS duplex */ - if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { + if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) *duplex = FULL_DUPLEX; - } else { + else *duplex = HALF_DUPLEX; + + /* Check if it is an I354 2.5Gb backplane connection. */ + if (mac->type == e1000_i354) { + status = E1000_READ_REG(hw, E1000_STATUS); + if ((status & E1000_STATUS_2P5_SKU) && + !(status & E1000_STATUS_2P5_SKU_OVER)) { + *speed = SPEED_2500; + *duplex = FULL_DUPLEX; + DEBUGOUT("2500 Mbs, "); + DEBUGOUT("Full Duplex\n"); + } } + + } else { + mac->serdes_has_link = false; + *speed = 0; + *duplex = 0; } - return 0; + return E1000_SUCCESS; } /** - * igb_shutdown_serdes_link_82575 - Remove link during power down + * e1000_shutdown_serdes_link_82575 - Remove link during power down * @hw: pointer to the HW structure * - * In the case of fiber serdes, shut down optics and PCS on driver unload + * In the case of serdes shut down sfp and PCS on driver unload * when management pass thru is not enabled. **/ -void igb_shutdown_serdes_link_82575(struct e1000_hw *hw) +void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw) { u32 reg; - if (hw->phy.media_type != e1000_media_type_internal_serdes && - igb_sgmii_active_82575(hw)) + DEBUGFUNC("e1000_shutdown_serdes_link_82575"); + + if ((hw->phy.media_type != e1000_media_type_internal_serdes) && + !e1000_sgmii_active_82575(hw)) return; - if (!igb_enable_mng_pass_thru(hw)) { + if (!e1000_enable_mng_pass_thru(hw)) { /* Disable PCS to turn off link */ - reg = rd32(E1000_PCS_CFG0); + reg = E1000_READ_REG(hw, E1000_PCS_CFG0); reg &= ~E1000_PCS_CFG_PCS_EN; - wr32(E1000_PCS_CFG0, reg); + E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); /* shutdown the laser */ - reg = rd32(E1000_CTRL_EXT); + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg |= E1000_CTRL_EXT_SDP3_DATA; - wr32(E1000_CTRL_EXT, reg); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); /* flush the write to verify completion */ - wrfl(); - msleep(1); + E1000_WRITE_FLUSH(hw); + msec_delay(1); } + + return; } /** - * igb_reset_hw_82575 - Reset hardware + * e1000_reset_hw_82575 - Reset hardware * @hw: pointer to the HW structure * - * This resets the hardware into a known state. This is a - * function pointer entry point called by the api module. + * This resets the hardware into a known state. **/ -static s32 igb_reset_hw_82575(struct e1000_hw *hw) +static s32 e1000_reset_hw_82575(struct e1000_hw *hw) { - u32 ctrl, icr; + u32 ctrl; s32 ret_val; + DEBUGFUNC("e1000_reset_hw_82575"); + /* * Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ - ret_val = igb_disable_pcie_master(hw); + ret_val = e1000_disable_pcie_master_generic(hw); if (ret_val) - hw_dbg("PCI-E Master disable polling has failed.\n"); + DEBUGOUT("PCI-E Master disable polling has failed.\n"); /* set the completion timeout for interface */ - ret_val = igb_set_pcie_completion_timeout(hw); - if (ret_val) { - hw_dbg("PCI-E Set completion timeout has failed.\n"); - } + ret_val = e1000_set_pcie_completion_timeout(hw); + if (ret_val) + DEBUGOUT("PCI-E Set completion timeout has failed.\n"); - hw_dbg("Masking off all interrupts\n"); - wr32(E1000_IMC, 0xffffffff); + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - wr32(E1000_RCTL, 0); - wr32(E1000_TCTL, E1000_TCTL_PSP); - wrfl(); + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); - msleep(10); + msec_delay(10); - ctrl = rd32(E1000_CTRL); + ctrl = E1000_READ_REG(hw, E1000_CTRL); - hw_dbg("Issuing a global reset to MAC\n"); - wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); + DEBUGOUT("Issuing a global reset to MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - ret_val = igb_get_auto_rd_done(hw); + ret_val = e1000_get_auto_rd_done_generic(hw); if (ret_val) { /* * When auto config read does not complete, do not * return with an error. This can happen in situations * where there is no eeprom and prevents getting link. */ - hw_dbg("Auto Read Done did not complete\n"); + DEBUGOUT("Auto Read Done did not complete\n"); } /* If EEPROM is not present, run manual init scripts */ - if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) - igb_reset_init_script_82575(hw); + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES)) + e1000_reset_init_script_82575(hw); /* Clear any pending interrupt events. */ - wr32(E1000_IMC, 0xffffffff); - icr = rd32(E1000_ICR); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); /* Install any alternate MAC address into RAR0 */ - ret_val = igb_check_alt_mac_addr(hw); + ret_val = e1000_check_alt_mac_addr_generic(hw); return ret_val; } /** - * igb_init_hw_82575 - Initialize hardware + * e1000_init_hw_82575 - Initialize hardware * @hw: pointer to the HW structure * * This inits the hardware readying it for operation. **/ -static s32 igb_init_hw_82575(struct e1000_hw *hw) +static s32 e1000_init_hw_82575(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; u16 i, rar_count = mac->rar_entry_count; + DEBUGFUNC("e1000_init_hw_82575"); + /* Initialize identification LED */ - ret_val = igb_id_led_init(hw); + ret_val = mac->ops.id_led_init(hw); if (ret_val) { - hw_dbg("Error initializing identification LED\n"); + DEBUGOUT("Error initializing identification LED\n"); /* This is not fatal and we should not stop init due to this */ } /* Disabling VLAN filtering */ - hw_dbg("Initializing the IEEE VLAN\n"); - igb_clear_vfta(hw); + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); /* Setup the receive address */ - igb_init_rx_addrs(hw, rar_count); + e1000_init_rx_addrs_generic(hw, rar_count); /* Zero out the Multicast HASH table */ - hw_dbg("Zeroing the MTA\n"); + DEBUGOUT("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) - array_wr32(E1000_MTA, i, 0); + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); /* Zero out the Unicast HASH table */ - hw_dbg("Zeroing the UTA\n"); + DEBUGOUT("Zeroing the UTA\n"); for (i = 0; i < mac->uta_reg_count; i++) - array_wr32(E1000_UTA, i, 0); + E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0); /* Setup link and flow control */ - ret_val = igb_setup_link(hw); + ret_val = mac->ops.setup_link(hw); + + /* Set the default MTU size */ + hw->dev_spec._82575.mtu = 1500; /* * Clear all of the statistics registers (clear on read). It is @@ -1263,56 +1518,82 @@ static s32 igb_init_hw_82575(struct e1000_hw *hw) * because the symbol error count will increment wildly if there * is no link. */ - igb_clear_hw_cntrs_82575(hw); + e1000_clear_hw_cntrs_82575(hw); + return ret_val; } /** - * igb_setup_copper_link_82575 - Configure copper link settings + * e1000_setup_copper_link_82575 - Configure copper link settings * @hw: pointer to the HW structure * * Configures the link for auto-neg or forced speed and duplex. Then we check * for link, once link is established calls to configure collision distance * and flow control are called. **/ -static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) +static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw) { u32 ctrl; - s32 ret_val; + s32 ret_val; + u32 phpm_reg; + + DEBUGFUNC("e1000_setup_copper_link_82575"); - ctrl = rd32(E1000_CTRL); + ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - wr32(E1000_CTRL, ctrl); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Clear Go Link Disconnect bit on supported devices */ + switch (hw->mac.type) { + case e1000_82580: + case e1000_i350: + case e1000_i210: + case e1000_i211: + phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + phpm_reg &= ~E1000_82580_PM_GO_LINKD; + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); + break; + default: + break; + } - ret_val = igb_setup_serdes_link_82575(hw); + ret_val = e1000_setup_serdes_link_82575(hw); if (ret_val) goto out; - if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) { + if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) { /* allow time for SFP cage time to power up phy */ - msleep(300); + msec_delay(300); ret_val = hw->phy.ops.reset(hw); if (ret_val) { - hw_dbg("Error resetting the PHY.\n"); + DEBUGOUT("Error resetting the PHY.\n"); goto out; } } switch (hw->phy.type) { case e1000_phy_i210: case e1000_phy_m88: - if (hw->phy.id == I347AT4_E_PHY_ID || - hw->phy.id == M88E1112_E_PHY_ID) - ret_val = igb_copper_link_setup_m88_gen2(hw); - else - ret_val = igb_copper_link_setup_m88(hw); + switch (hw->phy.id) { + case I347AT4_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case M88E1543_E_PHY_ID: + case M88E1512_E_PHY_ID: + case I210_I_PHY_ID: + ret_val = e1000_copper_link_setup_m88_gen2(hw); + break; + default: + ret_val = e1000_copper_link_setup_m88(hw); + break; + } break; case e1000_phy_igp_3: - ret_val = igb_copper_link_setup_igp(hw); + ret_val = e1000_copper_link_setup_igp(hw); break; case e1000_phy_82580: - ret_val = igb_copper_link_setup_82580(hw); + ret_val = e1000_copper_link_setup_82577(hw); break; default: ret_val = -E1000_ERR_PHY; @@ -1322,13 +1603,13 @@ static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) if (ret_val) goto out; - ret_val = igb_setup_copper_link(hw); + ret_val = e1000_setup_copper_link_generic(hw); out: return ret_val; } /** - * igb_setup_serdes_link_82575 - Setup link for serdes + * e1000_setup_serdes_link_82575 - Setup link for serdes * @hw: pointer to the HW structure * * Configure the physical coding sub-layer (PCS) link. The PCS link is @@ -1336,45 +1617,40 @@ out: * interface (sgmii), or serdes fiber is being used. Configures the link * for auto-negotiation or forces speed/duplex. **/ -static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) +static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw) { - u32 ctrl_ext, ctrl_reg, reg; + u32 ctrl_ext, ctrl_reg, reg, anadv_reg; bool pcs_autoneg; s32 ret_val = E1000_SUCCESS; u16 data; + DEBUGFUNC("e1000_setup_serdes_link_82575"); + if ((hw->phy.media_type != e1000_media_type_internal_serdes) && - !igb_sgmii_active_82575(hw)) + !e1000_sgmii_active_82575(hw)) return ret_val; - /* * On the 82575, SerDes loopback mode persists until it is * explicitly turned off or a power cycle is performed. A read to * the register does not indicate its status. Therefore, we ensure * loopback mode is disabled during initialization. */ - wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); + E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); /* power on the sfp cage if present */ - ctrl_ext = rd32(E1000_CTRL_EXT); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; - wr32(E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - ctrl_reg = rd32(E1000_CTRL); + ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); ctrl_reg |= E1000_CTRL_SLU; - if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { - /* set both sw defined pins */ + /* set both sw defined pins on 82575/82576*/ + if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; - /* Set switch control to serdes energy detect */ - reg = rd32(E1000_CONNSW); - reg |= E1000_CONNSW_ENRGSRC; - wr32(E1000_CONNSW, reg); - } - - reg = rd32(E1000_PCS_LCTL); + reg = E1000_READ_REG(hw, E1000_PCS_LCTL); /* default pcs_autoneg to the same setting as mac autoneg */ pcs_autoneg = hw->mac.autoneg; @@ -1389,12 +1665,13 @@ static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: /* disable PCS autoneg and support parallel detect only */ pcs_autoneg = false; + /* fall through to default case */ default: if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); if (ret_val) { - printk(KERN_DEBUG "NVM Read Error\n\n"); + DEBUGOUT("NVM Read Error\n"); return ret_val; } @@ -1408,14 +1685,14 @@ static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) * link either autoneg or be forced to 1000/Full */ ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | - E1000_CTRL_FD | E1000_CTRL_FRCDPX; + E1000_CTRL_FD | E1000_CTRL_FRCDPX; /* set speed of 1000/Full if speed/duplex is forced */ reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; break; } - wr32(E1000_CTRL, ctrl_reg); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); /* * New SerDes mode allows for forcing speed or autonegotiating speed @@ -1424,186 +1701,427 @@ static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) * However, both are supported by the hardware and some drivers/tools. */ reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | - E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); - - /* - * We force flow control to prevent the CTRL register values from being - * overwritten by the autonegotiated flow control values - */ - reg |= E1000_PCS_LCTL_FORCE_FCTRL; + E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); if (pcs_autoneg) { /* Set PCS register for autoneg */ reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ - hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); + + /* Disable force flow control for autoneg */ + reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; + + /* Configure flow control advertisement for autoneg */ + anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); + anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); + + switch (hw->fc.requested_mode) { + case e1000_fc_full: + case e1000_fc_rx_pause: + anadv_reg |= E1000_TXCW_ASM_DIR; + anadv_reg |= E1000_TXCW_PAUSE; + break; + case e1000_fc_tx_pause: + anadv_reg |= E1000_TXCW_ASM_DIR; + break; + default: + break; + } + + E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg); + + DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); } else { /* Set PCS register for forced link */ - reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ + reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ + + /* Force flow control for forced link */ + reg |= E1000_PCS_LCTL_FORCE_FCTRL; + + DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); + } + + E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); + + if (!pcs_autoneg && !e1000_sgmii_active_82575(hw)) + e1000_force_mac_fc_generic(hw); + + return ret_val; +} + +/** + * e1000_get_media_type_82575 - derives current media type. + * @hw: pointer to the HW structure + * + * The media type is chosen reflecting few settings. + * The following are taken into account: + * - link mode set in the current port Init Control Word #3 + * - current link mode settings in CSR register + * - MDIO vs. I2C PHY control interface chosen + * - SFP module media type + **/ +static s32 e1000_get_media_type_82575(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext = 0; + u32 link_mode = 0; + + /* Set internal phy as default */ + dev_spec->sgmii_active = false; + dev_spec->module_plugged = false; + + /* Get CSR setting */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + + /* extract link mode setting */ + link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; + + switch (link_mode) { + case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: + hw->phy.media_type = e1000_media_type_internal_serdes; + break; + case E1000_CTRL_EXT_LINK_MODE_GMII: + hw->phy.media_type = e1000_media_type_copper; + break; + case E1000_CTRL_EXT_LINK_MODE_SGMII: + /* Get phy control interface type set (MDIO vs. I2C)*/ + if (e1000_sgmii_uses_mdio_82575(hw)) { + hw->phy.media_type = e1000_media_type_copper; + dev_spec->sgmii_active = true; + break; + } + /* fall through for I2C based SGMII */ + case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: + /* read media type from SFP EEPROM */ + ret_val = e1000_set_sfp_media_type_82575(hw); + if ((ret_val != E1000_SUCCESS) || + (hw->phy.media_type == e1000_media_type_unknown)) { + /* + * If media type was not identified then return media + * type defined by the CTRL_EXT settings. + */ + hw->phy.media_type = e1000_media_type_internal_serdes; + + if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { + hw->phy.media_type = e1000_media_type_copper; + dev_spec->sgmii_active = true; + } + + break; + } - hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); + /* do not change link mode for 100BaseFX */ + if (dev_spec->eth_flags.e100_base_fx) + break; + + /* change current link mode setting */ + ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; + + if (hw->phy.media_type == e1000_media_type_copper) + ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; + else + ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; + + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + break; } - wr32(E1000_PCS_LCTL, reg); + return ret_val; +} - if (!igb_sgmii_active_82575(hw)) - igb_force_mac_fc(hw); +/** + * e1000_set_sfp_media_type_82575 - derives SFP module media type. + * @hw: pointer to the HW structure + * + * The media type is chosen based on SFP module. + * compatibility flags retrieved from SFP ID EEPROM. + **/ +static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_ERR_CONFIG; + u32 ctrl_ext = 0; + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags; + u8 tranceiver_type = 0; + s32 timeout = 3; + + /* Turn I2C interface ON and power on sfp cage */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); + + E1000_WRITE_FLUSH(hw); + + /* Read SFP module data */ + while (timeout) { + ret_val = e1000_read_sfp_data_byte(hw, + E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), + &tranceiver_type); + if (ret_val == E1000_SUCCESS) + break; + msec_delay(100); + timeout--; + } + if (ret_val != E1000_SUCCESS) + goto out; + ret_val = e1000_read_sfp_data_byte(hw, + E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), + (u8 *)eth_flags); + if (ret_val != E1000_SUCCESS) + goto out; + + /* Check if there is some SFP module plugged and powered */ + if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || + (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { + dev_spec->module_plugged = true; + if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { + hw->phy.media_type = e1000_media_type_internal_serdes; + } else if (eth_flags->e100_base_fx) { + dev_spec->sgmii_active = true; + hw->phy.media_type = e1000_media_type_internal_serdes; + } else if (eth_flags->e1000_base_t) { + dev_spec->sgmii_active = true; + hw->phy.media_type = e1000_media_type_copper; + } else { + hw->phy.media_type = e1000_media_type_unknown; + DEBUGOUT("PHY module has not been recognized\n"); + goto out; + } + } else { + hw->phy.media_type = e1000_media_type_unknown; + } + ret_val = E1000_SUCCESS; +out: + /* Restore I2C interface setting */ + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + return ret_val; +} + +/** + * e1000_valid_led_default_82575 - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_82575"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { + switch (hw->phy.media_type) { + case e1000_media_type_internal_serdes: + *data = ID_LED_DEFAULT_82575_SERDES; + break; + case e1000_media_type_copper: + default: + *data = ID_LED_DEFAULT; + break; + } + } +out: return ret_val; } /** - * igb_sgmii_active_82575 - Return sgmii state + * e1000_sgmii_active_82575 - Return sgmii state * @hw: pointer to the HW structure * * 82575 silicon has a serialized gigabit media independent interface (sgmii) * which can be enabled for use in the embedded applications. Simply * return the current state of the sgmii interface. **/ -static bool igb_sgmii_active_82575(struct e1000_hw *hw) +static bool e1000_sgmii_active_82575(struct e1000_hw *hw) { struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; return dev_spec->sgmii_active; } /** - * igb_reset_init_script_82575 - Inits HW defaults after reset + * e1000_reset_init_script_82575 - Inits HW defaults after reset * @hw: pointer to the HW structure * * Inits recommended HW defaults after a reset when there is no EEPROM * detected. This is only for the 82575. **/ -static s32 igb_reset_init_script_82575(struct e1000_hw *hw) +static s32 e1000_reset_init_script_82575(struct e1000_hw *hw) { + DEBUGFUNC("e1000_reset_init_script_82575"); + if (hw->mac.type == e1000_82575) { - hw_dbg("Running reset init script for 82575\n"); + DEBUGOUT("Running reset init script for 82575\n"); /* SerDes configuration via SERDESCTRL */ - igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); - igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); - igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); - igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15); /* CCM configuration via CCMCTL register */ - igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); - igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00); /* PCIe lanes configuration */ - igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); - igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); - igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); - igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81); /* PCIe PLL Configuration */ - igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); - igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); - igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00); } - return 0; + return E1000_SUCCESS; } /** - * igb_read_mac_addr_82575 - Read device MAC address + * e1000_read_mac_addr_82575 - Read device MAC address * @hw: pointer to the HW structure **/ -static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) +static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw) { - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_mac_addr_82575"); /* * If there's an alternate MAC address place it in RAR0 * so that it will override the Si installed default perm * address. */ - ret_val = igb_check_alt_mac_addr(hw); + ret_val = e1000_check_alt_mac_addr_generic(hw); if (ret_val) goto out; - ret_val = igb_read_mac_addr(hw); + ret_val = e1000_read_mac_addr_generic(hw); out: return ret_val; } /** - * igb_power_down_phy_copper_82575 - Remove link during PHY power down + * e1000_config_collision_dist_82575 - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +static void e1000_config_collision_dist_82575(struct e1000_hw *hw) +{ + u32 tctl_ext; + + DEBUGFUNC("e1000_config_collision_dist_82575"); + + tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT); + + tctl_ext &= ~E1000_TCTL_EXT_COLD; + tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT; + + E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_power_down_phy_copper_82575 - Remove link during PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. **/ -void igb_power_down_phy_copper_82575(struct e1000_hw *hw) +static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw) { + struct e1000_phy_info *phy = &hw->phy; + + if (!(phy->ops.check_reset_block)) + return; + /* If the management interface is not enabled, then power down */ - if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw))) - igb_power_down_phy_copper(hw); + if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; } /** - * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters + * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters * @hw: pointer to the HW structure * * Clears the hardware counters by reading the counter registers. **/ -static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) -{ - igb_clear_hw_cntrs_base(hw); - - rd32(E1000_PRC64); - rd32(E1000_PRC127); - rd32(E1000_PRC255); - rd32(E1000_PRC511); - rd32(E1000_PRC1023); - rd32(E1000_PRC1522); - rd32(E1000_PTC64); - rd32(E1000_PTC127); - rd32(E1000_PTC255); - rd32(E1000_PTC511); - rd32(E1000_PTC1023); - rd32(E1000_PTC1522); - - rd32(E1000_ALGNERRC); - rd32(E1000_RXERRC); - rd32(E1000_TNCRS); - rd32(E1000_CEXTERR); - rd32(E1000_TSCTC); - rd32(E1000_TSCTFC); - - rd32(E1000_MGTPRC); - rd32(E1000_MGTPDC); - rd32(E1000_MGTPTC); - - rd32(E1000_IAC); - rd32(E1000_ICRXOC); - - rd32(E1000_ICRXPTC); - rd32(E1000_ICRXATC); - rd32(E1000_ICTXPTC); - rd32(E1000_ICTXATC); - rd32(E1000_ICTXQEC); - rd32(E1000_ICTXQMTC); - rd32(E1000_ICRXDMTC); - - rd32(E1000_CBTMPC); - rd32(E1000_HTDPMC); - rd32(E1000_CBRMPC); - rd32(E1000_RPTHC); - rd32(E1000_HGPTC); - rd32(E1000_HTCBDPC); - rd32(E1000_HGORCL); - rd32(E1000_HGORCH); - rd32(E1000_HGOTCL); - rd32(E1000_HGOTCH); - rd32(E1000_LENERRS); +static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82575"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); + + E1000_READ_REG(hw, E1000_IAC); + E1000_READ_REG(hw, E1000_ICRXOC); + + E1000_READ_REG(hw, E1000_ICRXPTC); + E1000_READ_REG(hw, E1000_ICRXATC); + E1000_READ_REG(hw, E1000_ICTXPTC); + E1000_READ_REG(hw, E1000_ICTXATC); + E1000_READ_REG(hw, E1000_ICTXQEC); + E1000_READ_REG(hw, E1000_ICTXQMTC); + E1000_READ_REG(hw, E1000_ICRXDMTC); + + E1000_READ_REG(hw, E1000_CBTMPC); + E1000_READ_REG(hw, E1000_HTDPMC); + E1000_READ_REG(hw, E1000_CBRMPC); + E1000_READ_REG(hw, E1000_RPTHC); + E1000_READ_REG(hw, E1000_HGPTC); + E1000_READ_REG(hw, E1000_HTCBDPC); + E1000_READ_REG(hw, E1000_HGORCL); + E1000_READ_REG(hw, E1000_HGORCH); + E1000_READ_REG(hw, E1000_HGOTCL); + E1000_READ_REG(hw, E1000_HGOTCH); + E1000_READ_REG(hw, E1000_LENERRS); /* This register should not be read in copper configurations */ - if (hw->phy.media_type == e1000_media_type_internal_serdes || - igb_sgmii_active_82575(hw)) - rd32(E1000_SCVPC); + if ((hw->phy.media_type == e1000_media_type_internal_serdes) || + e1000_sgmii_active_82575(hw)) + E1000_READ_REG(hw, E1000_SCVPC); } /** - * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable + * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable * @hw: pointer to the HW structure * * After rx enable if managability is enabled then there is likely some @@ -1611,72 +2129,73 @@ static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) * function clears the fifos and flushes any packets that came in as rx was * being enabled. **/ -void igb_rx_fifo_flush_82575(struct e1000_hw *hw) +void e1000_rx_fifo_flush_82575(struct e1000_hw *hw) { u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; int i, ms_wait; + DEBUGFUNC("e1000_rx_fifo_workaround_82575"); if (hw->mac.type != e1000_82575 || - !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN)) + !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) return; - /* Disable all RX queues */ + /* Disable all Rx queues */ for (i = 0; i < 4; i++) { - rxdctl[i] = rd32(E1000_RXDCTL(i)); - wr32(E1000_RXDCTL(i), - rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); + rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i)); + E1000_WRITE_REG(hw, E1000_RXDCTL(i), + rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); } /* Poll all queues to verify they have shut down */ for (ms_wait = 0; ms_wait < 10; ms_wait++) { - msleep(1); + msec_delay(1); rx_enabled = 0; for (i = 0; i < 4; i++) - rx_enabled |= rd32(E1000_RXDCTL(i)); + rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i)); if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) break; } if (ms_wait == 10) - hw_dbg("Queue disable timed out after 10ms\n"); + DEBUGOUT("Queue disable timed out after 10ms\n"); /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all * incoming packets are rejected. Set enable and wait 2ms so that * any packet that was coming in as RCTL.EN was set is flushed */ - rfctl = rd32(E1000_RFCTL); - wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); + rfctl = E1000_READ_REG(hw, E1000_RFCTL); + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); - rlpml = rd32(E1000_RLPML); - wr32(E1000_RLPML, 0); + rlpml = E1000_READ_REG(hw, E1000_RLPML); + E1000_WRITE_REG(hw, E1000_RLPML, 0); - rctl = rd32(E1000_RCTL); + rctl = E1000_READ_REG(hw, E1000_RCTL); temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); temp_rctl |= E1000_RCTL_LPE; - wr32(E1000_RCTL, temp_rctl); - wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN); - wrfl(); - msleep(2); + E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl); + E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN); + E1000_WRITE_FLUSH(hw); + msec_delay(2); - /* Enable RX queues that were previously enabled and restore our + /* Enable Rx queues that were previously enabled and restore our * previous state */ for (i = 0; i < 4; i++) - wr32(E1000_RXDCTL(i), rxdctl[i]); - wr32(E1000_RCTL, rctl); - wrfl(); + E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + E1000_WRITE_FLUSH(hw); - wr32(E1000_RLPML, rlpml); - wr32(E1000_RFCTL, rfctl); + E1000_WRITE_REG(hw, E1000_RLPML, rlpml); + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); /* Flush receive errors generated by workaround */ - rd32(E1000_ROC); - rd32(E1000_RNBC); - rd32(E1000_MPC); + E1000_READ_REG(hw, E1000_ROC); + E1000_READ_REG(hw, E1000_RNBC); + E1000_READ_REG(hw, E1000_MPC); } /** - * igb_set_pcie_completion_timeout - set pci-e completion timeout + * e1000_set_pcie_completion_timeout - set pci-e completion timeout * @hw: pointer to the HW structure * * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, @@ -1685,10 +2204,10 @@ void igb_rx_fifo_flush_82575(struct e1000_hw *hw) * increase the value to either 10ms to 200ms for capability version 1 config, * or 16ms to 55ms for version 2. **/ -static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw) +static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw) { - u32 gcr = rd32(E1000_GCR); - s32 ret_val = 0; + u32 gcr = E1000_READ_REG(hw, E1000_GCR); + s32 ret_val = E1000_SUCCESS; u16 pcie_devctl2; /* only take action if timeout value is defaulted to 0 */ @@ -1709,96 +2228,120 @@ static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw) * directly in order to set the completion timeout value for * 16ms to 55ms */ - ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, - &pcie_devctl2); + ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, + &pcie_devctl2); if (ret_val) goto out; pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; - ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, - &pcie_devctl2); + ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, + &pcie_devctl2); out: /* disable completion timeout resend */ gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; - wr32(E1000_GCR, gcr); + E1000_WRITE_REG(hw, E1000_GCR, gcr); return ret_val; } /** - * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing + * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing * @hw: pointer to the hardware struct * @enable: state to enter, either enabled or disabled * @pf: Physical Function pool - do not set anti-spoofing for the PF * * enables/disables L2 switch anti-spoofing functionality. **/ -void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) +void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) { - u32 dtxswc; + u32 reg_val, reg_offset; switch (hw->mac.type) { case e1000_82576: + reg_offset = E1000_DTXSWC; + break; case e1000_i350: - dtxswc = rd32(E1000_DTXSWC); - if (enable) { - dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK | - E1000_DTXSWC_VLAN_SPOOF_MASK); - /* The PF can spoof - it has to in order to - * support emulation mode NICs */ - dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); - } else { - dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | - E1000_DTXSWC_VLAN_SPOOF_MASK); - } - wr32(E1000_DTXSWC, dtxswc); + case e1000_i354: + reg_offset = E1000_TXSWC; break; default: - break; + return; } + + reg_val = E1000_READ_REG(hw, reg_offset); + if (enable) { + reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK | + E1000_DTXSWC_VLAN_SPOOF_MASK); + /* The PF can spoof - it has to in order to + * support emulation mode NICs + */ + reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); + } else { + reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | + E1000_DTXSWC_VLAN_SPOOF_MASK); + } + E1000_WRITE_REG(hw, reg_offset, reg_val); } /** - * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback + * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback * @hw: pointer to the hardware struct * @enable: state to enter, either enabled or disabled * * enables/disables L2 switch loopback functionality. **/ -void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) +void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) { - u32 dtxswc = rd32(E1000_DTXSWC); + u32 dtxswc; + + switch (hw->mac.type) { + case e1000_82576: + dtxswc = E1000_READ_REG(hw, E1000_DTXSWC); + if (enable) + dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; + else + dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; + E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc); + break; + case e1000_i350: + case e1000_i354: + dtxswc = E1000_READ_REG(hw, E1000_TXSWC); + if (enable) + dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; + else + dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; + E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc); + break; + default: + /* Currently no other hardware supports loopback */ + break; + } - if (enable) - dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; - else - dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; - wr32(E1000_DTXSWC, dtxswc); } /** - * igb_vmdq_set_replication_pf - enable or disable vmdq replication + * e1000_vmdq_set_replication_pf - enable or disable vmdq replication * @hw: pointer to the hardware struct * @enable: state to enter, either enabled or disabled * * enables/disables replication of packets across multiple pools. **/ -void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) +void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) { - u32 vt_ctl = rd32(E1000_VT_CTL); + u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); if (enable) vt_ctl |= E1000_VT_CTL_VM_REPL_EN; else vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; - wr32(E1000_VT_CTL, vt_ctl); + E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); } /** - * igb_read_phy_reg_82580 - Read 82580 MDI control register + * e1000_read_phy_reg_82580 - Read 82580 MDI control register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data @@ -1806,16 +2349,17 @@ void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) * Reads the MDI control register in the PHY at offset and stores the * information read to data. **/ -static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) +static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; + DEBUGFUNC("e1000_read_phy_reg_82580"); ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; - ret_val = igb_read_phy_reg_mdic(hw, offset, data); + ret_val = e1000_read_phy_reg_mdic(hw, offset, data); hw->phy.ops.release(hw); @@ -1824,23 +2368,24 @@ out: } /** - * igb_write_phy_reg_82580 - Write 82580 MDI control register + * e1000_write_phy_reg_82580 - Write 82580 MDI control register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write to register at offset * * Writes data to MDI control register in the PHY at offset. **/ -static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) +static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; + DEBUGFUNC("e1000_write_phy_reg_82580"); ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; - ret_val = igb_write_phy_reg_mdic(hw, offset, data); + ret_val = e1000_write_phy_reg_mdic(hw, offset, data); hw->phy.ops.release(hw); @@ -1849,124 +2394,127 @@ out: } /** - * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits + * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits * @hw: pointer to the HW structure * * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on * the values found in the EEPROM. This addresses an issue in which these * bits are not restored from EEPROM after reset. **/ -static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw) +static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw) { - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; u32 mdicnfg; u16 nvm_data = 0; + DEBUGFUNC("e1000_reset_mdicnfg_82580"); + if (hw->mac.type != e1000_82580) goto out; - if (!igb_sgmii_active_82575(hw)) + if (!e1000_sgmii_active_82575(hw)) goto out; ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, &nvm_data); if (ret_val) { - hw_dbg("NVM Read Error\n"); + DEBUGOUT("NVM Read Error\n"); goto out; } - mdicnfg = rd32(E1000_MDICNFG); + mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); if (nvm_data & NVM_WORD24_EXT_MDIO) mdicnfg |= E1000_MDICNFG_EXT_MDIO; if (nvm_data & NVM_WORD24_COM_MDIO) mdicnfg |= E1000_MDICNFG_COM_MDIO; - wr32(E1000_MDICNFG, mdicnfg); + E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); out: return ret_val; } /** - * igb_reset_hw_82580 - Reset hardware + * e1000_reset_hw_82580 - Reset hardware * @hw: pointer to the HW structure * * This resets function or entire device (all ports, etc.) * to a known state. **/ -static s32 igb_reset_hw_82580(struct e1000_hw *hw) +static s32 e1000_reset_hw_82580(struct e1000_hw *hw) { - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; /* BH SW mailbox bit in SW_FW_SYNC */ u16 swmbsw_mask = E1000_SW_SYNCH_MB; - u32 ctrl, icr; + u32 ctrl; bool global_device_reset = hw->dev_spec._82575.global_device_reset; + DEBUGFUNC("e1000_reset_hw_82580"); hw->dev_spec._82575.global_device_reset = false; + /* 82580 does not reliably do global_device_reset due to hw errata */ + if (hw->mac.type == e1000_82580) + global_device_reset = false; + /* Get current control state. */ - ctrl = rd32(E1000_CTRL); + ctrl = E1000_READ_REG(hw, E1000_CTRL); /* * Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ - ret_val = igb_disable_pcie_master(hw); + ret_val = e1000_disable_pcie_master_generic(hw); if (ret_val) - hw_dbg("PCI-E Master disable polling has failed.\n"); + DEBUGOUT("PCI-E Master disable polling has failed.\n"); - hw_dbg("Masking off all interrupts\n"); - wr32(E1000_IMC, 0xffffffff); - wr32(E1000_RCTL, 0); - wr32(E1000_TCTL, E1000_TCTL_PSP); - wrfl(); + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); - msleep(10); + msec_delay(10); /* Determine whether or not a global dev reset is requested */ - if (global_device_reset && - hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask)) + if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw, + swmbsw_mask)) global_device_reset = false; - if (global_device_reset && - !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET)) + if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) & + E1000_STAT_DEV_RST_SET)) ctrl |= E1000_CTRL_DEV_RST; else ctrl |= E1000_CTRL_RST; - wr32(E1000_CTRL, ctrl); - wrfl(); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); /* Add delay to insure DEV_RST has time to complete */ if (global_device_reset) - msleep(5); + msec_delay(5); - ret_val = igb_get_auto_rd_done(hw); + ret_val = e1000_get_auto_rd_done_generic(hw); if (ret_val) { /* * When auto config read does not complete, do not * return with an error. This can happen in situations * where there is no eeprom and prevents getting link. */ - hw_dbg("Auto Read Done did not complete\n"); + DEBUGOUT("Auto Read Done did not complete\n"); } - /* If EEPROM is not present, run manual init scripts */ - if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) - igb_reset_init_script_82575(hw); - /* clear global device reset status bit */ - wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET); + E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET); /* Clear any pending interrupt events. */ - wr32(E1000_IMC, 0xffffffff); - icr = rd32(E1000_ICR); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); - ret_val = igb_reset_mdicnfg_82580(hw); + ret_val = e1000_reset_mdicnfg_82580(hw); if (ret_val) - hw_dbg("Could not reset MDICNFG based on EEPROM\n"); + DEBUGOUT("Could not reset MDICNFG based on EEPROM\n"); /* Install any alternate MAC address into RAR0 */ - ret_val = igb_check_alt_mac_addr(hw); + ret_val = e1000_check_alt_mac_addr_generic(hw); /* Release semaphore */ if (global_device_reset) @@ -1976,7 +2524,7 @@ static s32 igb_reset_hw_82580(struct e1000_hw *hw) } /** - * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size + * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size * @data: data received by reading RXPBS register * * The 82580 uses a table based approach for packet buffer allocation sizes. @@ -1985,7 +2533,7 @@ static s32 igb_reset_hw_82580(struct e1000_hw *hw) * 0x0 36 72 144 1 2 4 8 16 * 0x8 35 70 140 rsv rsv rsv rsv rsv */ -u16 igb_rxpbs_adjust_82580(u32 data) +u16 e1000_rxpbs_adjust_82580(u32 data) { u16 ret_val = 0; @@ -1996,7 +2544,7 @@ u16 igb_rxpbs_adjust_82580(u32 data) } /** - * igb_validate_nvm_checksum_with_offset - Validate EEPROM + * e1000_validate_nvm_checksum_with_offset - Validate EEPROM * checksum * @hw: pointer to the HW structure * @offset: offset in words of the checksum protected region @@ -2004,23 +2552,25 @@ u16 igb_rxpbs_adjust_82580(u32 data) * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. **/ -s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) +s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) { - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; u16 checksum = 0; u16 i, nvm_data; + DEBUGFUNC("e1000_validate_nvm_checksum_with_offset"); + for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { - hw_dbg("NVM Read Error\n"); + DEBUGOUT("NVM Read Error\n"); goto out; } checksum += nvm_data; } if (checksum != (u16) NVM_SUM) { - hw_dbg("NVM Checksum Invalid\n"); + DEBUGOUT("NVM Checksum Invalid\n"); ret_val = -E1000_ERR_NVM; goto out; } @@ -2030,7 +2580,7 @@ out: } /** - * igb_update_nvm_checksum_with_offset - Update EEPROM + * e1000_update_nvm_checksum_with_offset - Update EEPROM * checksum * @hw: pointer to the HW structure * @offset: offset in words of the checksum protected region @@ -2039,62 +2589,66 @@ out: * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. **/ -s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) +s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) { s32 ret_val; u16 checksum = 0; u16 i, nvm_data; + DEBUGFUNC("e1000_update_nvm_checksum_with_offset"); + for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { - hw_dbg("NVM Read Error while updating checksum.\n"); + DEBUGOUT("NVM Read Error while updating checksum.\n"); goto out; } checksum += nvm_data; } checksum = (u16) NVM_SUM - checksum; ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, - &checksum); + &checksum); if (ret_val) - hw_dbg("NVM Write Error while updating checksum.\n"); + DEBUGOUT("NVM Write Error while updating checksum.\n"); out: return ret_val; } /** - * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum + * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM section checksum by reading/adding each word of * the EEPROM and then verifies that the sum of the EEPROM is * equal to 0xBABA. **/ -static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw) +static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw) { - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; u16 eeprom_regions_count = 1; u16 j, nvm_data; u16 nvm_offset; + DEBUGFUNC("e1000_validate_nvm_checksum_82580"); + ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); if (ret_val) { - hw_dbg("NVM Read Error\n"); + DEBUGOUT("NVM Read Error\n"); goto out; } if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { - /* if checksums compatibility bit is set validate checksums + /* if chekcsums compatibility bit is set validate checksums * for all 4 ports. */ eeprom_regions_count = 4; } for (j = 0; j < eeprom_regions_count; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = igb_validate_nvm_checksum_with_offset(hw, - nvm_offset); - if (ret_val != 0) + ret_val = e1000_validate_nvm_checksum_with_offset(hw, + nvm_offset); + if (ret_val != E1000_SUCCESS) goto out; } @@ -2103,41 +2657,41 @@ out: } /** - * igb_update_nvm_checksum_82580 - Update EEPROM checksum + * e1000_update_nvm_checksum_82580 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM section checksums for all 4 ports by reading/adding * each word of the EEPROM up to the checksum. Then calculates the EEPROM * checksum and writes the value to the EEPROM. **/ -static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw) +static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw) { s32 ret_val; u16 j, nvm_data; u16 nvm_offset; + DEBUGFUNC("e1000_update_nvm_checksum_82580"); + ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); if (ret_val) { - hw_dbg("NVM Read Error while updating checksum" - " compatibility bit.\n"); + DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n"); goto out; } - if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) { + if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) { /* set compatibility bit to validate checksums appropriately */ nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, - &nvm_data); + &nvm_data); if (ret_val) { - hw_dbg("NVM Write Error while updating checksum" - " compatibility bit.\n"); + DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n"); goto out; } } for (j = 0; j < 4; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); + ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); if (ret_val) goto out; } @@ -2147,24 +2701,26 @@ out: } /** - * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum + * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM section checksum by reading/adding each word of * the EEPROM and then verifies that the sum of the EEPROM is * equal to 0xBABA. **/ -static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw) +static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw) { - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; u16 j; u16 nvm_offset; + DEBUGFUNC("e1000_validate_nvm_checksum_i350"); + for (j = 0; j < 4; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = igb_validate_nvm_checksum_with_offset(hw, - nvm_offset); - if (ret_val != 0) + ret_val = e1000_validate_nvm_checksum_with_offset(hw, + nvm_offset); + if (ret_val != E1000_SUCCESS) goto out; } @@ -2173,23 +2729,25 @@ out: } /** - * igb_update_nvm_checksum_i350 - Update EEPROM checksum + * e1000_update_nvm_checksum_i350 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM section checksums for all 4 ports by reading/adding * each word of the EEPROM up to the checksum. Then calculates the EEPROM * checksum and writes the value to the EEPROM. **/ -static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw) +static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw) { - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; u16 j; u16 nvm_offset; + DEBUGFUNC("e1000_update_nvm_checksum_i350"); + for (j = 0; j < 4; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); - if (ret_val != 0) + ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); + if (ret_val != E1000_SUCCESS) goto out; } @@ -2198,71 +2756,1018 @@ out: } /** - * igb_set_eee_i350 - Enable/disable EEE support + * __e1000_access_emi_reg - Read/write EMI register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: pointer to value to read/write from/to the EMI address + * @read: boolean flag to indicate read or write + **/ +static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address, + u16 *data, bool read) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("__e1000_access_emi_reg"); + + ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address); + if (ret_val) + return ret_val; + + if (read) + ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data); + else + ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data); + + return ret_val; +} + +/** + * e1000_read_emi_reg - Read Extended Management Interface register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: value to be read from the EMI address + **/ +s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data) +{ + DEBUGFUNC("e1000_read_emi_reg"); + + return __e1000_access_emi_reg(hw, addr, data, true); +} + +/** + * e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY + * @hw: pointer to the HW structure + * + * Initialize Marverl 1512 to work correctly with Avoton. + **/ +s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_initialize_M88E1512_phy"); + + /* Check if this is correct PHY. */ + if (phy->id != M88E1512_E_PHY_ID) + goto out; + + /* Switch to PHY page 0xFF. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); + if (ret_val) + goto out; + + /* Switch to PHY page 0xFB. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D); + if (ret_val) + goto out; + + /* Switch to PHY page 0x12. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); + if (ret_val) + goto out; + + /* Change mode to SGMII-to-Copper */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); + if (ret_val) + goto out; + + /* Return the PHY to page 0. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); + if (ret_val) + goto out; + + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + + msec_delay(1000); +out: + return ret_val; +} + +/** + * e1000_set_eee_i350 - Enable/disable EEE support * @hw: pointer to the HW structure * * Enable/disable EEE based on setting in dev_spec structure. * **/ -s32 igb_set_eee_i350(struct e1000_hw *hw) +s32 e1000_set_eee_i350(struct e1000_hw *hw) { - s32 ret_val = 0; - u32 ipcnfg, eeer, ctrl_ext; + s32 ret_val = E1000_SUCCESS; + u32 ipcnfg, eeer; + + DEBUGFUNC("e1000_set_eee_i350"); - ctrl_ext = rd32(E1000_CTRL_EXT); - if ((hw->mac.type != e1000_i350) || - (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK)) + if ((hw->mac.type < e1000_i350) || + (hw->phy.media_type != e1000_media_type_copper)) goto out; - ipcnfg = rd32(E1000_IPCNFG); - eeer = rd32(E1000_EEER); + ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG); + eeer = E1000_READ_REG(hw, E1000_EEER); /* enable or disable per user setting */ if (!(hw->dev_spec._82575.eee_disable)) { - ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | - E1000_IPCNFG_EEE_100M_AN); - eeer |= (E1000_EEER_TX_LPI_EN | - E1000_EEER_RX_LPI_EN | - E1000_EEER_LPI_FC); + u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU); + ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); + eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | + E1000_EEER_LPI_FC); + + /* This bit should not be set in normal operation. */ + if (eee_su & E1000_EEE_SU_LPI_CLK_STP) + DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); } else { - ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | - E1000_IPCNFG_EEE_100M_AN); - eeer &= ~(E1000_EEER_TX_LPI_EN | - E1000_EEER_RX_LPI_EN | - E1000_EEER_LPI_FC); - } - wr32(E1000_IPCNFG, ipcnfg); - wr32(E1000_EEER, eeer); + ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); + eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | + E1000_EEER_LPI_FC); + } + E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg); + E1000_WRITE_REG(hw, E1000_EEER, eeer); + E1000_READ_REG(hw, E1000_IPCNFG); + E1000_READ_REG(hw, E1000_EEER); out: return ret_val; } -static struct e1000_mac_operations e1000_mac_ops_82575 = { - .init_hw = igb_init_hw_82575, - .check_for_link = igb_check_for_link_82575, - .rar_set = igb_rar_set, - .read_mac_addr = igb_read_mac_addr_82575, - .get_speed_and_duplex = igb_get_speed_and_duplex_copper, -}; +/** + * e1000_set_eee_i354 - Enable/disable EEE support + * @hw: pointer to the HW structure + * + * Enable/disable EEE legacy mode based on setting in dev_spec structure. + * + **/ +s32 e1000_set_eee_i354(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_data; -static struct e1000_phy_operations e1000_phy_ops_82575 = { - .acquire = igb_acquire_phy_82575, - .get_cfg_done = igb_get_cfg_done_82575, - .release = igb_release_phy_82575, -}; + DEBUGFUNC("e1000_set_eee_i354"); -static struct e1000_nvm_operations e1000_nvm_ops_82575 = { - .acquire = igb_acquire_nvm_82575, - .read = igb_read_nvm_eerd, - .release = igb_release_nvm_82575, - .write = igb_write_nvm_spi, -}; + if ((hw->phy.media_type != e1000_media_type_copper) || + ((phy->id != M88E1543_E_PHY_ID) && + (phy->id != M88E1512_E_PHY_ID))) + goto out; + + if (!hw->dev_spec._82575.eee_disable) { + /* Switch to PHY page 18. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1, + &phy_data); + if (ret_val) + goto out; + + phy_data |= E1000_M88E1543_EEE_CTRL_1_MS; + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1, + phy_data); + if (ret_val) + goto out; + + /* Return the PHY to page 0. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); + if (ret_val) + goto out; + + /* Turn on EEE advertisement. */ + ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + &phy_data); + if (ret_val) + goto out; + + phy_data |= E1000_EEE_ADV_100_SUPPORTED | + E1000_EEE_ADV_1000_SUPPORTED; + ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + phy_data); + } else { + /* Turn off EEE advertisement. */ + ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + &phy_data); + if (ret_val) + goto out; + + phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED | + E1000_EEE_ADV_1000_SUPPORTED); + ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + phy_data); + } + +out: + return ret_val; +} + +/** + * e1000_get_eee_status_i354 - Get EEE status + * @hw: pointer to the HW structure + * @status: EEE status + * + * Get EEE status by guessing based on whether Tx or Rx LPI indications have + * been received. + **/ +s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_data; + + DEBUGFUNC("e1000_get_eee_status_i354"); + + /* Check if EEE is supported on this device. */ + if ((hw->phy.media_type != e1000_media_type_copper) || + ((phy->id != M88E1543_E_PHY_ID) && + (phy->id != M88E1512_E_PHY_ID))) + goto out; + + ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354, + E1000_PCS_STATUS_DEV_I354, + &phy_data); + if (ret_val) + goto out; + + *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD | + E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false; + +out: + return ret_val; +} + +/* Due to a hw errata, if the host tries to configure the VFTA register + * while performing queries from the BMC or DMA, then the VFTA in some + * cases won't be written. + */ + +/** + * e1000_clear_vfta_i350 - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void e1000_clear_vfta_i350(struct e1000_hw *hw) +{ + u32 offset; + int i; + + DEBUGFUNC("e1000_clear_vfta_350"); + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + for (i = 0; i < 10; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); + + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_write_vfta_i350 - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) +{ + int i; + + DEBUGFUNC("e1000_write_vfta_350"); + + for (i = 0; i < 10; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + + E1000_WRITE_FLUSH(hw); +} + + +/** + * e1000_set_i2c_bb - Enable I2C bit-bang + * @hw: pointer to the HW structure + * + * Enable I2C bit-bang interface + * + **/ +s32 e1000_set_i2c_bb(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext, i2cparams; + + DEBUGFUNC("e1000_set_i2c_bb"); + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_I2C_ENA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS); + i2cparams |= E1000_I2CBB_EN; + i2cparams |= E1000_I2C_DATA_OE_N; + i2cparams |= E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams); + E1000_WRITE_FLUSH(hw); + + return ret_val; +} + +/** + * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C + * @hw: pointer to hardware structure + * @byte_offset: byte offset to read + * @dev_addr: device address + * @data: value read + * + * Performs byte read operation over I2C interface at + * a specified device address. + **/ +s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 *data) +{ + s32 status = E1000_SUCCESS; + u32 max_retry = 10; + u32 retry = 1; + u16 swfw_mask = 0; + + bool nack = true; + + DEBUGFUNC("e1000_read_i2c_byte_generic"); + + swfw_mask = E1000_SWFW_PHY0_SM; + + do { + if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) + != E1000_SUCCESS) { + status = E1000_ERR_SWFW_SYNC; + goto read_byte_out; + } + + e1000_i2c_start(hw); + + /* Device Address and write indication */ + status = e1000_clock_out_i2c_byte(hw, dev_addr); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, byte_offset); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_start(hw); + + /* Device Address and read indication */ + status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1)); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_in_i2c_byte(hw, data); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_bit(hw, nack); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_stop(hw); + break; + +fail: + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + msec_delay(100); + e1000_i2c_bus_clear(hw); + retry++; + if (retry < max_retry) + DEBUGOUT("I2C byte read error - Retrying.\n"); + else + DEBUGOUT("I2C byte read error.\n"); + + } while (retry < max_retry); + + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + +read_byte_out: + + return status; +} + +/** + * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: value to write + * + * Performs byte write operation over I2C interface at + * a specified device address. + **/ +s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 data) +{ + s32 status = E1000_SUCCESS; + u32 max_retry = 1; + u32 retry = 0; + u16 swfw_mask = 0; + + DEBUGFUNC("e1000_write_i2c_byte_generic"); + + swfw_mask = E1000_SWFW_PHY0_SM; + + if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) { + status = E1000_ERR_SWFW_SYNC; + goto write_byte_out; + } + + do { + e1000_i2c_start(hw); + + status = e1000_clock_out_i2c_byte(hw, dev_addr); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, byte_offset); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, data); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_stop(hw); + break; -const struct e1000_info e1000_82575_info = { - .get_invariants = igb_get_invariants_82575, - .mac_ops = &e1000_mac_ops_82575, - .phy_ops = &e1000_phy_ops_82575, - .nvm_ops = &e1000_nvm_ops_82575, +fail: + e1000_i2c_bus_clear(hw); + retry++; + if (retry < max_retry) + DEBUGOUT("I2C byte write error - Retrying.\n"); + else + DEBUGOUT("I2C byte write error.\n"); + } while (retry < max_retry); + + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + +write_byte_out: + + return status; +} + +/** + * e1000_i2c_start - Sets I2C start condition + * @hw: pointer to hardware structure + * + * Sets I2C start condition (High -> Low on SDA while SCL is High) + **/ +static void e1000_i2c_start(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_i2c_start"); + + /* Start condition must begin with data and clock high */ + e1000_set_i2c_data(hw, &i2cctl, 1); + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Setup time for start condition (4.7us) */ + usec_delay(E1000_I2C_T_SU_STA); + + e1000_set_i2c_data(hw, &i2cctl, 0); + + /* Hold time for start condition (4us) */ + usec_delay(E1000_I2C_T_HD_STA); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + +} + +/** + * e1000_i2c_stop - Sets I2C stop condition + * @hw: pointer to hardware structure + * + * Sets I2C stop condition (Low -> High on SDA while SCL is High) + **/ +static void e1000_i2c_stop(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_i2c_stop"); + + /* Stop condition must begin with data low and clock high */ + e1000_set_i2c_data(hw, &i2cctl, 0); + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Setup time for stop condition (4us) */ + usec_delay(E1000_I2C_T_SU_STO); + + e1000_set_i2c_data(hw, &i2cctl, 1); + + /* bus free time between stop and start (4.7us)*/ + usec_delay(E1000_I2C_T_BUF); +} + +/** + * e1000_clock_in_i2c_byte - Clocks in one byte via I2C + * @hw: pointer to hardware structure + * @data: data byte to clock in + * + * Clocks in one byte data via I2C data/clock + **/ +static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data) +{ + s32 i; + bool bit = 0; + + DEBUGFUNC("e1000_clock_in_i2c_byte"); + + *data = 0; + for (i = 7; i >= 0; i--) { + e1000_clock_in_i2c_bit(hw, &bit); + *data |= bit << i; + } + + return E1000_SUCCESS; +} + +/** + * e1000_clock_out_i2c_byte - Clocks out one byte via I2C + * @hw: pointer to hardware structure + * @data: data byte clocked out + * + * Clocks out one byte data via I2C data/clock + **/ +static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data) +{ + s32 status = E1000_SUCCESS; + s32 i; + u32 i2cctl; + bool bit = 0; + + DEBUGFUNC("e1000_clock_out_i2c_byte"); + + for (i = 7; i >= 0; i--) { + bit = (data >> i) & 0x1; + status = e1000_clock_out_i2c_bit(hw, bit); + + if (status != E1000_SUCCESS) + break; + } + + /* Release SDA line (set high) */ + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + i2cctl |= E1000_I2C_DATA_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl); + E1000_WRITE_FLUSH(hw); + + return status; +} + +/** + * e1000_get_i2c_ack - Polls for I2C ACK + * @hw: pointer to hardware structure + * + * Clocks in/out one bit via I2C data/clock + **/ +static s32 e1000_get_i2c_ack(struct e1000_hw *hw) +{ + s32 status = E1000_SUCCESS; + u32 i = 0; + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + u32 timeout = 10; + bool ack = true; + + DEBUGFUNC("e1000_get_i2c_ack"); + + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + /* Wait until SCL returns high */ + for (i = 0; i < timeout; i++) { + usec_delay(1); + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + if (i2cctl & E1000_I2C_CLK_IN) + break; + } + if (!(i2cctl & E1000_I2C_CLK_IN)) + return E1000_ERR_I2C; + + ack = e1000_get_i2c_data(&i2cctl); + if (ack) { + DEBUGOUT("I2C ack was not received.\n"); + status = E1000_ERR_I2C; + } + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + + return status; +} + +/** + * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock + * @hw: pointer to hardware structure + * @data: read data value + * + * Clocks in one bit via I2C data/clock + **/ +static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_clock_in_i2c_bit"); + + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + *data = e1000_get_i2c_data(&i2cctl); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + + return E1000_SUCCESS; +} + +/** + * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock + * @hw: pointer to hardware structure + * @data: data value to write + * + * Clocks out one bit via I2C data/clock + **/ +static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data) +{ + s32 status; + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_clock_out_i2c_bit"); + + status = e1000_set_i2c_data(hw, &i2cctl, data); + if (status == E1000_SUCCESS) { + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us. + * This also takes care of the data hold time. + */ + usec_delay(E1000_I2C_T_LOW); + } else { + status = E1000_ERR_I2C; + DEBUGOUT1("I2C data was not set to %X\n", data); + } + + return status; +} +/** + * e1000_raise_i2c_clk - Raises the I2C SCL clock + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Raises the I2C clock line '0'->'1' + **/ +static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) +{ + DEBUGFUNC("e1000_raise_i2c_clk"); + + *i2cctl |= E1000_I2C_CLK_OUT; + *i2cctl &= ~E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* SCL rise time (1000ns) */ + usec_delay(E1000_I2C_T_RISE); +} + +/** + * e1000_lower_i2c_clk - Lowers the I2C SCL clock + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Lowers the I2C clock line '1'->'0' + **/ +static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) +{ + + DEBUGFUNC("e1000_lower_i2c_clk"); + + *i2cctl &= ~E1000_I2C_CLK_OUT; + *i2cctl &= ~E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* SCL fall time (300ns) */ + usec_delay(E1000_I2C_T_FALL); +} + +/** + * e1000_set_i2c_data - Sets the I2C data bit + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * @data: I2C data value (0 or 1) to set + * + * Sets the I2C data bit + **/ +static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data) +{ + s32 status = E1000_SUCCESS; + + DEBUGFUNC("e1000_set_i2c_data"); + + if (data) + *i2cctl |= E1000_I2C_DATA_OUT; + else + *i2cctl &= ~E1000_I2C_DATA_OUT; + + *i2cctl &= ~E1000_I2C_DATA_OE_N; + *i2cctl |= E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */ + usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA); + + *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + if (data != e1000_get_i2c_data(i2cctl)) { + status = E1000_ERR_I2C; + DEBUGOUT1("Error - I2C data was not set to %X.\n", data); + } + + return status; +} + +/** + * e1000_get_i2c_data - Reads the I2C SDA data bit + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Returns the I2C data bit value + **/ +static bool e1000_get_i2c_data(u32 *i2cctl) +{ + bool data; + + DEBUGFUNC("e1000_get_i2c_data"); + + if (*i2cctl & E1000_I2C_DATA_IN) + data = 1; + else + data = 0; + + return data; +} + +/** + * e1000_i2c_bus_clear - Clears the I2C bus + * @hw: pointer to hardware structure + * + * Clears the I2C bus by sending nine clock pulses. + * Used when data line is stuck low. + **/ +void e1000_i2c_bus_clear(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + u32 i; + + DEBUGFUNC("e1000_i2c_bus_clear"); + + e1000_i2c_start(hw); + + e1000_set_i2c_data(hw, &i2cctl, 1); + + for (i = 0; i < 9; i++) { + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Min high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Min low period of clock is 4.7us*/ + usec_delay(E1000_I2C_T_LOW); + } + + e1000_i2c_start(hw); + + /* Put the i2c bus back to default state */ + e1000_i2c_stop(hw); +} + +static const u8 e1000_emc_temp_data[4] = { + E1000_EMC_INTERNAL_DATA, + E1000_EMC_DIODE1_DATA, + E1000_EMC_DIODE2_DATA, + E1000_EMC_DIODE3_DATA +}; +static const u8 e1000_emc_therm_limit[4] = { + E1000_EMC_INTERNAL_THERM_LIMIT, + E1000_EMC_DIODE1_THERM_LIMIT, + E1000_EMC_DIODE2_THERM_LIMIT, + E1000_EMC_DIODE3_THERM_LIMIT }; +/** + * e1000_get_thermal_sensor_data_generic - Gathers thermal sensor data + * @hw: pointer to hardware structure + * + * Updates the temperatures in mac.thermal_sensor_data + **/ +s32 e1000_get_thermal_sensor_data_generic(struct e1000_hw *hw) +{ + s32 status = E1000_SUCCESS; + u16 ets_offset; + u16 ets_cfg; + u16 ets_sensor; + u8 num_sensors; + u8 sensor_index; + u8 sensor_location; + u8 i; + struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; + + DEBUGFUNC("e1000_get_thermal_sensor_data_generic"); + + if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) + return E1000_NOT_IMPLEMENTED; + + data->sensor[0].temp = (E1000_READ_REG(hw, E1000_THMJT) & 0xFF); + + /* Return the internal sensor only if ETS is unsupported */ + e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset); + if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) + return status; + + e1000_read_nvm(hw, ets_offset, 1, &ets_cfg); + if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) + != NVM_ETS_TYPE_EMC) + return E1000_NOT_IMPLEMENTED; + + num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); + if (num_sensors > E1000_MAX_SENSORS) + num_sensors = E1000_MAX_SENSORS; + + for (i = 1; i < num_sensors; i++) { + e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor); + sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> + NVM_ETS_DATA_INDEX_SHIFT); + sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> + NVM_ETS_DATA_LOC_SHIFT); + + if (sensor_location != 0) + hw->phy.ops.read_i2c_byte(hw, + e1000_emc_temp_data[sensor_index], + E1000_I2C_THERMAL_SENSOR_ADDR, + &data->sensor[i].temp); + } + return status; +} + +/** + * e1000_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds + * @hw: pointer to hardware structure + * + * Sets the thermal sensor thresholds according to the NVM map + * and save off the threshold and location values into mac.thermal_sensor_data + **/ +s32 e1000_init_thermal_sensor_thresh_generic(struct e1000_hw *hw) +{ + s32 status = E1000_SUCCESS; + u16 ets_offset; + u16 ets_cfg; + u16 ets_sensor; + u8 low_thresh_delta; + u8 num_sensors; + u8 sensor_index; + u8 sensor_location; + u8 therm_limit; + u8 i; + struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; + + DEBUGFUNC("e1000_init_thermal_sensor_thresh_generic"); + + if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) + return E1000_NOT_IMPLEMENTED; + + memset(data, 0, sizeof(struct e1000_thermal_sensor_data)); + + data->sensor[0].location = 0x1; + data->sensor[0].caution_thresh = + (E1000_READ_REG(hw, E1000_THHIGHTC) & 0xFF); + data->sensor[0].max_op_thresh = + (E1000_READ_REG(hw, E1000_THLOWTC) & 0xFF); + + /* Return the internal sensor only if ETS is unsupported */ + e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset); + if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) + return status; + + e1000_read_nvm(hw, ets_offset, 1, &ets_cfg); + if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) + != NVM_ETS_TYPE_EMC) + return E1000_NOT_IMPLEMENTED; + + low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >> + NVM_ETS_LTHRES_DELTA_SHIFT); + num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); + + for (i = 1; i <= num_sensors; i++) { + e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor); + sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> + NVM_ETS_DATA_INDEX_SHIFT); + sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> + NVM_ETS_DATA_LOC_SHIFT); + therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK; + + hw->phy.ops.write_i2c_byte(hw, + e1000_emc_therm_limit[sensor_index], + E1000_I2C_THERMAL_SENSOR_ADDR, + therm_limit); + + if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) { + data->sensor[i].location = sensor_location; + data->sensor[i].caution_thresh = therm_limit; + data->sensor[i].max_op_thresh = therm_limit - + low_thresh_delta; + } + } + return status; +} diff --git a/drivers/net/igb/e1000_82575.h b/drivers/net/igb/e1000_82575.h index b477b20a2b05..947015767605 100644 --- a/drivers/net/igb/e1000_82575.h +++ b/drivers/net/igb/e1000_82575.h @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2011 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -28,90 +28,246 @@ #ifndef _E1000_82575_H_ #define _E1000_82575_H_ -extern void igb_shutdown_serdes_link_82575(struct e1000_hw *hw); -extern void igb_power_up_serdes_link_82575(struct e1000_hw *hw); -extern void igb_power_down_phy_copper_82575(struct e1000_hw *hw); -extern void igb_rx_fifo_flush_82575(struct e1000_hw *hw); - -#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \ - (ID_LED_DEF1_DEF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_OFF1_ON2)) - -#define E1000_RAR_ENTRIES_82575 16 -#define E1000_RAR_ENTRIES_82576 24 -#define E1000_RAR_ENTRIES_82580 24 -#define E1000_RAR_ENTRIES_I350 32 +#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_DEF1_DEF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_OFF1_ON2)) +/* + * Receive Address Register Count + * Number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. + * These entries are also used for MAC-based filtering. + */ +/* + * For 82576, there are an additional set of RARs that begin at an offset + * separate from the first set of RARs. + */ +#define E1000_RAR_ENTRIES_82575 16 +#define E1000_RAR_ENTRIES_82576 24 +#define E1000_RAR_ENTRIES_82580 24 +#define E1000_RAR_ENTRIES_I350 32 +#define E1000_SW_SYNCH_MB 0x00000100 +#define E1000_STAT_DEV_RST_SET 0x00100000 +#define E1000_CTRL_DEV_RST 0x20000000 + +struct e1000_adv_data_desc { + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + union { + u32 data; + struct { + u32 datalen:16; /* Data buffer length */ + u32 rsvd:4; + u32 dtyp:4; /* Descriptor type */ + u32 dcmd:8; /* Descriptor command */ + } config; + } lower; + union { + u32 data; + struct { + u32 status:4; /* Descriptor status */ + u32 idx:4; + u32 popts:6; /* Packet Options */ + u32 paylen:18; /* Payload length */ + } options; + } upper; +}; -#define E1000_SW_SYNCH_MB 0x00000100 -#define E1000_STAT_DEV_RST_SET 0x00100000 -#define E1000_CTRL_DEV_RST 0x20000000 +#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */ +#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */ +#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */ +#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */ +#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */ +#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */ +#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */ +#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */ +#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */ +#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */ +#define E1000_ADV_DCMD_RS 0x8 /* Report Status */ +#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */ +#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */ +/* Extended Device Control */ +#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */ + +struct e1000_adv_context_desc { + union { + u32 ip_config; + struct { + u32 iplen:9; + u32 maclen:7; + u32 vlan_tag:16; + } fields; + } ip_setup; + u32 seq_num; + union { + u64 l4_config; + struct { + u32 mkrloc:9; + u32 tucmd:11; + u32 dtyp:4; + u32 adv:8; + u32 rsvd:4; + u32 idx:4; + u32 l4len:8; + u32 mss:16; + } fields; + } l4_setup; +}; /* SRRCTL bit definitions */ -#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ -#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ -#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 -#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 -#define E1000_SRRCTL_DROP_EN 0x80000000 -#define E1000_SRRCTL_TIMESTAMP 0x40000000 - - -#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002 -#define E1000_MRQC_ENABLE_VMDQ 0x00000003 -#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000 -#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005 -#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000 -#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000 +#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ +#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00 +#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ +#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000 +#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000 +#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000 +#define E1000_SRRCTL_TIMESTAMP 0x40000000 +#define E1000_SRRCTL_DROP_EN 0x80000000 + +#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F +#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00 + +#define E1000_TX_HEAD_WB_ENABLE 0x1 +#define E1000_TX_SEQNUM_WB_ENABLE 0x2 + +#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002 +#define E1000_MRQC_ENABLE_VMDQ 0x00000003 +#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005 +#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000 +#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000 +#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000 +#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002 + +#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8 +#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << \ + E1000_VMRCTL_MIRROR_PORT_SHIFT) +#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0) +#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1) +#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2) #define E1000_EICR_TX_QUEUE ( \ - E1000_EICR_TX_QUEUE0 | \ - E1000_EICR_TX_QUEUE1 | \ - E1000_EICR_TX_QUEUE2 | \ - E1000_EICR_TX_QUEUE3) + E1000_EICR_TX_QUEUE0 | \ + E1000_EICR_TX_QUEUE1 | \ + E1000_EICR_TX_QUEUE2 | \ + E1000_EICR_TX_QUEUE3) #define E1000_EICR_RX_QUEUE ( \ - E1000_EICR_RX_QUEUE0 | \ - E1000_EICR_RX_QUEUE1 | \ - E1000_EICR_RX_QUEUE2 | \ - E1000_EICR_RX_QUEUE3) + E1000_EICR_RX_QUEUE0 | \ + E1000_EICR_RX_QUEUE1 | \ + E1000_EICR_RX_QUEUE2 | \ + E1000_EICR_RX_QUEUE3) + +#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE +#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE + +#define EIMS_ENABLE_MASK ( \ + E1000_EIMS_RX_QUEUE | \ + E1000_EIMS_TX_QUEUE | \ + E1000_EIMS_TCP_TIMER | \ + E1000_EIMS_OTHER) /* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */ -#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */ -#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */ +#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */ +#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */ +#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */ +#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */ +#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */ +#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */ +#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */ +#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */ +#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */ +#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */ /* Receive Descriptor - Advanced */ union e1000_adv_rx_desc { struct { - __le64 pkt_addr; /* Packet buffer address */ - __le64 hdr_addr; /* Header buffer address */ + __le64 pkt_addr; /* Packet buffer address */ + __le64 hdr_addr; /* Header buffer address */ } read; struct { struct { - struct { - __le16 pkt_info; /* RSS type, Packet type */ - __le16 hdr_info; /* Split Header, - * header buffer length */ + union { + __le32 data; + struct { + __le16 pkt_info; /*RSS type, Pkt type*/ + /* Split Header, header buffer len */ + __le16 hdr_info; + } hs_rss; } lo_dword; union { - __le32 rss; /* RSS Hash */ + __le32 rss; /* RSS Hash */ struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ } csum_ip; } hi_dword; } lower; struct { - __le32 status_error; /* ext status/error */ - __le16 length; /* Packet length */ - __le16 vlan; /* VLAN tag */ + __le32 status_error; /* ext status/error */ + __le16 length; /* Packet length */ + __le16 vlan; /* VLAN tag */ } upper; } wb; /* writeback */ }; -#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 -#define E1000_RXDADV_HDRBUFLEN_SHIFT 5 -#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */ -#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */ +#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F +#define E1000_RXDADV_RSSTYPE_SHIFT 12 +#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 +#define E1000_RXDADV_HDRBUFLEN_SHIFT 5 +#define E1000_RXDADV_SPLITHEADER_EN 0x00001000 +#define E1000_RXDADV_SPH 0x8000 +#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */ +#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */ +#define E1000_RXDADV_ERR_HBO 0x00800000 + +/* RSS Hash results */ +#define E1000_RXDADV_RSSTYPE_NONE 0x00000000 +#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001 +#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002 +#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003 +#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004 +#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005 +#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006 +#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007 +#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008 +#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009 + +/* RSS Packet Types as indicated in the receive descriptor */ +#define E1000_RXDADV_PKTTYPE_ILMASK 0x000000F0 +#define E1000_RXDADV_PKTTYPE_TLMASK 0x00000F00 +#define E1000_RXDADV_PKTTYPE_NONE 0x00000000 +#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */ +#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */ +#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */ +#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */ +#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */ +#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */ +#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */ +#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */ + +#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */ +#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */ +#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */ +#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */ +#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */ +#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */ + +/* LinkSec results */ +/* Security Processing bit Indication */ +#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000 +#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000 +#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000 +#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000 +#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000 + +#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000 +#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000 +#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000 +#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000 +#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000 /* Transmit Descriptor - Advanced */ union e1000_adv_tx_desc { @@ -128,14 +284,26 @@ union e1000_adv_tx_desc { }; /* Adv Transmit Descriptor Config Masks */ -#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp packet */ -#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ -#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ -#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ -#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ -#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ -#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ +#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ +#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ +#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */ +#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */ +#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */ +#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ +#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ +#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ +#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on pkt */ +#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp pkt */ +#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED prsnt in WB */ +#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */ +#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */ +#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */ +#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */ +/* 1st & Last TSO-full iSCSI PDU*/ +#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 +#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */ +#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ /* Context descriptors */ struct e1000_adv_tx_context_desc { @@ -145,115 +313,200 @@ struct e1000_adv_tx_context_desc { __le32 mss_l4len_idx; }; -#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ -#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ -#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ -#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 packet TYPE of SCTP */ +#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ +#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */ +#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ +#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */ +#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */ +#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ +#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */ +#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */ /* IPSec Encrypt Enable for ESP */ -#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ -#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ +#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000 +/* Req requires Markers and CRC */ +#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 +#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ +#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ /* Adv ctxt IPSec SA IDX mask */ +#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF /* Adv ctxt IPSec ESP len mask */ +#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF /* Additional Transmit Descriptor Control definitions */ -#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */ +#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */ +#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. wbk flushing */ /* Tx Queue Arbitration Priority 0=low, 1=high */ +#define E1000_TXDCTL_PRIORITY 0x08000000 /* Additional Receive Descriptor Control definitions */ -#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */ +#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */ +#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. wbk flushing */ /* Direct Cache Access (DCA) definitions */ -#define E1000_DCA_CTRL_DCA_MODE_DISABLE 0x01 /* DCA Disable */ -#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */ - -#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */ -#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */ -#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header enable */ -#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload enable */ - -#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */ -#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */ -#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */ - -/* Additional DCA related definitions, note change in position of CPUID */ -#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */ -#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */ -#define E1000_DCA_TXCTRL_CPUID_SHIFT 24 /* Tx CPUID now in the last byte */ -#define E1000_DCA_RXCTRL_CPUID_SHIFT 24 /* Rx CPUID now in the last byte */ +#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */ +#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */ + +#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */ +#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */ + +#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */ +#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */ +#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header ena */ +#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload ena */ +#define E1000_DCA_RXCTRL_DESC_RRO_EN (1 << 9) /* DCA Rx Desc Relax Order */ + +#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */ +#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */ +#define E1000_DCA_TXCTRL_DESC_RRO_EN (1 << 9) /* Tx rd Desc Relax Order */ +#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */ +#define E1000_DCA_TXCTRL_DATA_RRO_EN (1 << 13) /* Tx rd data Relax Order */ + +#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */ +#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */ +#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */ +#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */ + +/* Additional interrupt register bit definitions */ +#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */ +#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ +#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ /* ETQF register bit definitions */ -#define E1000_ETQF_FILTER_ENABLE (1 << 26) -#define E1000_ETQF_1588 (1 << 30) - -/* FTQF register bit definitions */ -#define E1000_FTQF_VF_BP 0x00008000 -#define E1000_FTQF_1588_TIME_STAMP 0x08000000 -#define E1000_FTQF_MASK 0xF0000000 -#define E1000_FTQF_MASK_PROTO_BP 0x10000000 -#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000 - -#define E1000_NVM_APME_82575 0x0400 -#define MAX_NUM_VFS 8 - -#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof control */ -#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof control */ -#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */ -#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8 -#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */ +#define E1000_ETQF_FILTER_ENABLE (1 << 26) +#define E1000_ETQF_IMM_INT (1 << 29) +#define E1000_ETQF_1588 (1 << 30) +#define E1000_ETQF_QUEUE_ENABLE (1 << 31) +/* + * ETQF filter list: one static filter per filter consumer. This is + * to avoid filter collisions later. Add new filters + * here!! + * + * Current filters: + * EAPOL 802.1x (0x888e): Filter 0 + */ +#define E1000_ETQF_FILTER_EAPOL 0 + +#define E1000_FTQF_VF_BP 0x00008000 +#define E1000_FTQF_1588_TIME_STAMP 0x08000000 +#define E1000_FTQF_MASK 0xF0000000 +#define E1000_FTQF_MASK_PROTO_BP 0x10000000 +#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000 +#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000 +#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000 + +#define E1000_NVM_APME_82575 0x0400 +#define MAX_NUM_VFS 7 + +#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof cntrl */ +#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof cntrl */ +#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */ +#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8 +#define E1000_DTXSWC_LLE_SHIFT 16 +#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */ /* Easy defines for setting default pool, would normally be left a zero */ -#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7 -#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT) +#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7 +#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT) /* Other useful VMD_CTL register defines */ -#define E1000_VT_CTL_IGNORE_MAC (1 << 28) -#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29) -#define E1000_VT_CTL_VM_REPL_EN (1 << 30) +#define E1000_VT_CTL_IGNORE_MAC (1 << 28) +#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29) +#define E1000_VT_CTL_VM_REPL_EN (1 << 30) /* Per VM Offload register setup */ -#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */ -#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */ -#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */ -#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */ -#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */ -#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */ -#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */ -#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */ -#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ -#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */ - -#define E1000_VLVF_ARRAY_SIZE 32 -#define E1000_VLVF_VLANID_MASK 0x00000FFF -#define E1000_VLVF_POOLSEL_SHIFT 12 -#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT) -#define E1000_VLVF_LVLAN 0x00100000 -#define E1000_VLVF_VLANID_ENABLE 0x80000000 - -#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */ -#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */ - -#define E1000_IOVCTL 0x05BBC -#define E1000_IOVCTL_REUSE_VFQ 0x00000001 - -#define E1000_RPLOLR_STRVLAN 0x40000000 -#define E1000_RPLOLR_STRCRC 0x80000000 - -#define E1000_DTXCTL_8023LL 0x0004 -#define E1000_DTXCTL_VLAN_ADDED 0x0008 -#define E1000_DTXCTL_OOS_ENABLE 0x0010 -#define E1000_DTXCTL_MDP_EN 0x0020 -#define E1000_DTXCTL_SPOOF_INT 0x0040 +#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */ +#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */ +#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */ +#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */ +#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */ +#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */ +#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */ +#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */ +#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ +#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */ + +#define E1000_VMOLR_VPE 0x00800000 /* VLAN promiscuous enable */ +#define E1000_VMOLR_UPE 0x20000000 /* Unicast promisuous enable */ +#define E1000_DVMOLR_HIDVLAN 0x20000000 /* Vlan hiding enable */ +#define E1000_DVMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ +#define E1000_DVMOLR_STRCRC 0x80000000 /* CRC stripping enable */ + +#define E1000_PBRWAC_WALPB 0x00000007 /* Wrap around event on LAN Rx PB */ +#define E1000_PBRWAC_PBE 0x00000008 /* Rx packet buffer empty */ + +#define E1000_VLVF_ARRAY_SIZE 32 +#define E1000_VLVF_VLANID_MASK 0x00000FFF +#define E1000_VLVF_POOLSEL_SHIFT 12 +#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT) +#define E1000_VLVF_LVLAN 0x00100000 +#define E1000_VLVF_VLANID_ENABLE 0x80000000 + +#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */ +#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */ + +#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */ + +#define E1000_IOVCTL 0x05BBC +#define E1000_IOVCTL_REUSE_VFQ 0x00000001 + +#define E1000_RPLOLR_STRVLAN 0x40000000 +#define E1000_RPLOLR_STRCRC 0x80000000 + +#define E1000_TCTL_EXT_COLD 0x000FFC00 +#define E1000_TCTL_EXT_COLD_SHIFT 10 + +#define E1000_DTXCTL_8023LL 0x0004 +#define E1000_DTXCTL_VLAN_ADDED 0x0008 +#define E1000_DTXCTL_OOS_ENABLE 0x0010 +#define E1000_DTXCTL_MDP_EN 0x0020 +#define E1000_DTXCTL_SPOOF_INT 0x0040 #define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT (1 << 14) -#define ALL_QUEUES 0xFFFF - -/* RX packet buffer size defines */ -#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F -void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *, bool, int); -void igb_vmdq_set_loopback_pf(struct e1000_hw *, bool); -void igb_vmdq_set_replication_pf(struct e1000_hw *, bool); -u16 igb_rxpbs_adjust_82580(u32 data); -s32 igb_set_eee_i350(struct e1000_hw *); - -#endif +#define ALL_QUEUES 0xFFFF + +/* Rx packet buffer size defines */ +#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F +void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable); +void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf); +void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable); +s32 e1000_init_nvm_params_82575(struct e1000_hw *hw); + +u16 e1000_rxpbs_adjust_82580(u32 data); +s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data); +s32 e1000_set_eee_i350(struct e1000_hw *); +s32 e1000_set_eee_i354(struct e1000_hw *); +s32 e1000_get_eee_status_i354(struct e1000_hw *, bool *); +s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw); +#define E1000_I2C_THERMAL_SENSOR_ADDR 0xF8 +#define E1000_EMC_INTERNAL_DATA 0x00 +#define E1000_EMC_INTERNAL_THERM_LIMIT 0x20 +#define E1000_EMC_DIODE1_DATA 0x01 +#define E1000_EMC_DIODE1_THERM_LIMIT 0x19 +#define E1000_EMC_DIODE2_DATA 0x23 +#define E1000_EMC_DIODE2_THERM_LIMIT 0x1A +#define E1000_EMC_DIODE3_DATA 0x2A +#define E1000_EMC_DIODE3_THERM_LIMIT 0x30 + +s32 e1000_get_thermal_sensor_data_generic(struct e1000_hw *hw); +s32 e1000_init_thermal_sensor_thresh_generic(struct e1000_hw *hw); + +/* I2C SDA and SCL timing parameters for standard mode */ +#define E1000_I2C_T_HD_STA 4 +#define E1000_I2C_T_LOW 5 +#define E1000_I2C_T_HIGH 4 +#define E1000_I2C_T_SU_STA 5 +#define E1000_I2C_T_HD_DATA 5 +#define E1000_I2C_T_SU_DATA 1 +#define E1000_I2C_T_RISE 1 +#define E1000_I2C_T_FALL 1 +#define E1000_I2C_T_SU_STO 4 +#define E1000_I2C_T_BUF 5 + +s32 e1000_set_i2c_bb(struct e1000_hw *hw); +s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 *data); +s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 data); +void e1000_i2c_bus_clear(struct e1000_hw *hw); +#endif /* _E1000_82575_H_ */ diff --git a/drivers/net/igb/e1000_api.c b/drivers/net/igb/e1000_api.c new file mode 100644 index 000000000000..b1d748fed732 --- /dev/null +++ b/drivers/net/igb/e1000_api.c @@ -0,0 +1,1160 @@ +/******************************************************************************* + + Intel(R) Gigabit Ethernet Linux driver + Copyright(c) 2007-2013 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include "e1000_api.h" + +/** + * e1000_init_mac_params - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the MAC + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_mac_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->mac.ops.init_params) { + ret_val = hw->mac.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("MAC Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("mac.init_mac_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the NVM + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_nvm_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->nvm.ops.init_params) { + ret_val = hw->nvm.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("NVM Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("nvm.init_nvm_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_phy_params - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the PHY + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_phy_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->phy.ops.init_params) { + ret_val = hw->phy.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("PHY Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("phy.init_phy_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_mbx_params - Initialize mailbox function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the PHY + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_mbx_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->mbx.ops.init_params) { + ret_val = hw->mbx.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("Mailbox Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("mbx.init_mbx_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_set_mac_type - Sets MAC type + * @hw: pointer to the HW structure + * + * This function sets the mac type of the adapter based on the + * device ID stored in the hw structure. + * MUST BE FIRST FUNCTION CALLED (explicitly or through + * e1000_setup_init_funcs()). + **/ +s32 e1000_set_mac_type(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_set_mac_type"); + + switch (hw->device_id) { + case E1000_DEV_ID_82575EB_COPPER: + case E1000_DEV_ID_82575EB_FIBER_SERDES: + case E1000_DEV_ID_82575GB_QUAD_COPPER: + mac->type = e1000_82575; + break; + case E1000_DEV_ID_82576: + case E1000_DEV_ID_82576_FIBER: + case E1000_DEV_ID_82576_SERDES: + case E1000_DEV_ID_82576_QUAD_COPPER: + case E1000_DEV_ID_82576_QUAD_COPPER_ET2: + case E1000_DEV_ID_82576_NS: + case E1000_DEV_ID_82576_NS_SERDES: + case E1000_DEV_ID_82576_SERDES_QUAD: + mac->type = e1000_82576; + break; + case E1000_DEV_ID_82580_COPPER: + case E1000_DEV_ID_82580_FIBER: + case E1000_DEV_ID_82580_SERDES: + case E1000_DEV_ID_82580_SGMII: + case E1000_DEV_ID_82580_COPPER_DUAL: + case E1000_DEV_ID_82580_QUAD_FIBER: + case E1000_DEV_ID_DH89XXCC_SGMII: + case E1000_DEV_ID_DH89XXCC_SERDES: + case E1000_DEV_ID_DH89XXCC_BACKPLANE: + case E1000_DEV_ID_DH89XXCC_SFP: + mac->type = e1000_82580; + break; + case E1000_DEV_ID_I350_COPPER: + case E1000_DEV_ID_I350_FIBER: + case E1000_DEV_ID_I350_SERDES: + case E1000_DEV_ID_I350_SGMII: + case E1000_DEV_ID_I350_DA4: + mac->type = e1000_i350; + break; + case E1000_DEV_ID_I210_COPPER_FLASHLESS: + case E1000_DEV_ID_I210_SERDES_FLASHLESS: + case E1000_DEV_ID_I210_COPPER: + case E1000_DEV_ID_I210_COPPER_OEM1: + case E1000_DEV_ID_I210_COPPER_IT: + case E1000_DEV_ID_I210_FIBER: + case E1000_DEV_ID_I210_SERDES: + case E1000_DEV_ID_I210_SGMII: + mac->type = e1000_i210; + break; + case E1000_DEV_ID_I211_COPPER: + mac->type = e1000_i211; + break; + + case E1000_DEV_ID_I354_BACKPLANE_1GBPS: + case E1000_DEV_ID_I354_SGMII: + case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: + mac->type = e1000_i354; + break; + default: + /* Should never have loaded on this device */ + ret_val = -E1000_ERR_MAC_INIT; + break; + } + + return ret_val; +} + +/** + * e1000_setup_init_funcs - Initializes function pointers + * @hw: pointer to the HW structure + * @init_device: true will initialize the rest of the function pointers + * getting the device ready for use. false will only set + * MAC type and the function pointers for the other init + * functions. Passing false will not generate any hardware + * reads or writes. + * + * This function must be called by a driver in order to use the rest + * of the 'shared' code files. Called by drivers only. + **/ +s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) +{ + s32 ret_val; + + /* Can't do much good without knowing the MAC type. */ + ret_val = e1000_set_mac_type(hw); + if (ret_val) { + DEBUGOUT("ERROR: MAC type could not be set properly.\n"); + goto out; + } + + if (!hw->hw_addr) { + DEBUGOUT("ERROR: Registers not mapped\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* + * Init function pointers to generic implementations. We do this first + * allowing a driver module to override it afterward. + */ + e1000_init_mac_ops_generic(hw); + e1000_init_phy_ops_generic(hw); + e1000_init_nvm_ops_generic(hw); + e1000_init_mbx_ops_generic(hw); + + /* + * Set up the init function pointers. These are functions within the + * adapter family file that sets up function pointers for the rest of + * the functions in that family. + */ + switch (hw->mac.type) { + case e1000_82575: + case e1000_82576: + case e1000_82580: + case e1000_i350: + case e1000_i354: + e1000_init_function_pointers_82575(hw); + break; + case e1000_i210: + case e1000_i211: + e1000_init_function_pointers_i210(hw); + break; + default: + DEBUGOUT("Hardware not supported\n"); + ret_val = -E1000_ERR_CONFIG; + break; + } + + /* + * Initialize the rest of the function pointers. These require some + * register reads/writes in some cases. + */ + if (!(ret_val) && init_device) { + ret_val = e1000_init_mac_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_nvm_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_phy_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_mbx_params(hw); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_get_bus_info - Obtain bus information for adapter + * @hw: pointer to the HW structure + * + * This will obtain information about the HW bus for which the + * adapter is attached and stores it in the hw structure. This is a + * function pointer entry point called by drivers. + **/ +s32 e1000_get_bus_info(struct e1000_hw *hw) +{ + if (hw->mac.ops.get_bus_info) + return hw->mac.ops.get_bus_info(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_clear_vfta - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * This clears the VLAN filter table on the adapter. This is a function + * pointer entry point called by drivers. + **/ +void e1000_clear_vfta(struct e1000_hw *hw) +{ + if (hw->mac.ops.clear_vfta) + hw->mac.ops.clear_vfta(hw); +} + +/** + * e1000_write_vfta - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: the 32-bit offset in which to write the value to. + * @value: the 32-bit value to write at location offset. + * + * This writes a 32-bit value to a 32-bit offset in the VLAN filter + * table. This is a function pointer entry point called by drivers. + **/ +void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) +{ + if (hw->mac.ops.write_vfta) + hw->mac.ops.write_vfta(hw, offset, value); +} + +/** + * e1000_update_mc_addr_list - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates the Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, + u32 mc_addr_count) +{ + if (hw->mac.ops.update_mc_addr_list) + hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, + mc_addr_count); +} + +/** + * e1000_force_mac_fc - Force MAC flow control + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Currently no func pointer exists + * and all implementations are handled in the generic version of this + * function. + **/ +s32 e1000_force_mac_fc(struct e1000_hw *hw) +{ + return e1000_force_mac_fc_generic(hw); +} + +/** + * e1000_check_for_link - Check/Store link connection + * @hw: pointer to the HW structure + * + * This checks the link condition of the adapter and stores the + * results in the hw->mac structure. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_check_for_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.check_for_link) + return hw->mac.ops.check_for_link(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_check_mng_mode - Check management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has manageability enabled. + * This is a function pointer entry point called by drivers. + **/ +bool e1000_check_mng_mode(struct e1000_hw *hw) +{ + if (hw->mac.ops.check_mng_mode) + return hw->mac.ops.check_mng_mode(hw); + + return false; +} + +/** + * e1000_mng_write_dhcp_info - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) +{ + return e1000_mng_write_dhcp_info_generic(hw, buffer, length); +} + +/** + * e1000_reset_hw - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_reset_hw(struct e1000_hw *hw) +{ + if (hw->mac.ops.reset_hw) + return hw->mac.ops.reset_hw(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_init_hw - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_init_hw(struct e1000_hw *hw) +{ + if (hw->mac.ops.init_hw) + return hw->mac.ops.init_hw(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_setup_link - Configures link and flow control + * @hw: pointer to the HW structure + * + * This configures link and flow control settings for the adapter. This + * is a function pointer entry point called by drivers. While modules can + * also call this, they probably call their own version of this function. + **/ +s32 e1000_setup_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.setup_link) + return hw->mac.ops.setup_link(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_get_speed_and_duplex - Returns current speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to a 16-bit value to store the speed + * @duplex: pointer to a 16-bit value to store the duplex. + * + * This returns the speed and duplex of the adapter in the two 'out' + * variables passed in. This is a function pointer entry point called + * by drivers. + **/ +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) +{ + if (hw->mac.ops.get_link_up_info) + return hw->mac.ops.get_link_up_info(hw, speed, duplex); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_setup_led - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_setup_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.setup_led) + return hw->mac.ops.setup_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_cleanup_led - Restores SW controllable LED + * @hw: pointer to the HW structure + * + * This restores the SW controllable LED to the value saved off by + * e1000_setup_led. This is a function pointer entry point called by drivers. + **/ +s32 e1000_cleanup_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.cleanup_led) + return hw->mac.ops.cleanup_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_blink_led - Blink SW controllable LED + * @hw: pointer to the HW structure + * + * This starts the adapter LED blinking. Request the LED to be setup first + * and cleaned up after. This is a function pointer entry point called by + * drivers. + **/ +s32 e1000_blink_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.blink_led) + return hw->mac.ops.blink_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_id_led_init - store LED configurations in SW + * @hw: pointer to the HW structure + * + * Initializes the LED config in SW. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_id_led_init(struct e1000_hw *hw) +{ + if (hw->mac.ops.id_led_init) + return hw->mac.ops.id_led_init(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_led_on - Turn on SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED on. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_led_on(struct e1000_hw *hw) +{ + if (hw->mac.ops.led_on) + return hw->mac.ops.led_on(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_led_off - Turn off SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED off. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_led_off(struct e1000_hw *hw) +{ + if (hw->mac.ops.led_off) + return hw->mac.ops.led_off(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_reset_adaptive - Reset adaptive IFS + * @hw: pointer to the HW structure + * + * Resets the adaptive IFS. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_reset_adaptive(struct e1000_hw *hw) +{ + e1000_reset_adaptive_generic(hw); +} + +/** + * e1000_update_adaptive - Update adaptive IFS + * @hw: pointer to the HW structure + * + * Updates adapter IFS. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_update_adaptive(struct e1000_hw *hw) +{ + e1000_update_adaptive_generic(hw); +} + +/** + * e1000_disable_pcie_master - Disable PCI-Express master access + * @hw: pointer to the HW structure + * + * Disables PCI-Express master access and verifies there are no pending + * requests. Currently no func pointer exists and all implementations are + * handled in the generic version of this function. + **/ +s32 e1000_disable_pcie_master(struct e1000_hw *hw) +{ + return e1000_disable_pcie_master_generic(hw); +} + +/** + * e1000_config_collision_dist - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +void e1000_config_collision_dist(struct e1000_hw *hw) +{ + if (hw->mac.ops.config_collision_dist) + hw->mac.ops.config_collision_dist(hw); +} + +/** + * e1000_rar_set - Sets a receive address register + * @hw: pointer to the HW structure + * @addr: address to set the RAR to + * @index: the RAR to set + * + * Sets a Receive Address Register (RAR) to the specified address. + **/ +void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) +{ + if (hw->mac.ops.rar_set) + hw->mac.ops.rar_set(hw, addr, index); +} + +/** + * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state + * @hw: pointer to the HW structure + * + * Ensures that the MDI/MDIX SW state is valid. + **/ +s32 e1000_validate_mdi_setting(struct e1000_hw *hw) +{ + if (hw->mac.ops.validate_mdi_setting) + return hw->mac.ops.validate_mdi_setting(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_hash_mc_addr - Determines address location in multicast table + * @hw: pointer to the HW structure + * @mc_addr: Multicast address to hash. + * + * This hashes an address to determine its location in the multicast + * table. Currently no func pointer exists and all implementations + * are handled in the generic version of this function. + **/ +u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +{ + return e1000_hash_mc_addr_generic(hw, mc_addr); +} + +/** + * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) +{ + return e1000_enable_tx_pkt_filtering_generic(hw); +} + +/** + * e1000_mng_host_if_write - Writes to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, + u16 offset, u8 *sum) +{ + return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); +} + +/** + * e1000_mng_write_cmd_header - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr) +{ + return e1000_mng_write_cmd_header_generic(hw, hdr); +} + +/** + * e1000_mng_enable_host_if - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operation + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +s32 e1000_mng_enable_host_if(struct e1000_hw *hw) +{ + return e1000_mng_enable_host_if_generic(hw); +} + +/** + * e1000_check_reset_block - Verifies PHY can be reset + * @hw: pointer to the HW structure + * + * Checks if the PHY is in a state that can be reset or if manageability + * has it tied up. This is a function pointer entry point called by drivers. + **/ +s32 e1000_check_reset_block(struct e1000_hw *hw) +{ + if (hw->phy.ops.check_reset_block) + return hw->phy.ops.check_reset_block(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg - Reads PHY register + * @hw: pointer to the HW structure + * @offset: the register to read + * @data: the buffer to store the 16-bit read. + * + * Reads the PHY register and returns the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + if (hw->phy.ops.read_reg) + return hw->phy.ops.read_reg(hw, offset, data); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg - Writes PHY register + * @hw: pointer to the HW structure + * @offset: the register to write + * @data: the value to write. + * + * Writes the PHY register at offset with the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + if (hw->phy.ops.write_reg) + return hw->phy.ops.write_reg(hw, offset, data); + + return E1000_SUCCESS; +} + +/** + * e1000_release_phy - Generic release PHY + * @hw: pointer to the HW structure + * + * Return if silicon family does not require a semaphore when accessing the + * PHY. + **/ +void e1000_release_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.release) + hw->phy.ops.release(hw); +} + +/** + * e1000_acquire_phy - Generic acquire PHY + * @hw: pointer to the HW structure + * + * Return success if silicon family does not require a semaphore when + * accessing the PHY. + **/ +s32 e1000_acquire_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.acquire) + return hw->phy.ops.acquire(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_kmrn_reg - Reads register using Kumeran interface + * @hw: pointer to the HW structure + * @offset: the register to read + * @data: the location to store the 16-bit value read. + * + * Reads a register out of the Kumeran interface. Currently no func pointer + * exists and all implementations are handled in the generic version of + * this function. + **/ +s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return e1000_read_kmrn_reg_generic(hw, offset, data); +} + +/** + * e1000_write_kmrn_reg - Writes register using Kumeran interface + * @hw: pointer to the HW structure + * @offset: the register to write + * @data: the value to write. + * + * Writes a register to the Kumeran interface. Currently no func pointer + * exists and all implementations are handled in the generic version of + * this function. + **/ +s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + return e1000_write_kmrn_reg_generic(hw, offset, data); +} + +/** + * e1000_get_cable_length - Retrieves cable length estimation + * @hw: pointer to the HW structure + * + * This function estimates the cable length and stores them in + * hw->phy.min_length and hw->phy.max_length. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_get_cable_length(struct e1000_hw *hw) +{ + if (hw->phy.ops.get_cable_length) + return hw->phy.ops.get_cable_length(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_info - Retrieves PHY information from registers + * @hw: pointer to the HW structure + * + * This function gets some information from various PHY registers and + * populates hw->phy values with it. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_get_phy_info(struct e1000_hw *hw) +{ + if (hw->phy.ops.get_info) + return hw->phy.ops.get_info(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_hw_reset - Hard PHY reset + * @hw: pointer to the HW structure + * + * Performs a hard PHY reset. This is a function pointer entry point called + * by drivers. + **/ +s32 e1000_phy_hw_reset(struct e1000_hw *hw) +{ + if (hw->phy.ops.reset) + return hw->phy.ops.reset(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_commit - Soft PHY reset + * @hw: pointer to the HW structure + * + * Performs a soft PHY reset on those that apply. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_phy_commit(struct e1000_hw *hw) +{ + if (hw->phy.ops.commit) + return hw->phy.ops.commit(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_set_d0_lplu_state - Sets low power link up state for D0 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D0 + * and SmartSpeed is disabled when active is true, else clear lplu for D0 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by drivers. + **/ +s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) +{ + if (hw->phy.ops.set_d0_lplu_state) + return hw->phy.ops.set_d0_lplu_state(hw, active); + + return E1000_SUCCESS; +} + +/** + * e1000_set_d3_lplu_state - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is true, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by drivers. + **/ +s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) +{ + if (hw->phy.ops.set_d3_lplu_state) + return hw->phy.ops.set_d3_lplu_state(hw, active); + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr - Reads MAC address + * @hw: pointer to the HW structure + * + * Reads the MAC address out of the adapter and stores it in the HW structure. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_mac_addr(struct e1000_hw *hw) +{ + if (hw->mac.ops.read_mac_addr) + return hw->mac.ops.read_mac_addr(hw); + + return e1000_read_mac_addr_generic(hw); +} + +/** + * e1000_read_pba_string - Read device part number string + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) +{ + return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); +} + +/** + * e1000_read_pba_length - Read device part number string length + * @hw: pointer to the HW structure + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number length from the EEPROM and + * stores the value in pba_num. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) +{ + return e1000_read_pba_length_generic(hw, pba_num_size); +} + +/** + * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum + * @hw: pointer to the HW structure + * + * Validates the NVM checksum is correct. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) +{ + if (hw->nvm.ops.validate) + return hw->nvm.ops.validate(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum + * @hw: pointer to the HW structure + * + * Updates the NVM checksum. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +s32 e1000_update_nvm_checksum(struct e1000_hw *hw) +{ + if (hw->nvm.ops.update) + return hw->nvm.ops.update(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_reload_nvm - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +void e1000_reload_nvm(struct e1000_hw *hw) +{ + if (hw->nvm.ops.reload) + hw->nvm.ops.reload(hw); +} + +/** + * e1000_read_nvm - Reads NVM (EEPROM) + * @hw: pointer to the HW structure + * @offset: the word offset to read + * @words: number of 16-bit words to read + * @data: pointer to the properly sized buffer for the data. + * + * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + if (hw->nvm.ops.read) + return hw->nvm.ops.read(hw, offset, words, data); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_write_nvm - Writes to NVM (EEPROM) + * @hw: pointer to the HW structure + * @offset: the word offset to read + * @words: number of 16-bit words to write + * @data: pointer to the properly sized buffer for the data. + * + * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + if (hw->nvm.ops.write) + return hw->nvm.ops.write(hw, offset, words, data); + + return E1000_SUCCESS; +} + +/** + * e1000_write_8bit_ctrl_reg - Writes 8bit Control register + * @hw: pointer to the HW structure + * @reg: 32bit register offset + * @offset: the register to write + * @data: the value to write. + * + * Writes the PHY register at offset with the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, + u8 data) +{ + return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); +} + +/** + * e1000_power_up_phy - Restores link in case of PHY power down + * @hw: pointer to the HW structure + * + * The phy may be powered down to save power, to turn off link when the + * driver is unloaded, or wake on lan is not enabled (among others). + **/ +void e1000_power_up_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.power_up) + hw->phy.ops.power_up(hw); + + e1000_setup_link(hw); +} + +/** + * e1000_power_down_phy - Power down PHY + * @hw: pointer to the HW structure + * + * The phy may be powered down to save power, to turn off link when the + * driver is unloaded, or wake on lan is not enabled (among others). + **/ +void e1000_power_down_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.power_down) + hw->phy.ops.power_down(hw); +} + +/** + * e1000_power_up_fiber_serdes_link - Power up serdes link + * @hw: pointer to the HW structure + * + * Power on the optics and PCS. + **/ +void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.power_up_serdes) + hw->mac.ops.power_up_serdes(hw); +} + +/** + * e1000_shutdown_fiber_serdes_link - Remove link during power down + * @hw: pointer to the HW structure + * + * Shutdown the optics and PCS on driver unload. + **/ +void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.shutdown_serdes) + hw->mac.ops.shutdown_serdes(hw); +} + +/** + * e1000_get_thermal_sensor_data - Gathers thermal sensor data + * @hw: pointer to hardware structure + * + * Updates the temperatures in mac.thermal_sensor_data + **/ +s32 e1000_get_thermal_sensor_data(struct e1000_hw *hw) +{ + if (hw->mac.ops.get_thermal_sensor_data) + return hw->mac.ops.get_thermal_sensor_data(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_init_thermal_sensor_thresh - Sets thermal sensor thresholds + * @hw: pointer to hardware structure + * + * Sets the thermal sensor thresholds according to the NVM map + **/ +s32 e1000_init_thermal_sensor_thresh(struct e1000_hw *hw) +{ + if (hw->mac.ops.init_thermal_sensor_thresh) + return hw->mac.ops.init_thermal_sensor_thresh(hw); + + return E1000_SUCCESS; +} + diff --git a/drivers/net/igb/e1000_api.h b/drivers/net/igb/e1000_api.h new file mode 100644 index 000000000000..b21294ec9e18 --- /dev/null +++ b/drivers/net/igb/e1000_api.h @@ -0,0 +1,157 @@ +/******************************************************************************* + + Intel(R) Gigabit Ethernet Linux driver + Copyright(c) 2007-2013 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#ifndef _E1000_API_H_ +#define _E1000_API_H_ + +#include "e1000_hw.h" + +extern void e1000_init_function_pointers_82575(struct e1000_hw *hw); +extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw); +extern void e1000_init_function_pointers_vf(struct e1000_hw *hw); +extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw); +extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw); +extern void e1000_init_function_pointers_i210(struct e1000_hw *hw); + +s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr); +s32 e1000_set_mac_type(struct e1000_hw *hw); +s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device); +s32 e1000_init_mac_params(struct e1000_hw *hw); +s32 e1000_init_nvm_params(struct e1000_hw *hw); +s32 e1000_init_phy_params(struct e1000_hw *hw); +s32 e1000_init_mbx_params(struct e1000_hw *hw); +s32 e1000_get_bus_info(struct e1000_hw *hw); +void e1000_clear_vfta(struct e1000_hw *hw); +void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); +s32 e1000_force_mac_fc(struct e1000_hw *hw); +s32 e1000_check_for_link(struct e1000_hw *hw); +s32 e1000_reset_hw(struct e1000_hw *hw); +s32 e1000_init_hw(struct e1000_hw *hw); +s32 e1000_setup_link(struct e1000_hw *hw); +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex); +s32 e1000_disable_pcie_master(struct e1000_hw *hw); +void e1000_config_collision_dist(struct e1000_hw *hw); +void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); +u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); +void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, + u32 mc_addr_count); +s32 e1000_setup_led(struct e1000_hw *hw); +s32 e1000_cleanup_led(struct e1000_hw *hw); +s32 e1000_check_reset_block(struct e1000_hw *hw); +s32 e1000_blink_led(struct e1000_hw *hw); +s32 e1000_led_on(struct e1000_hw *hw); +s32 e1000_led_off(struct e1000_hw *hw); +s32 e1000_id_led_init(struct e1000_hw *hw); +void e1000_reset_adaptive(struct e1000_hw *hw); +void e1000_update_adaptive(struct e1000_hw *hw); +s32 e1000_get_cable_length(struct e1000_hw *hw); +s32 e1000_validate_mdi_setting(struct e1000_hw *hw); +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, + u8 data); +s32 e1000_get_phy_info(struct e1000_hw *hw); +void e1000_release_phy(struct e1000_hw *hw); +s32 e1000_acquire_phy(struct e1000_hw *hw); +s32 e1000_phy_hw_reset(struct e1000_hw *hw); +s32 e1000_phy_commit(struct e1000_hw *hw); +void e1000_power_up_phy(struct e1000_hw *hw); +void e1000_power_down_phy(struct e1000_hw *hw); +s32 e1000_read_mac_addr(struct e1000_hw *hw); +s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size); +s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size); +void e1000_reload_nvm(struct e1000_hw *hw); +s32 e1000_update_nvm_checksum(struct e1000_hw *hw); +s32 e1000_validate_nvm_checksum(struct e1000_hw *hw); +s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); +s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); +bool e1000_check_mng_mode(struct e1000_hw *hw); +bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); +s32 e1000_mng_enable_host_if(struct e1000_hw *hw); +s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, + u16 offset, u8 *sum); +s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr); +s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length); +s32 e1000_get_thermal_sensor_data(struct e1000_hw *hw); +s32 e1000_init_thermal_sensor_thresh(struct e1000_hw *hw); + + + +/* + * TBI_ACCEPT macro definition: + * + * This macro requires: + * adapter = a pointer to struct e1000_hw + * status = the 8 bit status field of the Rx descriptor with EOP set + * error = the 8 bit error field of the Rx descriptor with EOP set + * length = the sum of all the length fields of the Rx descriptors that + * make up the current frame + * last_byte = the last byte of the frame DMAed by the hardware + * max_frame_length = the maximum frame length we want to accept. + * min_frame_length = the minimum frame length we want to accept. + * + * This macro is a conditional that should be used in the interrupt + * handler's Rx processing routine when RxErrors have been detected. + * + * Typical use: + * ... + * if (TBI_ACCEPT) { + * accept_frame = true; + * e1000_tbi_adjust_stats(adapter, MacAddress); + * frame_length--; + * } else { + * accept_frame = false; + * } + * ... + */ + +/* The carrier extension symbol, as received by the NIC. */ +#define CARRIER_EXTENSION 0x0F + +#define TBI_ACCEPT(a, status, errors, length, last_byte, \ + min_frame_size, max_frame_size) \ + (e1000_tbi_sbp_enabled_82543(a) && \ + (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ + ((last_byte) == CARRIER_EXTENSION) && \ + (((status) & E1000_RXD_STAT_VP) ? \ + (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \ + ((length) <= (max_frame_size + 1))) : \ + (((length) > min_frame_size) && \ + ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1))))) + +#ifndef E1000_MAX +#define E1000_MAX(a, b) ((a) > (b) ? (a) : (b)) +#endif +#ifndef E1000_DIVIDE_ROUND_UP +#define E1000_DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) /* ceil(a/b) */ +#endif +#endif /* _E1000_API_H_ */ diff --git a/drivers/net/igb/e1000_defines.h b/drivers/net/igb/e1000_defines.h index e32e3a71eff1..e6c920938b16 100644 --- a/drivers/net/igb/e1000_defines.h +++ b/drivers/net/igb/e1000_defines.h @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2011 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -34,347 +34,496 @@ /* Definitions for power management and wakeup registers */ /* Wake Up Control */ -#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_APME 0x00000001 /* APM Enable */ +#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ +#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ +#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ /* Wake Up Filter Control */ -#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ -#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ -#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ -#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ -#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ +#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ +#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ + +/* Wake Up Status */ +#define E1000_WUS_LNKC E1000_WUFC_LNKC +#define E1000_WUS_MAG E1000_WUFC_MAG +#define E1000_WUS_EX E1000_WUFC_EX +#define E1000_WUS_MC E1000_WUFC_MC +#define E1000_WUS_BC E1000_WUFC_BC /* Extended Device Control */ -#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Defineable Pin 3 */ +#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* SW Definable Pin 4 data */ +#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* SW Definable Pin 6 data */ +#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* SW Definable Pin 3 data */ +#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ +#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */ +#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ /* Physical Func Reset Done Indication */ -#define E1000_CTRL_EXT_PFRSTD 0x00004000 -#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000 -#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 -#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 -#define E1000_CTRL_EXT_EIAME 0x01000000 -#define E1000_CTRL_EXT_IRCA 0x00000001 -/* Interrupt delay cancellation */ -/* Driver loaded bit for FW */ -#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 -/* Interrupt acknowledge Auto-mask */ -/* Clear Interrupt timers after IMS clear */ -/* packet buffer parity error detection enabled */ -/* descriptor FIFO parity error detection enable */ -#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ -#define E1000_I2CCMD_REG_ADDR_SHIFT 16 -#define E1000_I2CCMD_PHY_ADDR_SHIFT 24 -#define E1000_I2CCMD_OPCODE_READ 0x08000000 -#define E1000_I2CCMD_OPCODE_WRITE 0x00000000 -#define E1000_I2CCMD_READY 0x20000000 -#define E1000_I2CCMD_ERROR 0x80000000 -#define E1000_MAX_SGMII_PHY_REG_ADDR 255 -#define E1000_I2CCMD_PHY_TIMEOUT 200 -#define E1000_IVAR_VALID 0x80 -#define E1000_GPIE_NSICR 0x00000001 -#define E1000_GPIE_MSIX_MODE 0x00000010 -#define E1000_GPIE_EIAME 0x40000000 -#define E1000_GPIE_PBA 0x80000000 +#define E1000_CTRL_EXT_PFRSTD 0x00004000 +#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ +#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ +#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clk Gating */ +#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 +/* Offset of the link mode field in Ctrl Ext register */ +#define E1000_CTRL_EXT_LINK_MODE_OFFSET 22 +#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000 +#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 +#define E1000_CTRL_EXT_EIAME 0x01000000 +#define E1000_CTRL_EXT_IRCA 0x00000001 +#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Drv loaded bit for FW */ +#define E1000_CTRL_EXT_IAME 0x08000000 /* Int ACK Auto-mask */ +#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ +#define E1000_I2CCMD_REG_ADDR_SHIFT 16 +#define E1000_I2CCMD_PHY_ADDR_SHIFT 24 +#define E1000_I2CCMD_OPCODE_READ 0x08000000 +#define E1000_I2CCMD_OPCODE_WRITE 0x00000000 +#define E1000_I2CCMD_READY 0x20000000 +#define E1000_I2CCMD_ERROR 0x80000000 +#define E1000_I2CCMD_SFP_DATA_ADDR(a) (0x0000 + (a)) +#define E1000_I2CCMD_SFP_DIAG_ADDR(a) (0x0100 + (a)) +#define E1000_MAX_SGMII_PHY_REG_ADDR 255 +#define E1000_I2CCMD_PHY_TIMEOUT 200 +#define E1000_IVAR_VALID 0x80 +#define E1000_GPIE_NSICR 0x00000001 +#define E1000_GPIE_MSIX_MODE 0x00000010 +#define E1000_GPIE_EIAME 0x40000000 +#define E1000_GPIE_PBA 0x80000000 /* Receive Descriptor bit definitions */ -#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ -#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ -#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ -#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ -#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ -#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ -#define E1000_RXD_STAT_TS 0x10000 /* Pkt was time stamped */ - -#define E1000_RXDEXT_STATERR_CE 0x01000000 -#define E1000_RXDEXT_STATERR_SE 0x02000000 -#define E1000_RXDEXT_STATERR_SEQ 0x04000000 -#define E1000_RXDEXT_STATERR_CXE 0x10000000 -#define E1000_RXDEXT_STATERR_TCPE 0x20000000 -#define E1000_RXDEXT_STATERR_IPE 0x40000000 -#define E1000_RXDEXT_STATERR_RXE 0x80000000 +#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ +#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ +#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ +#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ +#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ +#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ +#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ +#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ +#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ +#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ +#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */ +#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ +#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ +#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ +#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ +#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ + +#define E1000_RXDEXT_STATERR_TST 0x00000100 /* Time Stamp taken */ +#define E1000_RXDEXT_STATERR_LB 0x00040000 +#define E1000_RXDEXT_STATERR_CE 0x01000000 +#define E1000_RXDEXT_STATERR_SE 0x02000000 +#define E1000_RXDEXT_STATERR_SEQ 0x04000000 +#define E1000_RXDEXT_STATERR_CXE 0x10000000 +#define E1000_RXDEXT_STATERR_TCPE 0x20000000 +#define E1000_RXDEXT_STATERR_IPE 0x40000000 +#define E1000_RXDEXT_STATERR_RXE 0x80000000 + +/* mask to determine if packets should be dropped due to frame errors */ +#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ + E1000_RXD_ERR_CE | \ + E1000_RXD_ERR_SE | \ + E1000_RXD_ERR_SEQ | \ + E1000_RXD_ERR_CXE | \ + E1000_RXD_ERR_RXE) /* Same mask, but for extended and packet split descriptors */ #define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ - E1000_RXDEXT_STATERR_CE | \ - E1000_RXDEXT_STATERR_SE | \ - E1000_RXDEXT_STATERR_SEQ | \ - E1000_RXDEXT_STATERR_CXE | \ - E1000_RXDEXT_STATERR_RXE) + E1000_RXDEXT_STATERR_CE | \ + E1000_RXDEXT_STATERR_SE | \ + E1000_RXDEXT_STATERR_SEQ | \ + E1000_RXDEXT_STATERR_CXE | \ + E1000_RXDEXT_STATERR_RXE) -#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 -#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 -#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 +#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 +#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 +#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 +#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 +#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 /* Management Control */ -#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ -#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ -#define E1000_MANC_EN_BMC2OS 0x10000000 /* OSBMC is Enabled or not */ -/* Enable Neighbor Discovery Filtering */ -#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ -#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ +#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ +#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ +#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ +#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ /* Enable MAC address filtering */ -#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 +#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 +/* Enable MNG packets to host memory */ +#define E1000_MANC_EN_MNG2HOST 0x00200000 + +#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */ +#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */ +#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */ +#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */ /* Receive Control */ -#define E1000_RCTL_EN 0x00000002 /* enable */ -#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ -#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ -#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ -#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ -#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ -#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ -#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ -#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ -#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ -#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ -#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ -#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ -#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ -#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ - -/* - * Use byte values for the following shift parameters +#define E1000_RCTL_RST 0x00000001 /* Software reset */ +#define E1000_RCTL_EN 0x00000002 /* enable */ +#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ +#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */ +#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */ +#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ +#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ +#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ +#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ +#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ +#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min thresh size */ +#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ +#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ +#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ +#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */ +#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */ +#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ +#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */ +#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ +#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ +#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ +#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ +#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ +#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ +#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ + +/* Use byte values for the following shift parameters * Usage: * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & - * E1000_PSRCTL_BSIZE0_MASK) | - * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & - * E1000_PSRCTL_BSIZE1_MASK) | - * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & - * E1000_PSRCTL_BSIZE2_MASK) | - * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; - * E1000_PSRCTL_BSIZE3_MASK)) + * E1000_PSRCTL_BSIZE0_MASK) | + * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & + * E1000_PSRCTL_BSIZE1_MASK) | + * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & + * E1000_PSRCTL_BSIZE2_MASK) | + * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; + * E1000_PSRCTL_BSIZE3_MASK)) * where value0 = [128..16256], default=256 * value1 = [1024..64512], default=4096 * value2 = [0..64512], default=4096 * value3 = [0..64512], default=0 */ -#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F -#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 -#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 -#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 +#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F +#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 +#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 +#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 -#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ -#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ -#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ -#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ +#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ +#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ +#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ +#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ /* SWFW_SYNC Definitions */ -#define E1000_SWFW_EEP_SM 0x1 -#define E1000_SWFW_PHY0_SM 0x2 -#define E1000_SWFW_PHY1_SM 0x4 -#define E1000_SWFW_PHY2_SM 0x20 -#define E1000_SWFW_PHY3_SM 0x40 +#define E1000_SWFW_EEP_SM 0x01 +#define E1000_SWFW_PHY0_SM 0x02 +#define E1000_SWFW_PHY1_SM 0x04 +#define E1000_SWFW_CSR_SM 0x08 +#define E1000_SWFW_PHY2_SM 0x20 +#define E1000_SWFW_PHY3_SM 0x40 +#define E1000_SWFW_SW_MNG_SM 0x400 -/* FACTPS Definitions */ /* Device Control */ -#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ -#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ -#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ -#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ -#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ -#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ -#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ -#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ -#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ -#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ -#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ -/* Defined polarity of Dock/Undock indication in SDP[0] */ -/* Reset both PHY ports, through PHYRST_N pin */ -/* enable link status from external LINK_0 and LINK_1 pins */ -#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ -#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ -#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ -#define E1000_CTRL_RST 0x04000000 /* Global reset */ -#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ -#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ -#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ -#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ -/* Initiate an interrupt to manageability engine */ -#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ - -/* Bit definitions for the Management Data IO (MDIO) and Management Data - * Clock (MDC) pins in the Device Control Register. - */ - -#define E1000_CONNSW_ENRGSRC 0x4 -#define E1000_PCS_CFG_PCS_EN 8 -#define E1000_PCS_LCTL_FLV_LINK_UP 1 -#define E1000_PCS_LCTL_FSV_100 2 -#define E1000_PCS_LCTL_FSV_1000 4 -#define E1000_PCS_LCTL_FDV_FULL 8 -#define E1000_PCS_LCTL_FSD 0x10 -#define E1000_PCS_LCTL_FORCE_LINK 0x20 -#define E1000_PCS_LCTL_FORCE_FCTRL 0x80 -#define E1000_PCS_LCTL_AN_ENABLE 0x10000 -#define E1000_PCS_LCTL_AN_RESTART 0x20000 -#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 -#define E1000_ENABLE_SERDES_LOOPBACK 0x0410 - -#define E1000_PCS_LSTS_LINK_OK 1 -#define E1000_PCS_LSTS_SPEED_100 2 -#define E1000_PCS_LSTS_SPEED_1000 4 -#define E1000_PCS_LSTS_DUPLEX_FULL 8 -#define E1000_PCS_LSTS_SYNK_OK 0x10 +#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ +#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ +#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */ +#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ +#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ +#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ +#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ +#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ +#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ +#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ +#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ +#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */ +#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ +#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ +#define E1000_CTRL_RST 0x04000000 /* Global reset */ +#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ +#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ +#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ +#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ + + +#define E1000_CONNSW_ENRGSRC 0x4 +#define E1000_CONNSW_PHYSD 0x400 +#define E1000_CONNSW_PHY_PDN 0x800 +#define E1000_CONNSW_SERDESD 0x200 +#define E1000_CONNSW_AUTOSENSE_CONF 0x2 +#define E1000_CONNSW_AUTOSENSE_EN 0x1 +#define E1000_PCS_CFG_PCS_EN 8 +#define E1000_PCS_LCTL_FLV_LINK_UP 1 +#define E1000_PCS_LCTL_FSV_10 0 +#define E1000_PCS_LCTL_FSV_100 2 +#define E1000_PCS_LCTL_FSV_1000 4 +#define E1000_PCS_LCTL_FDV_FULL 8 +#define E1000_PCS_LCTL_FSD 0x10 +#define E1000_PCS_LCTL_FORCE_LINK 0x20 +#define E1000_PCS_LCTL_FORCE_FCTRL 0x80 +#define E1000_PCS_LCTL_AN_ENABLE 0x10000 +#define E1000_PCS_LCTL_AN_RESTART 0x20000 +#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 +#define E1000_ENABLE_SERDES_LOOPBACK 0x0410 + +#define E1000_PCS_LSTS_LINK_OK 1 +#define E1000_PCS_LSTS_SPEED_100 2 +#define E1000_PCS_LSTS_SPEED_1000 4 +#define E1000_PCS_LSTS_DUPLEX_FULL 8 +#define E1000_PCS_LSTS_SYNK_OK 0x10 +#define E1000_PCS_LSTS_AN_COMPLETE 0x10000 /* Device Status */ -#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ -#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ -#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ -#define E1000_STATUS_FUNC_SHIFT 2 -#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ -#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ -#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ -#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ -/* Change in Dock/Undock state. Clear on write '0'. */ -/* Status of Master requests. */ -#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 -/* BMC external code execution disabled */ - -/* Constants used to intrepret the masked PCI-X bus speed. */ - -#define SPEED_10 10 -#define SPEED_100 100 -#define SPEED_1000 1000 -#define HALF_DUPLEX 1 -#define FULL_DUPLEX 2 - - -#define ADVERTISE_10_HALF 0x0001 -#define ADVERTISE_10_FULL 0x0002 -#define ADVERTISE_100_HALF 0x0004 -#define ADVERTISE_100_FULL 0x0008 -#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ -#define ADVERTISE_1000_FULL 0x0020 +#define E1000_STATUS_FD 0x00000001 /* Duplex 0=half 1=full */ +#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ +#define E1000_STATUS_FUNC_SHIFT 2 +#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ +#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ +#define E1000_STATUS_SPEED_MASK 0x000000C0 +#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Compltn by NVM */ +#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */ +#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */ +#define E1000_STATUS_2P5_SKU 0x00001000 /* Val of 2.5GBE SKU strap */ +#define E1000_STATUS_2P5_SKU_OVER 0x00002000 /* Val of 2.5GBE SKU Over */ + +#define SPEED_10 10 +#define SPEED_100 100 +#define SPEED_1000 1000 +#define SPEED_2500 2500 +#define HALF_DUPLEX 1 +#define FULL_DUPLEX 2 + + +#define ADVERTISE_10_HALF 0x0001 +#define ADVERTISE_10_FULL 0x0002 +#define ADVERTISE_100_HALF 0x0004 +#define ADVERTISE_100_FULL 0x0008 +#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ +#define ADVERTISE_1000_FULL 0x0020 /* 1000/H is not supported, nor spec-compliant. */ -#define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ - ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ - ADVERTISE_1000_FULL) -#define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ - ADVERTISE_100_HALF | ADVERTISE_100_FULL) -#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) -#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) -#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \ - ADVERTISE_1000_FULL) -#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) - -#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX +#define E1000_ALL_SPEED_DUPLEX ( \ + ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ + ADVERTISE_100_FULL | ADVERTISE_1000_FULL) +#define E1000_ALL_NOT_GIG ( \ + ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ + ADVERTISE_100_FULL) +#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) +#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) +#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) + +#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX /* LED Control */ -#define E1000_LEDCTL_LED0_MODE_SHIFT 0 -#define E1000_LEDCTL_LED0_BLINK 0x00000080 +#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F +#define E1000_LEDCTL_LED0_MODE_SHIFT 0 +#define E1000_LEDCTL_LED0_IVRT 0x00000040 +#define E1000_LEDCTL_LED0_BLINK 0x00000080 -#define E1000_LEDCTL_MODE_LED_ON 0xE -#define E1000_LEDCTL_MODE_LED_OFF 0xF +#define E1000_LEDCTL_MODE_LED_ON 0xE +#define E1000_LEDCTL_MODE_LED_OFF 0xF /* Transmit Descriptor bit definitions */ -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -/* Extended desc bits for Linksec and timesync */ +#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ +#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Desc extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ +#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */ /* Transmit Control */ -#define E1000_TCTL_EN 0x00000002 /* enable tx */ -#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ -#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ -#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ -#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_EN 0x00000002 /* enable Tx */ +#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ +#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ +#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ +#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ -/* DMA Coalescing register fields */ -#define E1000_DMACR_DMACWT_MASK 0x00003FFF /* DMA Coalescing - * Watchdog Timer */ -#define E1000_DMACR_DMACTHR_MASK 0x00FF0000 /* DMA Coalescing Receive - * Threshold */ -#define E1000_DMACR_DMACTHR_SHIFT 16 -#define E1000_DMACR_DMAC_LX_MASK 0x30000000 /* Lx when no PCIe - * transactions */ -#define E1000_DMACR_DMAC_LX_SHIFT 28 -#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */ - -#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF /* DMA Coalescing Transmit - * Threshold */ - -#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */ - -#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF /* Receive Traffic Rate - * Threshold */ -#define E1000_DMCRTRH_LRPRCW 0x80000000 /* Rcv packet rate in - * current window */ - -#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF /* DMA Coal Rcv Traffic - * Current Cnt */ - -#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 /* Flow ctrl Rcv Threshold - * High val */ -#define E1000_FCRTC_RTH_COAL_SHIFT 4 -#define E1000_PCIEMISC_LX_DECISION 0x00000080 /* Lx power decision */ +/* Transmit Arbitration Count */ +#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */ /* SerDes Control */ -#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 +#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 +#define E1000_SCTL_ENABLE_SERDES_LOOPBACK 0x0410 /* Receive Checksum Control */ -#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ -#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ -#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ -#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ +#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ +#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ +#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ +#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ +#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ /* Header split receive */ -#define E1000_RFCTL_LEF 0x00040000 +#define E1000_RFCTL_NFSW_DIS 0x00000040 +#define E1000_RFCTL_NFSR_DIS 0x00000080 +#define E1000_RFCTL_ACK_DIS 0x00001000 +#define E1000_RFCTL_EXTEN 0x00008000 +#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 +#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 +#define E1000_RFCTL_LEF 0x00040000 /* Collision related configuration parameters */ -#define E1000_COLLISION_THRESHOLD 15 -#define E1000_CT_SHIFT 4 -#define E1000_COLLISION_DISTANCE 63 -#define E1000_COLD_SHIFT 12 +#define E1000_COLLISION_THRESHOLD 15 +#define E1000_CT_SHIFT 4 +#define E1000_COLLISION_DISTANCE 63 +#define E1000_COLD_SHIFT 12 + +/* Default values for the transmit IPG register */ +#define DEFAULT_82543_TIPG_IPGT_FIBER 9 +#define DEFAULT_82543_TIPG_IPGT_COPPER 8 + +#define E1000_TIPG_IPGT_MASK 0x000003FF + +#define DEFAULT_82543_TIPG_IPGR1 8 +#define E1000_TIPG_IPGR1_SHIFT 10 + +#define DEFAULT_82543_TIPG_IPGR2 6 +#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 +#define E1000_TIPG_IPGR2_SHIFT 20 /* Ethertype field values */ -#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ +#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ + +#define ETHERNET_FCS_SIZE 4 +#define MAX_JUMBO_FRAME_SIZE 0x3F00 -#define MAX_JUMBO_FRAME_SIZE 0x3F00 +/* Extended Configuration Control and Size */ +#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 +#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 +#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008 +#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 +#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 + +#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 +#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 +#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 +#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 + +#define E1000_KABGTXD_BGSQLBIAS 0x00050000 /* PBA constants */ -#define E1000_PBA_34K 0x0022 -#define E1000_PBA_64K 0x0040 /* 64KB */ +#define E1000_PBA_8K 0x0008 /* 8KB */ +#define E1000_PBA_10K 0x000A /* 10KB */ +#define E1000_PBA_12K 0x000C /* 12KB */ +#define E1000_PBA_14K 0x000E /* 14KB */ +#define E1000_PBA_16K 0x0010 /* 16KB */ +#define E1000_PBA_18K 0x0012 +#define E1000_PBA_20K 0x0014 +#define E1000_PBA_22K 0x0016 +#define E1000_PBA_24K 0x0018 +#define E1000_PBA_26K 0x001A +#define E1000_PBA_30K 0x001E +#define E1000_PBA_32K 0x0020 +#define E1000_PBA_34K 0x0022 +#define E1000_PBA_35K 0x0023 +#define E1000_PBA_38K 0x0026 +#define E1000_PBA_40K 0x0028 +#define E1000_PBA_48K 0x0030 /* 48KB */ +#define E1000_PBA_64K 0x0040 /* 64KB */ + +#define E1000_PBA_RXA_MASK 0xFFFF + +#define E1000_PBS_16K E1000_PBA_16K + +#define IFS_MAX 80 +#define IFS_MIN 40 +#define IFS_RATIO 4 +#define IFS_STEP 10 +#define MIN_NUM_XMITS 1000 /* SW Semaphore Register */ -#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ -#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ +#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ +#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ +#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ + +#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */ /* Interrupt Cause Read */ -#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ -#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ -#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ -#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ -#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ -#define E1000_ICR_VMMB 0x00000100 /* VM MB event */ -#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */ +#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ +#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ +#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ +#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */ +#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */ +#define E1000_ICR_RXO 0x00000040 /* Rx overrun */ +#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */ +#define E1000_ICR_VMMB 0x00000100 /* VM MB event */ +#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */ +#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ +#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ +#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ +#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ +#define E1000_ICR_TXD_LOW 0x00008000 +#define E1000_ICR_MNG 0x00040000 /* Manageability event */ +#define E1000_ICR_TS 0x00080000 /* Time Sync Interrupt */ +#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */ /* If this bit asserted, the driver should claim the interrupt */ -#define E1000_ICR_INT_ASSERTED 0x80000000 -/* LAN connected device generates an interrupt */ -#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */ +#define E1000_ICR_INT_ASSERTED 0x80000000 +#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */ +#define E1000_ICR_FER 0x00400000 /* Fatal Error */ + +#define E1000_ICR_THS 0x00800000 /* ICR.THS: Thermal Sensor Event*/ +#define E1000_ICR_MDDET 0x10000000 /* Malicious Driver Detect */ + /* Extended Interrupt Cause Read */ -#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */ -#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */ -#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */ -#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */ -#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */ -#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */ -#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */ -#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */ -#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */ +#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */ +#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */ +#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */ +#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */ +#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */ +#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */ +#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */ +#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */ +#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */ +#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */ /* TCP Timer */ +#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */ +#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */ +#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */ +#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */ -/* - * This defines the bits that are set in the Interrupt Mask +/* This defines the bits that are set in the Interrupt Mask * Set/Read Register. Each bit is documented below: * o RXT0 = Receiver Timer Interrupt (ring 0) * o TXDW = Transmit Descriptor Written Back @@ -383,224 +532,424 @@ * o LSC = Link Status Change */ #define IMS_ENABLE_MASK ( \ - E1000_IMS_RXT0 | \ - E1000_IMS_TXDW | \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ | \ - E1000_IMS_LSC | \ - E1000_IMS_DOUTSYNC) + E1000_IMS_RXT0 | \ + E1000_IMS_TXDW | \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ | \ + E1000_IMS_LSC) /* Interrupt Mask Set */ -#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ -#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */ -#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ - +#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */ +#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ +#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ +#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ +#define E1000_IMS_RXO E1000_ICR_RXO /* Rx overrun */ +#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */ +#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMS_TS E1000_ICR_TS /* Time Sync Interrupt */ +#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */ +#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ +#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */ + +#define E1000_IMS_THS E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/ +#define E1000_IMS_MDDET E1000_ICR_MDDET /* Malicious Driver Detect */ /* Extended Interrupt Mask Set */ -#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ +#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ +#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ +#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ +#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ +#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ +#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ +#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ +#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ +#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ +#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ /* Interrupt Cause Set */ -#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_ICS_DRSTA E1000_ICR_DRSTA /* Device Reset Aserted */ +#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ +#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ /* Extended Interrupt Cause Set */ +#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ +#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ +#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ +#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ +#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ +#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ +#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ +#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ +#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ +#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ + +#define E1000_EITR_ITR_INT_MASK 0x0000FFFF +/* E1000_EITR_CNT_IGNR is only for 82576 and newer */ +#define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */ +#define E1000_EITR_INTERVAL 0x00007FFC /* Transmit Descriptor Control */ +#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ +#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ +#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ /* Enable the counting of descriptors still to be processed. */ +#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Flow Control Constants */ -#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 -#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 -#define FLOW_CONTROL_TYPE 0x8808 +#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 +#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 +#define FLOW_CONTROL_TYPE 0x8808 /* 802.1q VLAN Packet Size */ -#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ -#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ +#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ +#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ -/* Receive Address */ -/* +/* Receive Address * Number of high/low register pairs in the RAR. The RAR (Receive Address * Registers) holds the directed and multicast addresses that we monitor. * Technically, we have 16 spots. However, we reserve one of these spots * (RAR[15]) for our directed address used by controllers with * manageability enabled, allowing us room for 15 multicast addresses. */ -#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ -#define E1000_RAL_MAC_ADDR_LEN 4 -#define E1000_RAH_MAC_ADDR_LEN 2 -#define E1000_RAH_POOL_MASK 0x03FC0000 -#define E1000_RAH_POOL_1 0x00040000 +#define E1000_RAR_ENTRIES 15 +#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ +#define E1000_RAL_MAC_ADDR_LEN 4 +#define E1000_RAH_MAC_ADDR_LEN 2 +#define E1000_RAH_QUEUE_MASK_82575 0x000C0000 +#define E1000_RAH_POOL_1 0x00040000 /* Error Codes */ -#define E1000_SUCCESS 0 -#define E1000_ERR_NVM 1 -#define E1000_ERR_PHY 2 -#define E1000_ERR_CONFIG 3 -#define E1000_ERR_PARAM 4 -#define E1000_ERR_MAC_INIT 5 -#define E1000_ERR_RESET 9 -#define E1000_ERR_MASTER_REQUESTS_PENDING 10 -#define E1000_BLK_PHY_RESET 12 -#define E1000_ERR_SWFW_SYNC 13 -#define E1000_NOT_IMPLEMENTED 14 -#define E1000_ERR_MBX 15 -#define E1000_ERR_INVALID_ARGUMENT 16 -#define E1000_ERR_NO_SPACE 17 -#define E1000_ERR_NVM_PBA_SECTION 18 -#define E1000_ERR_INVM_VALUE_NOT_FOUND 19 +#define E1000_SUCCESS 0 +#define E1000_ERR_NVM 1 +#define E1000_ERR_PHY 2 +#define E1000_ERR_CONFIG 3 +#define E1000_ERR_PARAM 4 +#define E1000_ERR_MAC_INIT 5 +#define E1000_ERR_PHY_TYPE 6 +#define E1000_ERR_RESET 9 +#define E1000_ERR_MASTER_REQUESTS_PENDING 10 +#define E1000_ERR_HOST_INTERFACE_COMMAND 11 +#define E1000_BLK_PHY_RESET 12 +#define E1000_ERR_SWFW_SYNC 13 +#define E1000_NOT_IMPLEMENTED 14 +#define E1000_ERR_MBX 15 +#define E1000_ERR_INVALID_ARGUMENT 16 +#define E1000_ERR_NO_SPACE 17 +#define E1000_ERR_NVM_PBA_SECTION 18 +#define E1000_ERR_I2C 19 +#define E1000_ERR_INVM_VALUE_NOT_FOUND 20 /* Loop limit on how long we wait for auto-negotiation to complete */ -#define COPPER_LINK_UP_LIMIT 10 -#define PHY_AUTO_NEG_LIMIT 45 -#define PHY_FORCE_LIMIT 20 +#define FIBER_LINK_UP_LIMIT 50 +#define COPPER_LINK_UP_LIMIT 10 +#define PHY_AUTO_NEG_LIMIT 45 +#define PHY_FORCE_LIMIT 20 /* Number of 100 microseconds we wait for PCI Express master disable */ -#define MASTER_DISABLE_TIMEOUT 800 +#define MASTER_DISABLE_TIMEOUT 800 /* Number of milliseconds we wait for PHY configuration done after MAC reset */ -#define PHY_CFG_TIMEOUT 100 +#define PHY_CFG_TIMEOUT 100 /* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ +#define MDIO_OWNERSHIP_TIMEOUT 10 /* Number of milliseconds for NVM auto read done after MAC reset. */ -#define AUTO_READ_DONE_TIMEOUT 10 +#define AUTO_READ_DONE_TIMEOUT 10 /* Flow Control */ -#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ - -#define E1000_TSYNCTXCTL_VALID 0x00000001 /* tx timestamp valid */ -#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable tx timestampping */ - -#define E1000_TSYNCRXCTL_VALID 0x00000001 /* rx timestamp valid */ -#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* rx type mask */ -#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00 -#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02 -#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04 -#define E1000_TSYNCRXCTL_TYPE_ALL 0x08 -#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A -#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable rx timestampping */ - -#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF -#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00 -#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01 -#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02 -#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03 -#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04 - -#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00 -#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000 -#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100 -#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200 -#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300 -#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800 -#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900 -#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00 -#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00 -#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00 -#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00 - -#define E1000_TIMINCA_16NS_SHIFT 24 - -#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */ -#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */ -#define E1000_MDICNFG_PHY_MASK 0x03E00000 -#define E1000_MDICNFG_PHY_SHIFT 21 - +#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ +#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ + +/* Transmit Configuration Word */ +#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ +#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ +#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ + +/* Receive Configuration Word */ +#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ +#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ +#define E1000_RXCW_C 0x20000000 /* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ + +#define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */ +#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */ + +#define E1000_TSYNCRXCTL_VALID 0x00000001 /* Rx timestamp valid */ +#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* Rx type mask */ +#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00 +#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02 +#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04 +#define E1000_TSYNCRXCTL_TYPE_ALL 0x08 +#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A +#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable Rx timestamping */ +#define E1000_TSYNCRXCTL_SYSCFI 0x00000020 /* Sys clock frequency */ + +#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF +#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00 +#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01 +#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02 +#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03 +#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04 + +#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00 +#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000 +#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100 +#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200 +#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300 +#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800 +#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900 +#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00 +#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00 +#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00 +#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00 + +#define E1000_TIMINCA_16NS_SHIFT 24 +#define E1000_TIMINCA_INCPERIOD_SHIFT 24 +#define E1000_TIMINCA_INCVALUE_MASK 0x00FFFFFF + +#define E1000_TSICR_TXTS 0x00000002 +#define E1000_TSIM_TXTS 0x00000002 +/* TUPLE Filtering Configuration */ +#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */ +#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */ +#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */ +/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */ +#define E1000_TTQF_PROTOCOL_TCP 0x0 +/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ +#define E1000_TTQF_PROTOCOL_UDP 0x1 +/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ +#define E1000_TTQF_PROTOCOL_SCTP 0x2 +#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */ +#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */ +#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */ +#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */ +#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */ +#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */ +#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */ +#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */ + +#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */ +#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */ +#define E1000_MDICNFG_PHY_MASK 0x03E00000 +#define E1000_MDICNFG_PHY_SHIFT 21 + +#define E1000_MEDIA_PORT_COPPER 1 +#define E1000_MEDIA_PORT_OTHER 2 +#define E1000_M88E1112_AUTO_COPPER_SGMII 0x2 +#define E1000_M88E1112_AUTO_COPPER_BASEX 0x3 +#define E1000_M88E1112_STATUS_LINK 0x0004 /* Interface Link Bit */ +#define E1000_M88E1112_MAC_CTRL_1 0x10 +#define E1000_M88E1112_MAC_CTRL_1_MODE_MASK 0x0380 /* Mode Select */ +#define E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT 7 +#define E1000_M88E1112_PAGE_ADDR 0x16 +#define E1000_M88E1112_STATUS 0x01 + +#define E1000_THSTAT_LOW_EVENT 0x20000000 /* Low thermal threshold */ +#define E1000_THSTAT_MID_EVENT 0x00200000 /* Mid thermal threshold */ +#define E1000_THSTAT_HIGH_EVENT 0x00002000 /* High thermal threshold */ +#define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */ +#define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Spd Throttle Event */ + +/* I350 EEE defines */ +#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Ena 1G AN */ +#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Ena 100M AN */ +#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */ +#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */ +#define E1000_EEER_LPI_FC 0x00040000 /* EEER Ena on Flow Cntrl */ +/* EEE status */ +#define E1000_EEER_EEE_NEG 0x20000000 /* EEE capability nego */ +#define E1000_EEER_RX_LPI_STATUS 0x40000000 /* Rx in LPI state */ +#define E1000_EEER_TX_LPI_STATUS 0x80000000 /* Tx in LPI state */ +#define E1000_EEE_LP_ADV_ADDR_I350 0x040F /* EEE LP Advertisement */ +#define E1000_M88E1543_PAGE_ADDR 0x16 /* Page Offset Register */ +#define E1000_M88E1543_EEE_CTRL_1 0x0 +#define E1000_M88E1543_EEE_CTRL_1_MS 0x0001 /* EEE Master/Slave */ +#define E1000_EEE_ADV_DEV_I354 7 +#define E1000_EEE_ADV_ADDR_I354 60 +#define E1000_EEE_ADV_100_SUPPORTED (1 << 1) /* 100BaseTx EEE Supported */ +#define E1000_EEE_ADV_1000_SUPPORTED (1 << 2) /* 1000BaseT EEE Supported */ +#define E1000_PCS_STATUS_DEV_I354 3 +#define E1000_PCS_STATUS_ADDR_I354 1 +#define E1000_PCS_STATUS_RX_LPI_RCVD 0x0400 +#define E1000_PCS_STATUS_TX_LPI_RCVD 0x0800 +#define E1000_M88E1512_CFG_REG_1 0x0010 +#define E1000_M88E1512_CFG_REG_2 0x0011 +#define E1000_M88E1512_CFG_REG_3 0x0007 +#define E1000_M88E1512_MODE 0x0014 +#define E1000_EEE_SU_LPI_CLK_STP 0x00800000 /* EEE LPI Clock Stop */ +#define E1000_EEE_LP_ADV_DEV_I210 7 /* EEE LP Adv Device */ +#define E1000_EEE_LP_ADV_ADDR_I210 61 /* EEE LP Adv Register */ /* PCI Express Control */ -#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000 -#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000 -#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000 -#define E1000_GCR_CAP_VER2 0x00040000 - -/* mPHY Address Control and Data Registers */ -#define E1000_MPHY_ADDR_CTL 0x0024 /* mPHY Address Control Register */ -#define E1000_MPHY_ADDR_CTL_OFFSET_MASK 0xFFFF0000 -#define E1000_MPHY_DATA 0x0E10 /* mPHY Data Register */ - -/* mPHY PCS CLK Register */ -#define E1000_MPHY_PCS_CLK_REG_OFFSET 0x0004 /* mPHY PCS CLK AFE CSR Offset */ -/* mPHY Near End Digital Loopback Override Bit */ -#define E1000_MPHY_PCS_CLK_REG_DIGINELBEN 0x10 +#define E1000_GCR_RXD_NO_SNOOP 0x00000001 +#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 +#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 +#define E1000_GCR_TXD_NO_SNOOP 0x00000008 +#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 +#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 +#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000 +#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000 +#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000 +#define E1000_GCR_CAP_VER2 0x00040000 + +#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ + E1000_GCR_RXDSCW_NO_SNOOP | \ + E1000_GCR_RXDSCR_NO_SNOOP | \ + E1000_GCR_TXD_NO_SNOOP | \ + E1000_GCR_TXDSCW_NO_SNOOP | \ + E1000_GCR_TXDSCR_NO_SNOOP) + +#define E1000_MMDAC_FUNC_DATA 0x4000 /* Data, no post increment */ + +/* mPHY address control and data registers */ +#define E1000_MPHY_ADDR_CTL 0x0024 /* Address Control Reg */ +#define E1000_MPHY_ADDR_CTL_OFFSET_MASK 0xFFFF0000 +#define E1000_MPHY_DATA 0x0E10 /* Data Register */ + +/* AFE CSR Offset for PCS CLK */ +#define E1000_MPHY_PCS_CLK_REG_OFFSET 0x0004 +/* Override for near end digital loopback. */ +#define E1000_MPHY_PCS_CLK_REG_DIGINELBEN 0x10 /* PHY Control Register */ -#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ -#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ -#define MII_CR_POWER_DOWN 0x0800 /* Power down */ -#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ -#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ -#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ -#define MII_CR_SPEED_1000 0x0040 -#define MII_CR_SPEED_100 0x2000 -#define MII_CR_SPEED_10 0x0000 +#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ +#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ +#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ +#define MII_CR_POWER_DOWN 0x0800 /* Power down */ +#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ +#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ +#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ +#define MII_CR_SPEED_1000 0x0040 +#define MII_CR_SPEED_100 0x2000 +#define MII_CR_SPEED_10 0x0000 /* PHY Status Register */ -#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ -#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ +#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ +#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ +#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ +#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ +#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ +#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ +#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ +#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ +#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ +#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ +#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ +#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ +#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ +#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ +#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ /* Autoneg Advertisement Register */ -#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ -#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ -#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ -#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ -#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ -#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ +#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ +#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ +#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ +#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ +#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ +#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ +#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ /* Link Partner Ability Register (Base Page) */ -#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ -#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ +#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ +#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP 10T Half Dplx Capable */ +#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP 10T Full Dplx Capable */ +#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP 100TX Half Dplx Capable */ +#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP 100TX Full Dplx Capable */ +#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ +#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asym Pause Direction bit */ +#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP detected Remote Fault */ +#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP rx'd link code word */ +#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ /* Autoneg Expansion Register */ +#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ +#define NWAY_ER_PAGE_RXD 0x0002 /* LP 10T Half Dplx Capable */ +#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP 10T Full Dplx Capable */ +#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP 100TX Half Dplx Capable */ +#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP 100TX Full Dplx Capable */ /* 1000BASE-T Control Register */ -#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ -#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ -#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ - /* 0=Configure PHY as Slave */ -#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ - /* 0=Automatic Master/Slave config */ +#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ +#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ +/* 1=Repeater/switch device port 0=DTE device */ +#define CR_1000T_REPEATER_DTE 0x0400 +/* 1=Configure PHY as Master 0=Configure PHY as Slave */ +#define CR_1000T_MS_VALUE 0x0800 +/* 1=Master/Slave manual config value 0=Automatic Master/Slave config */ +#define CR_1000T_MS_ENABLE 0x1000 +#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ +#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ +#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ +#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ +#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ /* 1000BASE-T Status Register */ -#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ -#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ +#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle err since last rd */ +#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asym pause direction bit */ +#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ +#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ +#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx Master, 0=Slave */ +#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ +#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 /* PHY 1000 MII Register/Bit Definitions */ /* PHY Registers defined by IEEE */ -#define PHY_CONTROL 0x00 /* Control Register */ -#define PHY_STATUS 0x01 /* Status Register */ -#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ -#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ -#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ -#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ -#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ -#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_CONTROL 0x00 /* Control Register */ +#define PHY_STATUS 0x01 /* Status Register */ +#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ +#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ +#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ +#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */ +#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ +#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ + +#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */ /* NVM Control */ -#define E1000_EECD_SK 0x00000001 /* NVM Clock */ -#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ -#define E1000_EECD_DI 0x00000004 /* NVM Data In */ -#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ -#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ -#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ -#define E1000_EECD_PRES 0x00000100 /* NVM Present */ +#define E1000_EECD_SK 0x00000001 /* NVM Clock */ +#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ +#define E1000_EECD_DI 0x00000004 /* NVM Data In */ +#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ +#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ +#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ +#define E1000_EECD_PRES 0x00000100 /* NVM Present */ +#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ +#define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */ +#define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */ +#define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */ +#define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */ /* NVM Addressing bits based on type 0=small, 1=large */ -#define E1000_EECD_ADDR_BITS 0x00000400 -#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ -#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ -#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ -#define E1000_EECD_SIZE_EX_SHIFT 11 -#define E1000_EECD_FLUPD_I210 0x00800000 /* Update FLASH */ -#define E1000_EECD_FLUDONE_I210 0x04000000 /* Update FLASH done*/ -#define E1000_FLUDONE_ATTEMPTS 20000 -#define E1000_EERD_EEWR_MAX_COUNT 512 /* buffered EEPROM words rw */ -#define E1000_I210_FIFO_SEL_RX 0x00 -#define E1000_I210_FIFO_SEL_TX_QAV(_i) (0x02 + (_i)) -#define E1000_I210_FIFO_SEL_TX_LEGACY E1000_I210_FIFO_SEL_TX_QAV(0) -#define E1000_I210_FIFO_SEL_BMC2OS_TX 0x06 -#define E1000_I210_FIFO_SEL_BMC2OS_RX 0x01 +#define E1000_EECD_ADDR_BITS 0x00000400 +#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ +#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ +#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ +#define E1000_EECD_SIZE_EX_SHIFT 11 +#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ +#define E1000_EECD_AUPDEN 0x00100000 /* Ena Auto FLASH update */ +#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ +#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES) #define E1000_EECD_FLUPD_I210 0x00800000 /* Update FLASH */ -#define E1000_EECD_FLUDONE_I210 0x04000000 /* Update FLASH done*/ +#define E1000_EECD_FLUDONE_I210 0x04000000 /* Update FLASH done */ +#define E1000_EECD_FLASH_DETECTED_I210 0x00080000 /* FLASH detected */ +#define E1000_EECD_SEC1VAL_I210 0x02000000 /* Sector One Valid */ #define E1000_FLUDONE_ATTEMPTS 20000 #define E1000_EERD_EEWR_MAX_COUNT 512 /* buffered EEPROM words rw */ #define E1000_I210_FIFO_SEL_RX 0x00 @@ -609,253 +958,361 @@ #define E1000_I210_FIFO_SEL_BMC2OS_TX 0x06 #define E1000_I210_FIFO_SEL_BMC2OS_RX 0x01 +#define E1000_I210_FLASH_SECTOR_SIZE 0x1000 /* 4KB FLASH sector unit size */ +/* Secure FLASH mode requires removing MSb */ +#define E1000_I210_FW_PTR_MASK 0x7FFF +/* Firmware code revision field word offset*/ +#define E1000_I210_FW_VER_OFFSET 328 -/* Offset to data in NVM read/write registers */ -#define E1000_NVM_RW_REG_DATA 16 -#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ -#define E1000_NVM_RW_REG_START 1 /* Start operation */ -#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ -#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ +#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */ +#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ +#define E1000_NVM_RW_REG_START 1 /* Start operation */ +#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ +#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ +#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ +#define E1000_FLASH_UPDATES 2000 /* NVM Word Offsets */ -#define NVM_COMPAT 0x0003 -#define NVM_ID_LED_SETTINGS 0x0004 /* SERDES output amplitude */ -#define NVM_INIT_CONTROL2_REG 0x000F -#define NVM_INIT_CONTROL3_PORT_B 0x0014 -#define NVM_INIT_CONTROL3_PORT_A 0x0024 -#define NVM_ALT_MAC_ADDR_PTR 0x0037 -#define NVM_CHECKSUM_REG 0x003F -#define NVM_COMPATIBILITY_REG_3 0x0003 -#define NVM_COMPATIBILITY_BIT_MASK 0x8000 -#define NVM_MAC_ADDR 0x0000 -#define NVM_SUB_DEV_ID 0x000B -#define NVM_SUB_VEN_ID 0x000C -#define NVM_DEV_ID 0x000D -#define NVM_VEN_ID 0x000E -#define NVM_INIT_CTRL_2 0x000F -#define NVM_INIT_CTRL_4 0x0013 -#define NVM_LED_1_CFG 0x001C -#define NVM_LED_0_2_CFG 0x001F - - -#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */ -#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */ -#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */ -#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */ - -#define NVM_82580_LAN_FUNC_OFFSET(a) (a ? (0x40 + (0x40 * a)) : 0) +#define NVM_COMPAT 0x0003 +#define NVM_ID_LED_SETTINGS 0x0004 +#define NVM_VERSION 0x0005 +#define E1000_I210_NVM_FW_MODULE_PTR 0x0010 +#define E1000_I350_NVM_FW_MODULE_PTR 0x0051 +#define NVM_FUTURE_INIT_WORD1 0x0019 +#define NVM_ETRACK_WORD 0x0042 +#define NVM_ETRACK_HIWORD 0x0043 +#define NVM_COMB_VER_OFF 0x0083 +#define NVM_COMB_VER_PTR 0x003d + +/* NVM version defines */ +#define NVM_MAJOR_MASK 0xF000 +#define NVM_MINOR_MASK 0x0FF0 +#define NVM_IMAGE_ID_MASK 0x000F +#define NVM_COMB_VER_MASK 0x00FF +#define NVM_MAJOR_SHIFT 12 +#define NVM_MINOR_SHIFT 4 +#define NVM_COMB_VER_SHFT 8 +#define NVM_VER_INVALID 0xFFFF +#define NVM_ETRACK_SHIFT 16 +#define NVM_ETRACK_VALID 0x8000 +#define NVM_NEW_DEC_MASK 0x0F00 +#define NVM_HEX_CONV 16 +#define NVM_HEX_TENS 10 + +/* FW version defines */ +/* Offset of "Loader patch ptr" in Firmware Header */ +#define E1000_I350_NVM_FW_LOADER_PATCH_PTR_OFFSET 0x01 +/* Patch generation hour & minutes */ +#define E1000_I350_NVM_FW_VER_WORD1_OFFSET 0x04 +/* Patch generation month & day */ +#define E1000_I350_NVM_FW_VER_WORD2_OFFSET 0x05 +/* Patch generation year */ +#define E1000_I350_NVM_FW_VER_WORD3_OFFSET 0x06 +/* Patch major & minor numbers */ +#define E1000_I350_NVM_FW_VER_WORD4_OFFSET 0x07 + +#define NVM_MAC_ADDR 0x0000 +#define NVM_SUB_DEV_ID 0x000B +#define NVM_SUB_VEN_ID 0x000C +#define NVM_DEV_ID 0x000D +#define NVM_VEN_ID 0x000E +#define NVM_INIT_CTRL_2 0x000F +#define NVM_INIT_CTRL_4 0x0013 +#define NVM_LED_1_CFG 0x001C +#define NVM_LED_0_2_CFG 0x001F + +#define NVM_COMPAT_VALID_CSUM 0x0001 +#define NVM_FUTURE_INIT_WORD1_VALID_CSUM 0x0040 + +#define NVM_ETS_CFG 0x003E +#define NVM_ETS_LTHRES_DELTA_MASK 0x07C0 +#define NVM_ETS_LTHRES_DELTA_SHIFT 6 +#define NVM_ETS_TYPE_MASK 0x0038 +#define NVM_ETS_TYPE_SHIFT 3 +#define NVM_ETS_TYPE_EMC 0x000 +#define NVM_ETS_NUM_SENSORS_MASK 0x0007 +#define NVM_ETS_DATA_LOC_MASK 0x3C00 +#define NVM_ETS_DATA_LOC_SHIFT 10 +#define NVM_ETS_DATA_INDEX_MASK 0x0300 +#define NVM_ETS_DATA_INDEX_SHIFT 8 +#define NVM_ETS_DATA_HTHRESH_MASK 0x00FF +#define NVM_INIT_CONTROL2_REG 0x000F +#define NVM_INIT_CONTROL3_PORT_B 0x0014 +#define NVM_INIT_3GIO_3 0x001A +#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020 +#define NVM_INIT_CONTROL3_PORT_A 0x0024 +#define NVM_CFG 0x0012 +#define NVM_ALT_MAC_ADDR_PTR 0x0037 +#define NVM_CHECKSUM_REG 0x003F +#define NVM_COMPATIBILITY_REG_3 0x0003 +#define NVM_COMPATIBILITY_BIT_MASK 0x8000 + +#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */ +#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */ +#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */ +#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */ + +#define NVM_82580_LAN_FUNC_OFFSET(a) ((a) ? (0x40 + (0x40 * (a))) : 0) /* Mask bits for fields in Word 0x24 of the NVM */ -#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */ -#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed external */ +#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */ +#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed extrnl */ +/* Offset of Link Mode bits for 82575/82576 */ +#define NVM_WORD24_LNK_MODE_OFFSET 8 +/* Offset of Link Mode bits for 82580 up */ +#define NVM_WORD24_82580_LNK_MODE_OFFSET 4 + /* Mask bits for fields in Word 0x0f of the NVM */ -#define NVM_WORD0F_PAUSE_MASK 0x3000 -#define NVM_WORD0F_ASM_DIR 0x2000 +#define NVM_WORD0F_PAUSE_MASK 0x3000 +#define NVM_WORD0F_PAUSE 0x1000 +#define NVM_WORD0F_ASM_DIR 0x2000 /* Mask bits for fields in Word 0x1a of the NVM */ +#define NVM_WORD1A_ASPM_MASK 0x000C -/* length of string needed to store part num */ -#define E1000_PBANUM_LENGTH 11 +/* Mask bits for fields in Word 0x03 of the EEPROM */ +#define NVM_COMPAT_LOM 0x0800 + +/* length of string needed to store PBA number */ +#define E1000_PBANUM_LENGTH 11 /* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ -#define NVM_SUM 0xBABA +#define NVM_SUM 0xBABA -#define NVM_PBA_OFFSET_0 8 -#define NVM_PBA_OFFSET_1 9 +/* PBA (printed board assembly) number words */ +#define NVM_PBA_OFFSET_0 8 +#define NVM_PBA_OFFSET_1 9 +#define NVM_PBA_PTR_GUARD 0xFAFA #define NVM_RESERVED_WORD 0xFFFF -#define NVM_PBA_PTR_GUARD 0xFAFA -#define NVM_WORD_SIZE_BASE_SHIFT 6 - -/* NVM Commands - Microwire */ +#define NVM_WORD_SIZE_BASE_SHIFT 6 /* NVM Commands - SPI */ -#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ -#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ -#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ -#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ -#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ -#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ +#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ +#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ +#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ +#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ +#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ +#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ /* SPI NVM Status Register */ -#define NVM_STATUS_RDY_SPI 0x01 +#define NVM_STATUS_RDY_SPI 0x01 /* Word definitions for ID LED Settings */ -#define ID_LED_RESERVED_0000 0x0000 -#define ID_LED_RESERVED_FFFF 0xFFFF -#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) -#define ID_LED_DEF1_DEF2 0x1 -#define ID_LED_DEF1_ON2 0x2 -#define ID_LED_DEF1_OFF2 0x3 -#define ID_LED_ON1_DEF2 0x4 -#define ID_LED_ON1_ON2 0x5 -#define ID_LED_ON1_OFF2 0x6 -#define ID_LED_OFF1_DEF2 0x7 -#define ID_LED_OFF1_ON2 0x8 -#define ID_LED_OFF1_OFF2 0x9 - -#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF -#define IGP_ACTIVITY_LED_ENABLE 0x0300 -#define IGP_LED3_MODE 0x07000000 +#define ID_LED_RESERVED_0000 0x0000 +#define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) +#define ID_LED_DEF1_DEF2 0x1 +#define ID_LED_DEF1_ON2 0x2 +#define ID_LED_DEF1_OFF2 0x3 +#define ID_LED_ON1_DEF2 0x4 +#define ID_LED_ON1_ON2 0x5 +#define ID_LED_ON1_OFF2 0x6 +#define ID_LED_OFF1_DEF2 0x7 +#define ID_LED_OFF1_ON2 0x8 +#define ID_LED_OFF1_OFF2 0x9 + +#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF +#define IGP_ACTIVITY_LED_ENABLE 0x0300 +#define IGP_LED3_MODE 0x07000000 /* PCI/PCI-X/PCI-EX Config space */ -#define PCIE_DEVICE_CONTROL2 0x28 -#define PCIE_DEVICE_CONTROL2_16ms 0x0005 +#define PCI_HEADER_TYPE_REGISTER 0x0E +#define PCIE_LINK_STATUS 0x12 +#define PCIE_DEVICE_CONTROL2 0x28 + +#define PCI_HEADER_TYPE_MULTIFUNC 0x80 +#define PCIE_LINK_WIDTH_MASK 0x3F0 +#define PCIE_LINK_WIDTH_SHIFT 4 +#define PCIE_LINK_SPEED_MASK 0x0F +#define PCIE_LINK_SPEED_2500 0x01 +#define PCIE_LINK_SPEED_5000 0x02 +#define PCIE_DEVICE_CONTROL2_16ms 0x0005 + +#ifndef ETH_ADDR_LEN +#define ETH_ADDR_LEN 6 +#endif -#define PHY_REVISION_MASK 0xFFFFFFF0 -#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ -#define MAX_PHY_MULTI_PAGE_REG 0xF +#define PHY_REVISION_MASK 0xFFFFFFF0 +#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ +#define MAX_PHY_MULTI_PAGE_REG 0xF -/* Bit definitions for valid PHY IDs. */ -/* +/* Bit definitions for valid PHY IDs. * I = Integrated * E = External */ -#define M88E1111_I_PHY_ID 0x01410CC0 -#define M88E1112_E_PHY_ID 0x01410C90 -#define I347AT4_E_PHY_ID 0x01410DC0 -#define IGP03E1000_E_PHY_ID 0x02A80390 -#define I82580_I_PHY_ID 0x015403A0 -#define I350_I_PHY_ID 0x015403B0 -#define M88_VENDOR 0x0141 -#define I210_I_PHY_ID 0x01410C00 +#define M88E1000_E_PHY_ID 0x01410C50 +#define M88E1000_I_PHY_ID 0x01410C30 +#define M88E1011_I_PHY_ID 0x01410C20 +#define IGP01E1000_I_PHY_ID 0x02A80380 +#define M88E1111_I_PHY_ID 0x01410CC0 +#define M88E1543_E_PHY_ID 0x01410EA0 +#define M88E1512_E_PHY_ID 0x01410DD0 +#define M88E1112_E_PHY_ID 0x01410C90 +#define I347AT4_E_PHY_ID 0x01410DC0 +#define M88E1340M_E_PHY_ID 0x01410DF0 +#define GG82563_E_PHY_ID 0x01410CA0 +#define IGP03E1000_E_PHY_ID 0x02A80390 +#define IFE_E_PHY_ID 0x02A80330 +#define IFE_PLUS_E_PHY_ID 0x02A80320 +#define IFE_C_E_PHY_ID 0x02A80310 +#define I82580_I_PHY_ID 0x015403A0 +#define I350_I_PHY_ID 0x015403B0 +#define I210_I_PHY_ID 0x01410C00 +#define IGP04E1000_E_PHY_ID 0x02A80391 +#define M88_VENDOR 0x0141 /* M88E1000 Specific Registers */ -#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ -#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ -#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ +#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Reg */ +#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Reg */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Cntrl */ +#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ -#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ -#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ +#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for pg number setting */ +#define M88E1000_PHY_GEN_CONTROL 0x1E /* meaning depends on reg 29 */ /* M88E1000 PHY Specific Control Register */ -#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ -/* 1=CLK125 low, 0=CLK125 toggling */ -#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ - /* Manual MDI configuration */ -#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */ +/* MDI Crossover Mode bits 6:5 Manual MDI configuration */ +#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ /* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ -#define M88E1000_PSCR_AUTO_X_1000T 0x0040 +#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* Auto crossover enabled all speeds */ -#define M88E1000_PSCR_AUTO_X_MODE 0x0060 -/* - * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold - * 0=Normal 10BASE-T Rx Threshold - */ -/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */ -#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ +#define M88E1000_PSCR_AUTO_X_MODE 0x0060 +#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */ /* M88E1000 PHY Specific Status Register */ -#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ -#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ -#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ -/* - * 0 = <50M +#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ +#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ +#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ +/* 0 = <50M * 1 = 50-80M * 2 = 80-110M * 3 = 110-140M * 4 = >140M */ -#define M88E1000_PSSR_CABLE_LENGTH 0x0380 -#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ -#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ - -#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 - -/* M88E1000 Extended PHY Specific Control Register */ -/* - * 1 = Lost lock detect enabled. - * Will assert lost lock and bring - * link down if idle not seen - * within 1ms in 1000BASE-T - */ -/* - * Number of times we will attempt to autonegotiate before downshifting if we +#define M88E1000_PSSR_CABLE_LENGTH 0x0380 +#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ +#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ +#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ +#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ + +#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 + +/* Number of times we will attempt to autonegotiate before downshifting if we * are the master */ -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 -/* - * Number of times we will attempt to autonegotiate before downshifting if we +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 +/* Number of times we will attempt to autonegotiate before downshifting if we * are the slave */ -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 -#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ - -/* Intel i347-AT4 Registers */ +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 +#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ -#define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */ -#define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */ -#define I347AT4_PAGE_SELECT 0x16 +/* Intel I347AT4 Registers */ +#define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */ +#define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */ +#define I347AT4_PAGE_SELECT 0x16 -/* i347-AT4 Extended PHY Specific Control Register */ +/* I347AT4 Extended PHY Specific Control Register */ -/* - * Number of times we will attempt to autonegotiate before downshifting if we - * are the master +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the master */ -#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800 -#define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000 -#define I347AT4_PSCR_DOWNSHIFT_1X 0x0000 -#define I347AT4_PSCR_DOWNSHIFT_2X 0x1000 -#define I347AT4_PSCR_DOWNSHIFT_3X 0x2000 -#define I347AT4_PSCR_DOWNSHIFT_4X 0x3000 -#define I347AT4_PSCR_DOWNSHIFT_5X 0x4000 -#define I347AT4_PSCR_DOWNSHIFT_6X 0x5000 -#define I347AT4_PSCR_DOWNSHIFT_7X 0x6000 -#define I347AT4_PSCR_DOWNSHIFT_8X 0x7000 - -/* i347-AT4 PHY Cable Diagnostics Control */ -#define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */ - -/* Marvell 1112 only registers */ -#define M88E1112_VCT_DSP_DISTANCE 0x001A +#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800 +#define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000 +#define I347AT4_PSCR_DOWNSHIFT_1X 0x0000 +#define I347AT4_PSCR_DOWNSHIFT_2X 0x1000 +#define I347AT4_PSCR_DOWNSHIFT_3X 0x2000 +#define I347AT4_PSCR_DOWNSHIFT_4X 0x3000 +#define I347AT4_PSCR_DOWNSHIFT_5X 0x4000 +#define I347AT4_PSCR_DOWNSHIFT_6X 0x5000 +#define I347AT4_PSCR_DOWNSHIFT_7X 0x6000 +#define I347AT4_PSCR_DOWNSHIFT_8X 0x7000 + +/* I347AT4 PHY Cable Diagnostics Control */ +#define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */ + +/* M88E1112 only registers */ +#define M88E1112_VCT_DSP_DISTANCE 0x001A /* M88EC018 Rev 2 specific DownShift settings */ -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 -/* MDI Control */ -#define E1000_MDIC_DATA_MASK 0x0000FFFF -#define E1000_MDIC_REG_MASK 0x001F0000 -#define E1000_MDIC_REG_SHIFT 16 -#define E1000_MDIC_PHY_MASK 0x03E00000 -#define E1000_MDIC_PHY_SHIFT 21 -#define E1000_MDIC_OP_WRITE 0x04000000 -#define E1000_MDIC_OP_READ 0x08000000 -#define E1000_MDIC_READY 0x10000000 -#define E1000_MDIC_INT_EN 0x20000000 -#define E1000_MDIC_ERROR 0x40000000 -#define E1000_MDIC_DEST 0x80000000 - -/* Thermal Sensor */ -#define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */ -#define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Speed Throttle Event */ - -/* Energy Efficient Ethernet */ -#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* EEE Enable 1G AN */ -#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* EEE Enable 100M AN */ -#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEE Tx LPI Enable */ -#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEE Rx LPI Enable */ -#define E1000_EEER_FRC_AN 0x10000000 /* Enable EEE in loopback */ -#define E1000_EEER_LPI_FC 0x00040000 /* EEE Enable on FC */ +/* Bits... + * 15-5: page + * 4-0: register offset + */ +#define GG82563_PAGE_SHIFT 5 +#define GG82563_REG(page, reg) \ + (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) +#define GG82563_MIN_ALT_REG 30 -/* SerDes Control */ -#define E1000_GEN_CTL_READY 0x80000000 -#define E1000_GEN_CTL_ADDRESS_SHIFT 8 -#define E1000_GEN_POLL_TIMEOUT 640 +/* GG82563 Specific Registers */ +#define GG82563_PHY_SPEC_CTRL GG82563_REG(0, 16) /* PHY Spec Cntrl */ +#define GG82563_PHY_PAGE_SELECT GG82563_REG(0, 22) /* Page Select */ +#define GG82563_PHY_SPEC_CTRL_2 GG82563_REG(0, 26) /* PHY Spec Cntrl2 */ +#define GG82563_PHY_PAGE_SELECT_ALT GG82563_REG(0, 29) /* Alt Page Select */ -#define E1000_VFTA_ENTRY_SHIFT 5 -#define E1000_VFTA_ENTRY_MASK 0x7F -#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F +/* MAC Specific Control Register */ +#define GG82563_PHY_MAC_SPEC_CTRL GG82563_REG(2, 21) -/* DMA Coalescing register fields */ -#define E1000_PCIEMISC_LX_DECISION 0x00000080 /* Lx power decision based - on DMA coal */ +#define GG82563_PHY_DSP_DISTANCE GG82563_REG(5, 26) /* DSP Distance */ + +/* Page 193 - Port Control Registers */ +/* Kumeran Mode Control */ +#define GG82563_PHY_KMRN_MODE_CTRL GG82563_REG(193, 16) +#define GG82563_PHY_PWR_MGMT_CTRL GG82563_REG(193, 20) /* Pwr Mgt Ctrl */ + +/* Page 194 - KMRN Registers */ +#define GG82563_PHY_INBAND_CTRL GG82563_REG(194, 18) /* Inband Ctrl */ + +/* MDI Control */ +#define E1000_MDIC_REG_MASK 0x001F0000 +#define E1000_MDIC_REG_SHIFT 16 +#define E1000_MDIC_PHY_MASK 0x03E00000 +#define E1000_MDIC_PHY_SHIFT 21 +#define E1000_MDIC_OP_WRITE 0x04000000 +#define E1000_MDIC_OP_READ 0x08000000 +#define E1000_MDIC_READY 0x10000000 +#define E1000_MDIC_ERROR 0x40000000 +#define E1000_MDIC_DEST 0x80000000 + +/* SerDes Control */ +#define E1000_GEN_CTL_READY 0x80000000 +#define E1000_GEN_CTL_ADDRESS_SHIFT 8 +#define E1000_GEN_POLL_TIMEOUT 640 + +/* LinkSec register fields */ +#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000 +#define E1000_LSECTXCAP_SUM_SHIFT 16 +#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000 +#define E1000_LSECRXCAP_SUM_SHIFT 16 + +#define E1000_LSECTXCTRL_EN_MASK 0x00000003 +#define E1000_LSECTXCTRL_DISABLE 0x0 +#define E1000_LSECTXCTRL_AUTH 0x1 +#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2 +#define E1000_LSECTXCTRL_AISCI 0x00000020 +#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00 +#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8 + +#define E1000_LSECRXCTRL_EN_MASK 0x0000000C +#define E1000_LSECRXCTRL_EN_SHIFT 2 +#define E1000_LSECRXCTRL_DISABLE 0x0 +#define E1000_LSECRXCTRL_CHECK 0x1 +#define E1000_LSECRXCTRL_STRICT 0x2 +#define E1000_LSECRXCTRL_DROP 0x3 +#define E1000_LSECRXCTRL_PLSH 0x00000040 +#define E1000_LSECRXCTRL_RP 0x00000080 +#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33 /* Tx Rate-Scheduler Config fields */ #define E1000_RTTBCNRC_RS_ENA 0x80000000 @@ -864,4 +1321,68 @@ #define E1000_RTTBCNRC_RF_INT_MASK \ (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT) -#endif +/* DMA Coalescing register fields */ +/* DMA Coalescing Watchdog Timer */ +#define E1000_DMACR_DMACWT_MASK 0x00003FFF +/* DMA Coalescing Rx Threshold */ +#define E1000_DMACR_DMACTHR_MASK 0x00FF0000 +#define E1000_DMACR_DMACTHR_SHIFT 16 +/* Lx when no PCIe transactions */ +#define E1000_DMACR_DMAC_LX_MASK 0x30000000 +#define E1000_DMACR_DMAC_LX_SHIFT 28 +#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */ +/* DMA Coalescing BMC-to-OS Watchdog Enable */ +#define E1000_DMACR_DC_BMC2OSW_EN 0x00008000 + +/* DMA Coalescing Transmit Threshold */ +#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF + +#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */ + +/* Rx Traffic Rate Threshold */ +#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF +/* Rx packet rate in current window */ +#define E1000_DMCRTRH_LRPRCW 0x80000000 + +/* DMA Coal Rx Traffic Current Count */ +#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF + +/* Flow ctrl Rx Threshold High val */ +#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 +#define E1000_FCRTC_RTH_COAL_SHIFT 4 +/* Lx power decision based on DMA coal */ +#define E1000_PCIEMISC_LX_DECISION 0x00000080 + +#define E1000_RXPBS_CFG_TS_EN 0x80000000 /* Timestamp in Rx buffer */ +#define E1000_RXPBS_SIZE_I210_MASK 0x0000003F /* Rx packet buffer size */ +#define E1000_TXPB0S_SIZE_I210_MASK 0x0000003F /* Tx packet buffer 0 size */ + +/* Proxy Filter Control */ +#define E1000_PROXYFC_D0 0x00000001 /* Enable offload in D0 */ +#define E1000_PROXYFC_EX 0x00000004 /* Directed exact proxy */ +#define E1000_PROXYFC_MC 0x00000008 /* Directed MC Proxy */ +#define E1000_PROXYFC_BC 0x00000010 /* Broadcast Proxy Enable */ +#define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy Ena */ +#define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */ +#define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */ +#define E1000_PROXYFC_NS 0x00000200 /* IPv6 Neighbor Solicitation */ +#define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy Ena */ +/* Proxy Status */ +#define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */ + +/* Firmware Status */ +#define E1000_FWSTS_FWRI 0x80000000 /* FW Reset Indication */ +/* VF Control */ +#define E1000_VTCTRL_RST 0x04000000 /* Reset VF */ + +#define E1000_STATUS_LAN_ID_MASK 0x00000000C /* Mask for Lan ID field */ +/* Lan ID bit field offset in status register */ +#define E1000_STATUS_LAN_ID_OFFSET 2 +#define E1000_VFTA_ENTRIES 128 +#ifndef E1000_UNUSEDARG +#define E1000_UNUSEDARG +#endif /* E1000_UNUSEDARG */ +#ifndef ERROR_REPORT +#define ERROR_REPORT(fmt) do { } while (0) +#endif /* ERROR_REPORT */ +#endif /* _E1000_DEFINES_H_ */ diff --git a/drivers/net/igb/e1000_hw.h b/drivers/net/igb/e1000_hw.h index 6542df695834..347cef716994 100644 --- a/drivers/net/igb/e1000_hw.h +++ b/drivers/net/igb/e1000_hw.h @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2011 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -28,71 +28,66 @@ #ifndef _E1000_HW_H_ #define _E1000_HW_H_ -#include <linux/types.h> -#include <linux/delay.h> -#include <linux/io.h> -#include <linux/netdevice.h> - +#include "e1000_osdep.h" #include "e1000_regs.h" #include "e1000_defines.h" struct e1000_hw; -#define E1000_DEV_ID_82576 0x10C9 -#define E1000_DEV_ID_82576_FIBER 0x10E6 -#define E1000_DEV_ID_82576_SERDES 0x10E7 -#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8 -#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526 -#define E1000_DEV_ID_82576_NS 0x150A -#define E1000_DEV_ID_82576_NS_SERDES 0x1518 -#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D -#define E1000_DEV_ID_82575EB_COPPER 0x10A7 -#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9 -#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6 -#define E1000_DEV_ID_82580_COPPER 0x150E -#define E1000_DEV_ID_82580_FIBER 0x150F -#define E1000_DEV_ID_82580_SERDES 0x1510 -#define E1000_DEV_ID_82580_SGMII 0x1511 -#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516 -#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527 -#define E1000_DEV_ID_DH89XXCC_SGMII 0x0438 -#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A -#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C -#define E1000_DEV_ID_DH89XXCC_SFP 0x0440 -#define E1000_DEV_ID_I350_COPPER 0x1521 -#define E1000_DEV_ID_I350_FIBER 0x1522 -#define E1000_DEV_ID_I350_SERDES 0x1523 -#define E1000_DEV_ID_I350_SGMII 0x1524 -#ifdef CONFIG_MACH_APALIS_T30 -/* Hack: Springville with a blank Flash (tools only, not for driver) */ -#define E1000_DEV_ID_I210_COPPER 0x1531 -#else +#define E1000_DEV_ID_82576 0x10C9 +#define E1000_DEV_ID_82576_FIBER 0x10E6 +#define E1000_DEV_ID_82576_SERDES 0x10E7 +#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8 +#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526 +#define E1000_DEV_ID_82576_NS 0x150A +#define E1000_DEV_ID_82576_NS_SERDES 0x1518 +#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D +#define E1000_DEV_ID_82575EB_COPPER 0x10A7 +#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9 +#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6 +#define E1000_DEV_ID_82580_COPPER 0x150E +#define E1000_DEV_ID_82580_FIBER 0x150F +#define E1000_DEV_ID_82580_SERDES 0x1510 +#define E1000_DEV_ID_82580_SGMII 0x1511 +#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516 +#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527 +#define E1000_DEV_ID_I350_COPPER 0x1521 +#define E1000_DEV_ID_I350_FIBER 0x1522 +#define E1000_DEV_ID_I350_SERDES 0x1523 +#define E1000_DEV_ID_I350_SGMII 0x1524 +#define E1000_DEV_ID_I350_DA4 0x1546 #define E1000_DEV_ID_I210_COPPER 0x1533 -#endif #define E1000_DEV_ID_I210_COPPER_OEM1 0x1534 #define E1000_DEV_ID_I210_COPPER_IT 0x1535 #define E1000_DEV_ID_I210_FIBER 0x1536 #define E1000_DEV_ID_I210_SERDES 0x1537 #define E1000_DEV_ID_I210_SGMII 0x1538 -#ifdef CONFIG_MACH_APALIS_T30 -/* Hack: I211 with a blank iNVM (tools only, not for driver) */ -#define E1000_DEV_ID_I211_COPPER 0x1532 -#else +#define E1000_DEV_ID_I210_COPPER_FLASHLESS 0x157B +#define E1000_DEV_ID_I210_SERDES_FLASHLESS 0x157C #define E1000_DEV_ID_I211_COPPER 0x1539 -#endif - -#define E1000_REVISION_2 2 -#define E1000_REVISION_4 4 - -#define E1000_FUNC_0 0 -#define E1000_FUNC_1 1 -#define E1000_FUNC_2 2 -#define E1000_FUNC_3 3 - -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9 +#define E1000_DEV_ID_I354_BACKPLANE_1GBPS 0x1F40 +#define E1000_DEV_ID_I354_SGMII 0x1F41 +#define E1000_DEV_ID_I354_BACKPLANE_2_5GBPS 0x1F45 +#define E1000_DEV_ID_DH89XXCC_SGMII 0x0438 +#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A +#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C +#define E1000_DEV_ID_DH89XXCC_SFP 0x0440 + +#define E1000_REVISION_0 0 +#define E1000_REVISION_1 1 +#define E1000_REVISION_2 2 +#define E1000_REVISION_3 3 +#define E1000_REVISION_4 4 + +#define E1000_FUNC_0 0 +#define E1000_FUNC_1 1 +#define E1000_FUNC_2 2 +#define E1000_FUNC_3 3 + +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6 +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9 enum e1000_mac_type { e1000_undefined = 0, @@ -100,6 +95,7 @@ enum e1000_mac_type { e1000_82576, e1000_82580, e1000_i350, + e1000_i354, e1000_i210, e1000_i211, e1000_num_macs /* List is 1-based, so subtract 1 for true count. */ @@ -108,7 +104,8 @@ enum e1000_mac_type { enum e1000_media_type { e1000_media_type_unknown = 0, e1000_media_type_copper = 1, - e1000_media_type_internal_serdes = 2, + e1000_media_type_fiber = 2, + e1000_media_type_internal_serdes = 3, e1000_num_media_types }; @@ -117,6 +114,7 @@ enum e1000_nvm_type { e1000_nvm_none, e1000_nvm_eeprom_spi, e1000_nvm_flash_hw, + e1000_nvm_invm, e1000_nvm_flash_sw }; @@ -136,6 +134,7 @@ enum e1000_phy_type { e1000_phy_igp_3, e1000_phy_ife, e1000_phy_82580, + e1000_phy_vf, e1000_phy_i210, }; @@ -190,6 +189,177 @@ enum e1000_fc_mode { e1000_fc_default = 0xFF }; +enum e1000_ms_type { + e1000_ms_hw_default = 0, + e1000_ms_force_master, + e1000_ms_force_slave, + e1000_ms_auto +}; + +enum e1000_smart_speed { + e1000_smart_speed_default = 0, + e1000_smart_speed_on, + e1000_smart_speed_off +}; + +enum e1000_serdes_link_state { + e1000_serdes_link_down = 0, + e1000_serdes_link_autoneg_progress, + e1000_serdes_link_autoneg_complete, + e1000_serdes_link_forced_up +}; + +#ifndef __le16 +#define __le16 u16 +#endif +#ifndef __le32 +#define __le32 u32 +#endif +#ifndef __le64 +#define __le64 u64 +#endif +/* Receive Descriptor */ +struct e1000_rx_desc { + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + __le16 length; /* Length of data DMAed into data buffer */ + __le16 csum; /* Packet checksum */ + u8 status; /* Descriptor status */ + u8 errors; /* Descriptor Errors */ + __le16 special; +}; + +/* Receive Descriptor - Extended */ +union e1000_rx_desc_extended { + struct { + __le64 buffer_addr; + __le64 reserved; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length; + __le16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ +}; + +#define MAX_PS_BUFFERS 4 + +/* Number of packet split data buffers (not including the header buffer) */ +#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1) + +/* Receive Descriptor - Packet Split */ +union e1000_rx_desc_packet_split { + struct { + /* one buffer for protocol header(s), three data buffers */ + __le64 buffer_addr[MAX_PS_BUFFERS]; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length0; /* length of buffer 0 */ + __le16 vlan; /* VLAN tag */ + } middle; + struct { + __le16 header_status; + /* length of buffers 1-3 */ + __le16 length[PS_PAGE_BUFFERS]; + } upper; + __le64 reserved; + } wb; /* writeback */ +}; + +/* Transmit Descriptor */ +struct e1000_tx_desc { + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 cso; /* Checksum offset */ + u8 cmd; /* Descriptor control */ + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 css; /* Checksum start */ + __le16 special; + } fields; + } upper; +}; + +/* Offload Context Descriptor */ +struct e1000_context_desc { + union { + __le32 ip_config; + struct { + u8 ipcss; /* IP checksum start */ + u8 ipcso; /* IP checksum offset */ + __le16 ipcse; /* IP checksum end */ + } ip_fields; + } lower_setup; + union { + __le32 tcp_config; + struct { + u8 tucss; /* TCP checksum start */ + u8 tucso; /* TCP checksum offset */ + __le16 tucse; /* TCP checksum end */ + } tcp_fields; + } upper_setup; + __le32 cmd_and_length; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 hdr_len; /* Header length */ + __le16 mss; /* Maximum segment size */ + } fields; + } tcp_seg_setup; +}; + +/* Offload data descriptor */ +struct e1000_data_desc { + __le64 buffer_addr; /* Address of the descriptor's buffer address */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 typ_len_ext; + u8 cmd; + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 popts; /* Packet Options */ + __le16 special; + } fields; + } upper; +}; + /* Statistics counters collected by the MAC */ struct e1000_hw_stats { u64 crcerrs; @@ -274,6 +444,7 @@ struct e1000_hw_stats { u64 b2ogprc; }; + struct e1000_phy_stats { u32 idle_errors; u32 receive_errors; @@ -298,7 +469,7 @@ struct e1000_host_command_header { u8 checksum; }; -#define E1000_HI_MAX_DATA_LENGTH 252 +#define E1000_HI_MAX_DATA_LENGTH 252 struct e1000_host_command_info { struct e1000_host_command_header command_header; u8 command_data[E1000_HI_MAX_DATA_LENGTH]; @@ -313,7 +484,7 @@ struct e1000_host_mng_command_header { u16 command_length; }; -#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 +#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 struct e1000_host_mng_command_info { struct e1000_host_mng_command_header command_header; u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; @@ -322,71 +493,130 @@ struct e1000_host_mng_command_info { #include "e1000_mac.h" #include "e1000_phy.h" #include "e1000_nvm.h" +#include "e1000_manage.h" #include "e1000_mbx.h" +/* Function pointers for the MAC. */ struct e1000_mac_operations { + s32 (*init_params)(struct e1000_hw *); + s32 (*id_led_init)(struct e1000_hw *); + s32 (*blink_led)(struct e1000_hw *); + bool (*check_mng_mode)(struct e1000_hw *); s32 (*check_for_link)(struct e1000_hw *); + s32 (*cleanup_led)(struct e1000_hw *); + void (*clear_hw_cntrs)(struct e1000_hw *); + void (*clear_vfta)(struct e1000_hw *); + s32 (*get_bus_info)(struct e1000_hw *); + void (*set_lan_id)(struct e1000_hw *); + s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); + s32 (*led_on)(struct e1000_hw *); + s32 (*led_off)(struct e1000_hw *); + void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); s32 (*reset_hw)(struct e1000_hw *); s32 (*init_hw)(struct e1000_hw *); - bool (*check_mng_mode)(struct e1000_hw *); + void (*shutdown_serdes)(struct e1000_hw *); + void (*power_up_serdes)(struct e1000_hw *); + s32 (*setup_link)(struct e1000_hw *); s32 (*setup_physical_interface)(struct e1000_hw *); - void (*rar_set)(struct e1000_hw *, u8 *, u32); + s32 (*setup_led)(struct e1000_hw *); + void (*write_vfta)(struct e1000_hw *, u32, u32); + void (*config_collision_dist)(struct e1000_hw *); + void (*rar_set)(struct e1000_hw *, u8*, u32); s32 (*read_mac_addr)(struct e1000_hw *); - s32 (*get_speed_and_duplex)(struct e1000_hw *, u16 *, u16 *); + s32 (*validate_mdi_setting)(struct e1000_hw *); + s32 (*get_thermal_sensor_data)(struct e1000_hw *); + s32 (*init_thermal_sensor_thresh)(struct e1000_hw *); s32 (*acquire_swfw_sync)(struct e1000_hw *, u16); void (*release_swfw_sync)(struct e1000_hw *, u16); - }; +/* When to use various PHY register access functions: + * + * Func Caller + * Function Does Does When to use + * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * X_reg L,P,A n/a for simple PHY reg accesses + * X_reg_locked P,A L for multiple accesses of different regs + * on different pages + * X_reg_page A L,P for multiple accesses of different regs + * on the same page + * + * Where X=[read|write], L=locking, P=sets page, A=register access + * + */ struct e1000_phy_operations { + s32 (*init_params)(struct e1000_hw *); s32 (*acquire)(struct e1000_hw *); s32 (*check_polarity)(struct e1000_hw *); s32 (*check_reset_block)(struct e1000_hw *); + s32 (*commit)(struct e1000_hw *); s32 (*force_speed_duplex)(struct e1000_hw *); s32 (*get_cfg_done)(struct e1000_hw *hw); s32 (*get_cable_length)(struct e1000_hw *); - s32 (*get_phy_info)(struct e1000_hw *); + s32 (*get_info)(struct e1000_hw *); + s32 (*set_page)(struct e1000_hw *, u16); s32 (*read_reg)(struct e1000_hw *, u32, u16 *); + s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *); + s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *); void (*release)(struct e1000_hw *); s32 (*reset)(struct e1000_hw *); s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); s32 (*write_reg)(struct e1000_hw *, u32, u16); + s32 (*write_reg_locked)(struct e1000_hw *, u32, u16); + s32 (*write_reg_page)(struct e1000_hw *, u32, u16); + void (*power_up)(struct e1000_hw *); + void (*power_down)(struct e1000_hw *); + s32 (*read_i2c_byte)(struct e1000_hw *, u8, u8, u8 *); + s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8); }; +/* Function pointers for the NVM. */ struct e1000_nvm_operations { + s32 (*init_params)(struct e1000_hw *); s32 (*acquire)(struct e1000_hw *); s32 (*read)(struct e1000_hw *, u16, u16, u16 *); void (*release)(struct e1000_hw *); - s32 (*write)(struct e1000_hw *, u16, u16, u16 *); + void (*reload)(struct e1000_hw *); s32 (*update)(struct e1000_hw *); - s32 (*validate)(struct e1000_hw *); s32 (*valid_led_default)(struct e1000_hw *, u16 *); + s32 (*validate)(struct e1000_hw *); + s32 (*write)(struct e1000_hw *, u16, u16, u16 *); }; -struct e1000_info { - s32 (*get_invariants)(struct e1000_hw *); - struct e1000_mac_operations *mac_ops; - struct e1000_phy_operations *phy_ops; - struct e1000_nvm_operations *nvm_ops; +#define E1000_MAX_SENSORS 3 + +struct e1000_thermal_diode_data { + u8 location; + u8 temp; + u8 caution_thresh; + u8 max_op_thresh; }; -extern const struct e1000_info e1000_82575_info; +struct e1000_thermal_sensor_data { + struct e1000_thermal_diode_data sensor[E1000_MAX_SENSORS]; +}; struct e1000_mac_info { struct e1000_mac_operations ops; - - u8 addr[6]; - u8 perm_addr[6]; + u8 addr[ETH_ADDR_LEN]; + u8 perm_addr[ETH_ADDR_LEN]; enum e1000_mac_type type; + u32 collision_delta; u32 ledctl_default; u32 ledctl_mode1; u32 ledctl_mode2; u32 mc_filter_type; + u32 tx_packet_delta; u32 txcw; + u16 current_ifs_val; + u16 ifs_max_val; + u16 ifs_min_val; + u16 ifs_ratio; + u16 ifs_step_size; u16 mta_reg_count; u16 uta_reg_count; @@ -398,22 +628,21 @@ struct e1000_mac_info { u8 forced_speed_duplex; bool adaptive_ifs; + bool has_fwsm; bool arc_subsystem_valid; bool asf_firmware_present; bool autoneg; bool autoneg_failed; - bool disable_hw_init_bits; bool get_link_status; - bool ifs_params_forced; bool in_ifs_mode; - bool report_tx_early; + enum e1000_serdes_link_state serdes_link_state; bool serdes_has_link; bool tx_pkt_filtering; + struct e1000_thermal_sensor_data thermal_sensor_data; }; struct e1000_phy_info { struct e1000_phy_operations ops; - enum e1000_phy_type type; enum e1000_1000t_rx_status local_rx; @@ -466,20 +695,19 @@ struct e1000_bus_info { enum e1000_bus_speed speed; enum e1000_bus_width width; - u32 snoop; - u16 func; u16 pci_cmd_word; }; struct e1000_fc_info { - u32 high_water; /* Flow control high-water mark */ - u32 low_water; /* Flow control low-water mark */ - u16 pause_time; /* Flow control pause timer */ - bool send_xon; /* Flow control send XON */ - bool strict_ieee; /* Strict IEEE mode */ - enum e1000_fc_mode current_mode; /* Type of flow control */ - enum e1000_fc_mode requested_mode; + u32 high_water; /* Flow control high-water mark */ + u32 low_water; /* Flow control low-water mark */ + u16 pause_time; /* Flow control pause timer */ + u16 refresh_time; /* Flow control refresh timer */ + bool send_xon; /* Flow control send XON */ + bool strict_ieee; /* Strict IEEE mode */ + enum e1000_fc_mode current_mode; /* FC mode in effect */ + enum e1000_fc_mode requested_mode; /* FC mode requested by caller */ }; struct e1000_mbx_operations { @@ -514,6 +742,17 @@ struct e1000_dev_spec_82575 { bool sgmii_active; bool global_device_reset; bool eee_disable; + bool module_plugged; + bool clear_semaphore_once; + u32 mtu; + struct sfp_e1000_flags eth_flags; + u8 media_port; + bool media_changed; +}; + +struct e1000_dev_spec_vf { + u32 vf_number; + u32 v2p_mailbox; }; struct e1000_hw { @@ -532,7 +771,8 @@ struct e1000_hw { struct e1000_host_mng_dhcp_cookie mng_cookie; union { - struct e1000_dev_spec_82575 _82575; + struct e1000_dev_spec_82575 _82575; + struct e1000_dev_spec_vf vf; } dev_spec; u16 device_id; @@ -543,11 +783,11 @@ struct e1000_hw { u8 revision_id; }; -extern struct net_device *igb_get_hw_dev(struct e1000_hw *hw); -#define hw_dbg(format, arg...) \ - netdev_dbg(igb_get_hw_dev(hw), format, ##arg) +#include "e1000_82575.h" +#include "e1000_i210.h" /* These functions must be implemented by drivers */ -s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); -s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); -#endif /* _E1000_HW_H_ */ +s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); +s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); + +#endif diff --git a/drivers/net/igb/e1000_i210.c b/drivers/net/igb/e1000_i210.c index 77a5f939bc74..1e9f3e6e6b42 100644 --- a/drivers/net/igb/e1000_i210.c +++ b/drivers/net/igb/e1000_i210.c @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2012 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -23,26 +23,21 @@ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 -******************************************************************************/ +*******************************************************************************/ -/* e1000_i210 - * e1000_i211 - */ +#include "e1000_api.h" -#include <linux/types.h> -#include <linux/if_ether.h> -#include "e1000_hw.h" -#include "e1000_i210.h" - -static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw); -static void igb_put_hw_semaphore_i210(struct e1000_hw *hw); -static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, +static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw); +static void e1000_release_nvm_i210(struct e1000_hw *hw); +static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw); +static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw); +static s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw); +static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data); /** - * igb_acquire_nvm_i210 - Request for access to EEPROM + * e1000_acquire_nvm_i210 - Request for access to EEPROM * @hw: pointer to the HW structure * * Acquire the necessary semaphores for exclusive access to the EEPROM. @@ -50,32 +45,40 @@ static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw); * Return successful if access grant bit set, else clear the request for * EEPROM access and return -E1000_ERR_NVM (-1). **/ -s32 igb_acquire_nvm_i210(struct e1000_hw *hw) +static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw) { - return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); + s32 ret_val; + + DEBUGFUNC("e1000_acquire_nvm_i210"); + + ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); + + return ret_val; } /** - * igb_release_nvm_i210 - Release exclusive access to EEPROM + * e1000_release_nvm_i210 - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit, * then release the semaphores acquired. **/ -void igb_release_nvm_i210(struct e1000_hw *hw) +static void e1000_release_nvm_i210(struct e1000_hw *hw) { - igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); + DEBUGFUNC("e1000_release_nvm_i210"); + + e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); } /** - * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore + * e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Acquire the SW/FW semaphore to access the PHY or NVM. The mask * will also specify which port we're acquiring the lock for. **/ -s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) +s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; u32 swmask = mask; @@ -83,116 +86,137 @@ s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) s32 ret_val = E1000_SUCCESS; s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ + DEBUGFUNC("e1000_acquire_swfw_sync_i210"); + while (i < timeout) { - if (igb_get_hw_semaphore_i210(hw)) { + if (e1000_get_hw_semaphore_i210(hw)) { ret_val = -E1000_ERR_SWFW_SYNC; goto out; } - swfw_sync = rd32(E1000_SW_FW_SYNC); - if (!(swfw_sync & fwmask)) + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) break; /* * Firmware currently using resource (fwmask) + * or other software thread using resource (swmask) */ - igb_put_hw_semaphore_i210(hw); - mdelay(5); + e1000_put_hw_semaphore_generic(hw); + msec_delay_irq(5); i++; } if (i == timeout) { - hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); ret_val = -E1000_ERR_SWFW_SYNC; goto out; } swfw_sync |= swmask; - wr32(E1000_SW_FW_SYNC, swfw_sync); + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); - igb_put_hw_semaphore_i210(hw); out: return ret_val; } /** - * igb_release_swfw_sync_i210 - Release SW/FW semaphore + * e1000_release_swfw_sync_i210 - Release SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Release the SW/FW semaphore used to access the PHY or NVM. The mask * will also specify which port we're releasing the lock for. **/ -void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask) +void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; - while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS) + DEBUGFUNC("e1000_release_swfw_sync_i210"); + + while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS) ; /* Empty */ - swfw_sync = rd32(E1000_SW_FW_SYNC); + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); swfw_sync &= ~mask; - wr32(E1000_SW_FW_SYNC, swfw_sync); + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - igb_put_hw_semaphore_i210(hw); + e1000_put_hw_semaphore_generic(hw); } /** - * igb_get_hw_semaphore_i210 - Acquire hardware semaphore + * e1000_get_hw_semaphore_i210 - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore to access the PHY or NVM **/ -static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw) +static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw) { u32 swsm; - s32 ret_val = E1000_SUCCESS; s32 timeout = hw->nvm.word_size + 1; s32 i = 0; - /* Get the FW semaphore. */ - for (i = 0; i < timeout; i++) { - swsm = rd32(E1000_SWSM); - wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + DEBUGFUNC("e1000_get_hw_semaphore_i210"); - /* Semaphore acquired if bit latched */ - if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) + /* Get the SW semaphore */ + while (i < timeout) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) break; - udelay(50); + usec_delay(50); + i++; } if (i == timeout) { - /* Release semaphores */ - igb_put_hw_semaphore(hw); - hw_dbg("Driver can't access the NVM\n"); - ret_val = -E1000_ERR_NVM; - goto out; + /* In rare circumstances, the SW semaphore may already be held + * unintentionally. Clear the semaphore once before giving up. + */ + if (hw->dev_spec._82575.clear_semaphore_once) { + hw->dev_spec._82575.clear_semaphore_once = false; + e1000_put_hw_semaphore_generic(hw); + for (i = 0; i < timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + usec_delay(50); + } + } + + /* If we do not have the semaphore here, we have to give up. */ + if (i == timeout) { + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_NVM; + } } -out: - return ret_val; -} + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); -/** - * igb_put_hw_semaphore_i210 - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - **/ -static void igb_put_hw_semaphore_i210(struct e1000_hw *hw) -{ - u32 swsm; + /* Semaphore acquired if bit latched */ + if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) + break; - swsm = rd32(E1000_SWSM); + usec_delay(50); + } - swsm &= ~E1000_SWSM_SWESMBI; + if (i == timeout) { + /* Release semaphores */ + e1000_put_hw_semaphore_generic(hw); + DEBUGOUT("Driver can't access the NVM\n"); + return -E1000_ERR_NVM; + } - wr32(E1000_SWSM, swsm); + return E1000_SUCCESS; } /** - * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register + * e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register * @hw: pointer to the HW structure * @offset: offset of word in the Shadow Ram to read * @words: number of words to read @@ -201,12 +225,14 @@ static void igb_put_hw_semaphore_i210(struct e1000_hw *hw) * Reads a 16 bit word from the Shadow Ram using the EERD register. * Uses necessary synchronization semaphores. **/ -s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, +s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { s32 status = E1000_SUCCESS; u16 i, count; + DEBUGFUNC("e1000_read_nvm_srrd_i210"); + /* We cannot hold synchronization semaphores for too long, * because of forceful takeover procedure. However it is more efficient * to read in bursts than synchronizing access for each word. */ @@ -214,7 +240,7 @@ s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? E1000_EERD_EEWR_MAX_COUNT : (words - i); if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { - status = igb_read_nvm_eerd(hw, offset, count, + status = e1000_read_nvm_eerd(hw, offset, count, data + i); hw->nvm.ops.release(hw); } else { @@ -229,7 +255,7 @@ s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, } /** - * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR + * e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR * @hw: pointer to the HW structure * @offset: offset within the Shadow RAM to be written to * @words: number of words to write @@ -244,12 +270,14 @@ s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, * If error code is returned, data and Shadow RAM may be inconsistent - buffer * partially written. **/ -s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, +s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { s32 status = E1000_SUCCESS; u16 i, count; + DEBUGFUNC("e1000_write_nvm_srwr_i210"); + /* We cannot hold synchronization semaphores for too long, * because of forceful takeover procedure. However it is more efficient * to write in bursts than synchronizing access for each word. */ @@ -257,7 +285,7 @@ s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? E1000_EERD_EEWR_MAX_COUNT : (words - i); if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { - status = igb_write_nvm_srwr(hw, offset, count, + status = e1000_write_nvm_srwr(hw, offset, count, data + i); hw->nvm.ops.release(hw); } else { @@ -272,7 +300,7 @@ s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, } /** - * igb_write_nvm_srwr - Write to Shadow Ram using EEWR + * e1000_write_nvm_srwr - Write to Shadow Ram using EEWR * @hw: pointer to the HW structure * @offset: offset within the Shadow Ram to be written to * @words: number of words to write @@ -280,10 +308,10 @@ s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, * * Writes data to Shadow Ram at offset using EEWR register. * - * If igb_update_nvm_checksum is not called after this function , the + * If e1000_update_nvm_checksum is not called after this function , the * Shadow Ram will most likely contain an invalid checksum. **/ -static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, +static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; @@ -291,13 +319,15 @@ static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, u32 attempts = 100000; s32 ret_val = E1000_SUCCESS; + DEBUGFUNC("e1000_write_nvm_srwr"); + /* * A check for invalid values: offset too large, too many words, * too many words for the offset, and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { - hw_dbg("nvm parameter(s) out of bounds\n"); + DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } @@ -307,19 +337,19 @@ static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, (data[i] << E1000_NVM_RW_REG_DATA) | E1000_NVM_RW_REG_START; - wr32(E1000_SRWR, eewr); + E1000_WRITE_REG(hw, E1000_SRWR, eewr); for (k = 0; k < attempts; k++) { if (E1000_NVM_RW_REG_DONE & - rd32(E1000_SRWR)) { + E1000_READ_REG(hw, E1000_SRWR)) { ret_val = E1000_SUCCESS; break; } - udelay(5); - } + usec_delay(5); + } if (ret_val != E1000_SUCCESS) { - hw_dbg("Shadow RAM write EEWR timed out\n"); + DEBUGOUT("Shadow RAM write EEWR timed out\n"); break; } } @@ -328,37 +358,108 @@ out: return ret_val; } -/** - * igb_read_nvm_i211 - Read NVM wrapper function for I211 +/** e1000_read_invm_word_i210 - Reads OTP + * @hw: pointer to the HW structure + * @address: the word address (aka eeprom offset) to read + * @data: pointer to the data read + * + * Reads 16-bit words from the OTP. Return error when the word is not + * stored in OTP. + **/ +static s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data) +{ + s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; + u32 invm_dword; + u16 i; + u8 record_type, word_address; + + DEBUGFUNC("e1000_read_invm_word_i210"); + + for (i = 0; i < E1000_INVM_SIZE; i++) { + invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); + /* Get record type */ + record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); + if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) + break; + if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) + i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; + if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) + i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; + if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { + word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); + if (word_address == address) { + *data = INVM_DWORD_TO_WORD_DATA(invm_dword); + DEBUGOUT2("Read INVM Word 0x%02x = %x", + address, *data); + status = E1000_SUCCESS; + break; + } + } + } + if (status != E1000_SUCCESS) + DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address); + return status; +} + +/** e1000_read_invm_i210 - Read invm wrapper function for I210/I211 * @hw: pointer to the HW structure * @address: the word address (aka eeprom offset) to read * @data: pointer to the data read * * Wrapper function to return data formerly found in the NVM. **/ -s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) +static s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset, + u16 E1000_UNUSEDARG words, u16 *data) { s32 ret_val = E1000_SUCCESS; + DEBUGFUNC("e1000_read_invm_i210"); + /* Only the MAC addr is required to be present in the iNVM */ switch (offset) { case NVM_MAC_ADDR: - ret_val = igb_read_invm_i211(hw, offset, &data[0]); - ret_val |= igb_read_invm_i211(hw, offset+1, &data[1]); - ret_val |= igb_read_invm_i211(hw, offset+2, &data[2]); + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]); + ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1, + &data[1]); + ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2, + &data[2]); if (ret_val != E1000_SUCCESS) - hw_dbg("MAC Addr not found in iNVM\n"); + DEBUGOUT("MAC Addr not found in iNVM\n"); break; - case NVM_ID_LED_SETTINGS: case NVM_INIT_CTRL_2: + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_INIT_CTRL_2_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } + break; case NVM_INIT_CTRL_4: + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_INIT_CTRL_4_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } + break; case NVM_LED_1_CFG: + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_LED_1_CFG_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } + break; case NVM_LED_0_2_CFG: - igb_read_invm_i211(hw, offset, data); + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_LED_0_2_CFG_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } break; - case NVM_COMPAT: - *data = ID_LED_DEFAULT_I210; + case NVM_ID_LED_SETTINGS: + ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = ID_LED_RESERVED_FFFF; + ret_val = E1000_SUCCESS; + } break; case NVM_SUB_DEV_ID: *data = hw->subsystem_device_id; @@ -373,7 +474,7 @@ s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words, *data = hw->vendor_id; break; default: - hw_dbg("NVM word 0x%02x is not mapped.\n", offset); + DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset); *data = NVM_RESERVED_WORD; break; } @@ -381,59 +482,118 @@ s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words, } /** - * igb_read_invm_i211 - Reads OTP + * e1000_read_invm_version - Reads iNVM version and image type * @hw: pointer to the HW structure - * @address: the word address (aka eeprom offset) to read - * @data: pointer to the data read + * @invm_ver: version structure for the version read * - * Reads 16-bit words from the OTP. Return error when the word is not - * stored in OTP. + * Reads iNVM version and image type. **/ -s32 igb_read_invm_i211(struct e1000_hw *hw, u16 address, u16 *data) +s32 e1000_read_invm_version(struct e1000_hw *hw, + struct e1000_fw_version *invm_ver) { + u32 *record = NULL; + u32 *next_record = NULL; + u32 i = 0; + u32 invm_dword = 0; + u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE / + E1000_INVM_RECORD_SIZE_IN_BYTES); + u32 buffer[E1000_INVM_SIZE]; s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; - u32 invm_dword; - u16 i; - u8 record_type, word_address; + u16 version = 0; + + DEBUGFUNC("e1000_read_invm_version"); + /* Read iNVM memory */ for (i = 0; i < E1000_INVM_SIZE; i++) { - invm_dword = rd32(E1000_INVM_DATA_REG(i)); - /* Get record type */ - record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); - if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) + invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); + buffer[i] = invm_dword; + } + + /* Read version number */ + for (i = 1; i < invm_blocks; i++) { + record = &buffer[invm_blocks - i]; + next_record = &buffer[invm_blocks - i + 1]; + + /* Check if we have first version location used */ + if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) { + version = 0; + status = E1000_SUCCESS; + break; + } + /* Check if we have second version location used */ + else if ((i == 1) && + ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) { + version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; + status = E1000_SUCCESS; + break; + } + /* + * Check if we have odd version location + * used and it is the last one used + */ + else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) && + ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) && + (i != 1))) { + version = (*next_record & E1000_INVM_VER_FIELD_TWO) + >> 13; + status = E1000_SUCCESS; + break; + } + /* + * Check if we have even version location + * used and it is the last one used + */ + else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) && + ((*record & 0x3) == 0)) { + version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; + status = E1000_SUCCESS; + break; + } + } + + if (status == E1000_SUCCESS) { + invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK) + >> E1000_INVM_MAJOR_SHIFT; + invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK; + } + /* Read Image Type */ + for (i = 1; i < invm_blocks; i++) { + record = &buffer[invm_blocks - i]; + next_record = &buffer[invm_blocks - i + 1]; + + /* Check if we have image type in first location used */ + if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) { + invm_ver->invm_img_type = 0; + status = E1000_SUCCESS; + break; + } + /* Check if we have image type in first location used */ + else if ((((*record & 0x3) == 0) && + ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) || + ((((*record & 0x3) != 0) && (i != 1)))) { + invm_ver->invm_img_type = + (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23; + status = E1000_SUCCESS; break; - if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) - i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; - if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) - i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; - if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { - word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); - if (word_address == (u8)address) { - *data = INVM_DWORD_TO_WORD_DATA(invm_dword); - hw_dbg("Read INVM Word 0x%02x = %x", - address, *data); - status = E1000_SUCCESS; - break; - } } } - if (status != E1000_SUCCESS) - hw_dbg("Requested word 0x%02x not found in OTP\n", address); return status; } /** - * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum + * e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. **/ -s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw) +s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw) { s32 status = E1000_SUCCESS; s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *); + DEBUGFUNC("e1000_validate_nvm_checksum_i210"); + if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { /* @@ -442,9 +602,9 @@ s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw) * We have semaphore taken already here. */ read_op_ptr = hw->nvm.ops.read; - hw->nvm.ops.read = igb_read_nvm_eerd; + hw->nvm.ops.read = e1000_read_nvm_eerd; - status = igb_validate_nvm_checksum(hw); + status = e1000_validate_nvm_checksum_generic(hw); /* Revert original read operation. */ hw->nvm.ops.read = read_op_ptr; @@ -459,27 +619,29 @@ s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw) /** - * igb_update_nvm_checksum_i210 - Update EEPROM checksum + * e1000_update_nvm_checksum_i210 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. Next commit EEPROM data onto the Flash. **/ -s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw) +s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 checksum = 0; u16 i, nvm_data; + DEBUGFUNC("e1000_update_nvm_checksum_i210"); + /* * Read the first word from the EEPROM. If this times out or fails, do * not continue or we could be in for a very long wait while every * EEPROM read fails */ - ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data); + ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data); if (ret_val != E1000_SUCCESS) { - hw_dbg("EEPROM read failed\n"); + DEBUGOUT("EEPROM read failed\n"); goto out; } @@ -491,99 +653,172 @@ s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw) */ for (i = 0; i < NVM_CHECKSUM_REG; i++) { - ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data); + ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data); if (ret_val) { hw->nvm.ops.release(hw); - hw_dbg("NVM Read Error while updating checksum.\n"); + DEBUGOUT("NVM Read Error while updating checksum.\n"); goto out; } checksum += nvm_data; } checksum = (u16) NVM_SUM - checksum; - ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, + ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, &checksum); if (ret_val != E1000_SUCCESS) { hw->nvm.ops.release(hw); - hw_dbg("NVM Write Error while updating checksum.\n"); + DEBUGOUT("NVM Write Error while updating checksum.\n"); goto out; } hw->nvm.ops.release(hw); - ret_val = igb_update_flash_i210(hw); + ret_val = e1000_update_flash_i210(hw); } else { - ret_val = -E1000_ERR_SWFW_SYNC; + ret_val = E1000_ERR_SWFW_SYNC; } out: return ret_val; } /** - * igb_update_flash_i210 - Commit EEPROM to the flash + * e1000_get_flash_presence_i210 - Check if flash device is detected. + * @hw: pointer to the HW structure + * + **/ +bool e1000_get_flash_presence_i210(struct e1000_hw *hw) +{ + u32 eec = 0; + bool ret_val = false; + + DEBUGFUNC("e1000_get_flash_presence_i210"); + + eec = E1000_READ_REG(hw, E1000_EECD); + + if (eec & E1000_EECD_FLASH_DETECTED_I210) + ret_val = true; + + return ret_val; +} + +/** + * e1000_update_flash_i210 - Commit EEPROM to the flash * @hw: pointer to the HW structure * **/ -s32 igb_update_flash_i210(struct e1000_hw *hw) +s32 e1000_update_flash_i210(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u32 flup; - ret_val = igb_pool_flash_update_done_i210(hw); + DEBUGFUNC("e1000_update_flash_i210"); + + ret_val = e1000_pool_flash_update_done_i210(hw); if (ret_val == -E1000_ERR_NVM) { - hw_dbg("Flash update time out\n"); + DEBUGOUT("Flash update time out\n"); goto out; } - flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210; - wr32(E1000_EECD, flup); + flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210; + E1000_WRITE_REG(hw, E1000_EECD, flup); - ret_val = igb_pool_flash_update_done_i210(hw); + ret_val = e1000_pool_flash_update_done_i210(hw); if (ret_val == E1000_SUCCESS) - hw_dbg("Flash update complete\n"); + DEBUGOUT("Flash update complete\n"); else - hw_dbg("Flash update time out\n"); + DEBUGOUT("Flash update time out\n"); out: return ret_val; } /** - * igb_pool_flash_update_done_i210 - Pool FLUDONE status. + * e1000_pool_flash_update_done_i210 - Pool FLUDONE status. * @hw: pointer to the HW structure * **/ -s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw) +s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw) { s32 ret_val = -E1000_ERR_NVM; u32 i, reg; + DEBUGFUNC("e1000_pool_flash_update_done_i210"); + for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { - reg = rd32(E1000_EECD); + reg = E1000_READ_REG(hw, E1000_EECD); if (reg & E1000_EECD_FLUDONE_I210) { ret_val = E1000_SUCCESS; break; } - udelay(5); + usec_delay(5); } return ret_val; } /** - * igb_valid_led_default_i210 - Verify a valid default LED config + * e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers + * @hw: pointer to the HW structure + * + * Initialize the i210/i211 NVM parameters and function pointers. + **/ +static s32 e1000_init_nvm_params_i210(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + struct e1000_nvm_info *nvm = &hw->nvm; + + DEBUGFUNC("e1000_init_nvm_params_i210"); + + ret_val = e1000_init_nvm_params_82575(hw); + nvm->ops.acquire = e1000_acquire_nvm_i210; + nvm->ops.release = e1000_release_nvm_i210; + nvm->ops.valid_led_default = e1000_valid_led_default_i210; + if (e1000_get_flash_presence_i210(hw)) { + hw->nvm.type = e1000_nvm_flash_hw; + nvm->ops.read = e1000_read_nvm_srrd_i210; + nvm->ops.write = e1000_write_nvm_srwr_i210; + nvm->ops.validate = e1000_validate_nvm_checksum_i210; + nvm->ops.update = e1000_update_nvm_checksum_i210; + } else { + hw->nvm.type = e1000_nvm_invm; + nvm->ops.read = e1000_read_invm_i210; + nvm->ops.write = e1000_null_write_nvm; + nvm->ops.validate = e1000_null_ops_generic; + nvm->ops.update = e1000_null_ops_generic; + } + return ret_val; +} + +/** + * e1000_init_function_pointers_i210 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_i210(struct e1000_hw *hw) +{ + e1000_init_function_pointers_82575(hw); + hw->nvm.ops.init_params = e1000_init_nvm_params_i210; + + return; +} + +/** + * e1000_valid_led_default_i210 - Verify a valid default LED config * @hw: pointer to the HW structure * @data: pointer to the NVM (EEPROM) * * Read the EEPROM for the current default LED configuration. If the * LED configuration is not valid, set to a valid LED configuration. **/ -s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data) +static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data) { s32 ret_val; + DEBUGFUNC("e1000_valid_led_default_i210"); + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { - hw_dbg("NVM Read Error\n"); + DEBUGOUT("NVM Read Error\n"); goto out; } @@ -601,3 +836,74 @@ s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data) out: return ret_val; } + +/** + * __e1000_access_xmdio_reg - Read/write XMDIO register + * @hw: pointer to the HW structure + * @address: XMDIO address to program + * @dev_addr: device address to program + * @data: pointer to value to read/write from/to the XMDIO address + * @read: boolean flag to indicate read or write + **/ +static s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address, + u8 dev_addr, u16 *data, bool read) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("__e1000_access_xmdio_reg"); + + ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA | + dev_addr); + if (ret_val) + return ret_val; + + if (read) + ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data); + else + ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data); + if (ret_val) + return ret_val; + + /* Recalibrate the device back to 0 */ + ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0); + if (ret_val) + return ret_val; + + return ret_val; +} + +/** + * e1000_read_xmdio_reg - Read XMDIO register + * @hw: pointer to the HW structure + * @addr: XMDIO address to program + * @dev_addr: device address to program + * @data: value to be read from the EMI address + **/ +s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data) +{ + DEBUGFUNC("e1000_read_xmdio_reg"); + + return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, true); +} + +/** + * e1000_write_xmdio_reg - Write XMDIO register + * @hw: pointer to the HW structure + * @addr: XMDIO address to program + * @dev_addr: device address to program + * @data: value to be written to the XMDIO address + **/ +s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data) +{ + DEBUGFUNC("e1000_read_xmdio_reg"); + + return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, false); +} diff --git a/drivers/net/igb/e1000_i210.h b/drivers/net/igb/e1000_i210.h index 5dc2bd3f50bc..57b2eb5602c2 100644 --- a/drivers/net/igb/e1000_i210.h +++ b/drivers/net/igb/e1000_i210.h @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2012 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -28,21 +28,22 @@ #ifndef _E1000_I210_H_ #define _E1000_I210_H_ -extern s32 igb_update_flash_i210(struct e1000_hw *hw); -extern s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw); -extern s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw); -extern s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, +bool e1000_get_flash_presence_i210(struct e1000_hw *hw); +s32 e1000_update_flash_i210(struct e1000_hw *hw); +s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw); +s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw); +s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -extern s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, +s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -extern s32 igb_read_invm_i211(struct e1000_hw *hw, u16 address, u16 *data); -extern s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask); -extern void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask); -extern s32 igb_acquire_nvm_i210(struct e1000_hw *hw); -extern void igb_release_nvm_i210(struct e1000_hw *hw); -extern s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data); -extern s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data); +s32 e1000_read_invm_version(struct e1000_hw *hw, + struct e1000_fw_version *invm_ver); +s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask); +void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask); +s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, + u16 *data); +s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, + u16 data); #define E1000_STM_OPCODE 0xDB00 #define E1000_EEPROM_FLASH_SIZE_WORD 0x11 @@ -65,12 +66,26 @@ enum E1000_INVM_STRUCTURE_TYPE { #define E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS 8 #define E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS 1 +#define E1000_INVM_ULT_BYTES_SIZE 8 +#define E1000_INVM_RECORD_SIZE_IN_BYTES 4 +#define E1000_INVM_VER_FIELD_ONE 0x1FF8 +#define E1000_INVM_VER_FIELD_TWO 0x7FE000 +#define E1000_INVM_IMGTYPE_FIELD 0x1F800000 + +#define E1000_INVM_MAJOR_MASK 0x3F0 +#define E1000_INVM_MINOR_MASK 0xF +#define E1000_INVM_MAJOR_SHIFT 4 #define ID_LED_DEFAULT_I210 ((ID_LED_OFF1_ON2 << 8) | \ - (ID_LED_OFF1_OFF2 << 4) | \ - (ID_LED_DEF1_DEF2)) + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_OFF1_OFF2)) #define ID_LED_DEFAULT_I210_SERDES ((ID_LED_DEF1_DEF2 << 8) | \ (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) + (ID_LED_OFF1_ON2)) +/* NVM offset defaults for I211 devices */ +#define NVM_INIT_CTRL_2_DEFAULT_I211 0X7243 +#define NVM_INIT_CTRL_4_DEFAULT_I211 0x00C1 +#define NVM_LED_1_CFG_DEFAULT_I211 0x0184 +#define NVM_LED_0_2_CFG_DEFAULT_I211 0x200C #endif diff --git a/drivers/net/igb/e1000_mac.c b/drivers/net/igb/e1000_mac.c index c3ee7b21ab4e..28b4e97d775d 100644 --- a/drivers/net/igb/e1000_mac.c +++ b/drivers/net/igb/e1000_mac.c @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2011 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -25,48 +25,158 @@ *******************************************************************************/ -#include <linux/if_ether.h> -#include <linux/delay.h> -#include <linux/pci.h> -#include <linux/netdevice.h> -#include <linux/etherdevice.h> +#include "e1000_api.h" -#include "e1000_mac.h" +static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); +static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); +static void e1000_config_collision_dist_generic(struct e1000_hw *hw); +static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); -#include "igb.h" +/** + * e1000_init_mac_ops_generic - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_mac_ops_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + DEBUGFUNC("e1000_init_mac_ops_generic"); + + /* General Setup */ + mac->ops.init_params = e1000_null_ops_generic; + mac->ops.init_hw = e1000_null_ops_generic; + mac->ops.reset_hw = e1000_null_ops_generic; + mac->ops.setup_physical_interface = e1000_null_ops_generic; + mac->ops.get_bus_info = e1000_null_ops_generic; + mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; + mac->ops.read_mac_addr = e1000_read_mac_addr_generic; + mac->ops.config_collision_dist = e1000_config_collision_dist_generic; + mac->ops.clear_hw_cntrs = e1000_null_mac_generic; + /* LED */ + mac->ops.cleanup_led = e1000_null_ops_generic; + mac->ops.setup_led = e1000_null_ops_generic; + mac->ops.blink_led = e1000_null_ops_generic; + mac->ops.led_on = e1000_null_ops_generic; + mac->ops.led_off = e1000_null_ops_generic; + /* LINK */ + mac->ops.setup_link = e1000_null_ops_generic; + mac->ops.get_link_up_info = e1000_null_link_info; + mac->ops.check_for_link = e1000_null_ops_generic; + /* Management */ + mac->ops.check_mng_mode = e1000_null_mng_mode; + /* VLAN, MC, etc. */ + mac->ops.update_mc_addr_list = e1000_null_update_mc; + mac->ops.clear_vfta = e1000_null_mac_generic; + mac->ops.write_vfta = e1000_null_write_vfta; + mac->ops.rar_set = e1000_rar_set_generic; + mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; +} + +/** + * e1000_null_ops_generic - No-op function, returns 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_null_ops_generic"); + return E1000_SUCCESS; +} + +/** + * e1000_null_mac_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_null_mac_generic"); + return; +} + +/** + * e1000_null_link_info - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d) +{ + DEBUGFUNC("e1000_null_link_info"); + return E1000_SUCCESS; +} + +/** + * e1000_null_mng_mode - No-op function, return false + * @hw: pointer to the HW structure + **/ +bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_null_mng_mode"); + return false; +} + +/** + * e1000_null_update_mc - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw, + u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) +{ + DEBUGFUNC("e1000_null_update_mc"); + return; +} -static s32 igb_set_default_fc(struct e1000_hw *hw); -static s32 igb_set_fc_watermarks(struct e1000_hw *hw); +/** + * e1000_null_write_vfta - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw, + u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b) +{ + DEBUGFUNC("e1000_null_write_vfta"); + return; +} /** - * igb_get_bus_info_pcie - Get PCIe bus information + * e1000_null_rar_set - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw, + u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) +{ + DEBUGFUNC("e1000_null_rar_set"); + return; +} + +/** + * e1000_get_bus_info_pcie_generic - Get PCIe bus information * @hw: pointer to the HW structure * * Determines and stores the system bus information for a particular * network interface. The following bus information is determined and stored: * bus speed, bus width, type (PCIe), and PCIe function. **/ -s32 igb_get_bus_info_pcie(struct e1000_hw *hw) +s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw) { + struct e1000_mac_info *mac = &hw->mac; struct e1000_bus_info *bus = &hw->bus; s32 ret_val; - u32 reg; u16 pcie_link_status; + DEBUGFUNC("e1000_get_bus_info_pcie_generic"); + bus->type = e1000_bus_type_pci_express; - ret_val = igb_read_pcie_cap_reg(hw, - PCI_EXP_LNKSTA, - &pcie_link_status); + ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS, + &pcie_link_status); if (ret_val) { bus->width = e1000_bus_width_unknown; bus->speed = e1000_bus_speed_unknown; } else { - switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) { - case PCI_EXP_LNKSTA_CLS_2_5GB: + switch (pcie_link_status & PCIE_LINK_SPEED_MASK) { + case PCIE_LINK_SPEED_2500: bus->speed = e1000_bus_speed_2500; break; - case PCI_EXP_LNKSTA_CLS_5_0GB: + case PCIE_LINK_SPEED_5000: bus->speed = e1000_bus_speed_5000; break; default: @@ -75,35 +185,68 @@ s32 igb_get_bus_info_pcie(struct e1000_hw *hw) } bus->width = (enum e1000_bus_width)((pcie_link_status & - PCI_EXP_LNKSTA_NLW) >> - PCI_EXP_LNKSTA_NLW_SHIFT); + PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT); } - reg = rd32(E1000_STATUS); + mac->ops.set_lan_id(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices + * + * @hw: pointer to the HW structure + * + * Determines the LAN function id by reading memory-mapped registers + * and swaps the port value if requested. + **/ +static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + u32 reg; + + /* The status register reports the correct function number + * for the device regardless of function swap state. + */ + reg = E1000_READ_REG(hw, E1000_STATUS); bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; +} - return 0; +/** + * e1000_set_lan_id_single_port - Set LAN id for a single port device + * @hw: pointer to the HW structure + * + * Sets the LAN function id to zero for a single port device. + **/ +void e1000_set_lan_id_single_port(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + + bus->func = 0; } /** - * igb_clear_vfta - Clear VLAN filter table + * e1000_clear_vfta_generic - Clear VLAN filter table * @hw: pointer to the HW structure * * Clears the register array which contains the VLAN filter table by * setting all the values to 0. **/ -void igb_clear_vfta(struct e1000_hw *hw) +void e1000_clear_vfta_generic(struct e1000_hw *hw) { u32 offset; + DEBUGFUNC("e1000_clear_vfta_generic"); + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - array_wr32(E1000_VFTA, offset, 0); - wrfl(); + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); + E1000_WRITE_FLUSH(hw); } } /** - * igb_write_vfta - Write value to VLAN filter table + * e1000_write_vfta_generic - Write value to VLAN filter table * @hw: pointer to the HW structure * @offset: register offset in VLAN filter table * @value: register value written to VLAN filter table @@ -111,106 +254,98 @@ void igb_clear_vfta(struct e1000_hw *hw) * Writes value at the given offset in the register array which stores * the VLAN filter table. **/ -static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) +void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) { - array_wr32(E1000_VFTA, offset, value); - wrfl(); + DEBUGFUNC("e1000_write_vfta_generic"); + + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + E1000_WRITE_FLUSH(hw); } /** - * igb_init_rx_addrs - Initialize receive address's + * e1000_init_rx_addrs_generic - Initialize receive address's * @hw: pointer to the HW structure * @rar_count: receive address registers * - * Setups the receive address registers by setting the base receive address + * Setup the receive address registers by setting the base receive address * register to the devices MAC address and clearing all the other receive * address registers to 0. **/ -void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) +void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) { u32 i; - u8 mac_addr[ETH_ALEN] = {0}; + u8 mac_addr[ETH_ADDR_LEN] = {0}; + + DEBUGFUNC("e1000_init_rx_addrs_generic"); /* Setup the receive address */ - hw_dbg("Programming MAC Address into RAR[0]\n"); + DEBUGOUT("Programming MAC Address into RAR[0]\n"); hw->mac.ops.rar_set(hw, hw->mac.addr, 0); /* Zero out the other (rar_entry_count - 1) receive addresses */ - hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); + DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); for (i = 1; i < rar_count; i++) hw->mac.ops.rar_set(hw, mac_addr, i); } /** - * igb_vfta_set - enable or disable vlan in VLAN filter table - * @hw: pointer to the HW structure - * @vid: VLAN id to add or remove - * @add: if true add filter, if false remove - * - * Sets or clears a bit in the VLAN filter table array based on VLAN id - * and if we are adding or removing the filter - **/ -s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add) -{ - u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; - u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); - u32 vfta = array_rd32(E1000_VFTA, index); - s32 ret_val = 0; - - /* bit was set/cleared before we started */ - if ((!!(vfta & mask)) == add) { - ret_val = -E1000_ERR_CONFIG; - } else { - if (add) - vfta |= mask; - else - vfta &= ~mask; - } - - igb_write_vfta(hw, index, vfta); - - return ret_val; -} - -/** - * igb_check_alt_mac_addr - Check for alternate MAC addr + * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr * @hw: pointer to the HW structure * * Checks the nvm for an alternate MAC address. An alternate MAC address * can be setup by pre-boot software and must be treated like a permanent - * address and must override the actual permanent MAC address. If an - * alternate MAC address is fopund it is saved in the hw struct and - * prgrammed into RAR0 and the cuntion returns success, otherwise the - * function returns an error. + * address and must override the actual permanent MAC address. If an + * alternate MAC address is found it is programmed into RAR0, replacing + * the permanent address that was installed into RAR0 by the Si on reset. + * This function will return SUCCESS unless it encounters an error while + * reading the EEPROM. **/ -s32 igb_check_alt_mac_addr(struct e1000_hw *hw) +s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) { u32 i; - s32 ret_val = 0; + s32 ret_val; u16 offset, nvm_alt_mac_addr_offset, nvm_data; - u8 alt_mac_addr[ETH_ALEN]; + u8 alt_mac_addr[ETH_ADDR_LEN]; + + DEBUGFUNC("e1000_check_alt_mac_addr_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data); + if (ret_val) + return ret_val; + + + /* Alternate MAC address is handled by the option ROM for 82580 + * and newer. SW support not required. + */ + if (hw->mac.type >= e1000_82580) + return E1000_SUCCESS; ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, - &nvm_alt_mac_addr_offset); + &nvm_alt_mac_addr_offset); if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; + DEBUGOUT("NVM Read Error\n"); + return ret_val; } - if (nvm_alt_mac_addr_offset == 0xFFFF) { + if ((nvm_alt_mac_addr_offset == 0xFFFF) || + (nvm_alt_mac_addr_offset == 0x0000)) /* There is no Alternate MAC Address */ - goto out; - } + return E1000_SUCCESS; if (hw->bus.func == E1000_FUNC_1) nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; - for (i = 0; i < ETH_ALEN; i += 2) { + if (hw->bus.func == E1000_FUNC_2) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; + + if (hw->bus.func == E1000_FUNC_3) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; + for (i = 0; i < ETH_ADDR_LEN; i += 2) { offset = nvm_alt_mac_addr_offset + (i >> 1); ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; + DEBUGOUT("NVM Read Error\n"); + return ret_val; } alt_mac_addr[i] = (u8)(nvm_data & 0xFF); @@ -218,24 +353,22 @@ s32 igb_check_alt_mac_addr(struct e1000_hw *hw) } /* if multicast bit is set, the alternate address will not be used */ - if (is_multicast_ether_addr(alt_mac_addr)) { - hw_dbg("Ignoring Alternate Mac Address with MC bit set\n"); - goto out; + if (alt_mac_addr[0] & 0x01) { + DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); + return E1000_SUCCESS; } - /* - * We have a valid alternate MAC address, and we want to treat it the + /* We have a valid alternate MAC address, and we want to treat it the * same as the normal permanent MAC address stored by the HW into the * RAR. Do this by mapping this address into RAR0. */ hw->mac.ops.rar_set(hw, alt_mac_addr, 0); -out: - return ret_val; + return E1000_SUCCESS; } /** - * igb_rar_set - Set receive address register + * e1000_rar_set_generic - Set receive address register * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register @@ -243,17 +376,17 @@ out: * Sets the receive address array register at index to the address passed * in by addr. **/ -void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) +static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; - /* - * HW expects these in little endian so we reverse the byte order + DEBUGFUNC("e1000_rar_set_generic"); + + /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ - rar_low = ((u32) addr[0] | - ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); @@ -261,78 +394,41 @@ void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) if (rar_low || rar_high) rar_high |= E1000_RAH_AV; - /* - * Some bridges will combine consecutive 32-bit writes into + /* Some bridges will combine consecutive 32-bit writes into * a single burst write, which will malfunction on some parts. * The flushes avoid this. */ - wr32(E1000_RAL(index), rar_low); - wrfl(); - wr32(E1000_RAH(index), rar_high); - wrfl(); + E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); + E1000_WRITE_FLUSH(hw); } /** - * igb_mta_set - Set multicast filter table address - * @hw: pointer to the HW structure - * @hash_value: determines the MTA register and bit to set - * - * The multicast table address is a register array of 32-bit registers. - * The hash_value is used to determine what register the bit is in, the - * current value is read, the new bit is OR'd in and the new value is - * written back into the register. - **/ -void igb_mta_set(struct e1000_hw *hw, u32 hash_value) -{ - u32 hash_bit, hash_reg, mta; - - /* - * The MTA is a register array of 32-bit registers. It is - * treated like an array of (32*mta_reg_count) bits. We want to - * set bit BitArray[hash_value]. So we figure out what register - * the bit is in, read it, OR in the new bit, then write - * back the new value. The (hw->mac.mta_reg_count - 1) serves as a - * mask to bits 31:5 of the hash value which gives us the - * register we're modifying. The hash bit within that register - * is determined by the lower 5 bits of the hash value. - */ - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - mta = array_rd32(E1000_MTA, hash_reg); - - mta |= (1 << hash_bit); - - array_wr32(E1000_MTA, hash_reg, mta); - wrfl(); -} - -/** - * igb_hash_mc_addr - Generate a multicast hash value + * e1000_hash_mc_addr_generic - Generate a multicast hash value * @hw: pointer to the HW structure * @mc_addr: pointer to a multicast address * * Generates a multicast address hash value which is used to determine - * the multicast filter table array address and new table value. See - * igb_mta_set() + * the multicast filter table array address and new table value. **/ -static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) { u32 hash_value, hash_mask; u8 bit_shift = 0; + DEBUGFUNC("e1000_hash_mc_addr_generic"); + /* Register count multiplied by bits per register */ hash_mask = (hw->mac.mta_reg_count * 32) - 1; - /* - * For a mc_filter_type of 0, bit_shift is the number of left-shifts + /* For a mc_filter_type of 0, bit_shift is the number of left-shifts * where 0xFF would still fall within the hash mask. */ while (hash_mask >> bit_shift != 0xFF) bit_shift++; - /* - * The portion of the address that is used for the hash table + /* The portion of the address that is used for the hash table * is determined by the mc_filter_type setting. * The algorithm is such that there is a total of 8 bits of shifting. * The bit_shift for a mc_filter_type of 0 represents the number of @@ -350,7 +446,7 @@ static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) * values resulting from each mc_filter_type... * [0] [1] [2] [3] [4] [5] * 01 AA 00 12 34 56 - * LSB MSB + * LSB MSB * * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 @@ -379,7 +475,7 @@ static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) } /** - * igb_update_mc_addr_list - Update Multicast addresses + * e1000_update_mc_addr_list_generic - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program @@ -387,156 +483,376 @@ static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) * Updates entire Multicast Table Array. * The caller must have a packed mc_addr_list of multicast addresses. **/ -void igb_update_mc_addr_list(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count) +void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count) { u32 hash_value, hash_bit, hash_reg; int i; + DEBUGFUNC("e1000_update_mc_addr_list_generic"); + /* clear mta_shadow */ memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); /* update mta_shadow from mc_addr_list */ for (i = 0; (u32) i < mc_addr_count; i++) { - hash_value = igb_hash_mc_addr(hw, mc_addr_list); + hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); hash_bit = hash_value & 0x1F; hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); - mc_addr_list += (ETH_ALEN); + mc_addr_list += (ETH_ADDR_LEN); } /* replace the entire MTA table */ for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) - array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); - wrfl(); + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); + E1000_WRITE_FLUSH(hw); } /** - * igb_clear_hw_cntrs_base - Clear base hardware counters + * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters * @hw: pointer to the HW structure * * Clears the base hardware counters by reading the counter registers. **/ -void igb_clear_hw_cntrs_base(struct e1000_hw *hw) +void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) { - rd32(E1000_CRCERRS); - rd32(E1000_SYMERRS); - rd32(E1000_MPC); - rd32(E1000_SCC); - rd32(E1000_ECOL); - rd32(E1000_MCC); - rd32(E1000_LATECOL); - rd32(E1000_COLC); - rd32(E1000_DC); - rd32(E1000_SEC); - rd32(E1000_RLEC); - rd32(E1000_XONRXC); - rd32(E1000_XONTXC); - rd32(E1000_XOFFRXC); - rd32(E1000_XOFFTXC); - rd32(E1000_FCRUC); - rd32(E1000_GPRC); - rd32(E1000_BPRC); - rd32(E1000_MPRC); - rd32(E1000_GPTC); - rd32(E1000_GORCL); - rd32(E1000_GORCH); - rd32(E1000_GOTCL); - rd32(E1000_GOTCH); - rd32(E1000_RNBC); - rd32(E1000_RUC); - rd32(E1000_RFC); - rd32(E1000_ROC); - rd32(E1000_RJC); - rd32(E1000_TORL); - rd32(E1000_TORH); - rd32(E1000_TOTL); - rd32(E1000_TOTH); - rd32(E1000_TPR); - rd32(E1000_TPT); - rd32(E1000_MPTC); - rd32(E1000_BPTC); + DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); + + E1000_READ_REG(hw, E1000_CRCERRS); + E1000_READ_REG(hw, E1000_SYMERRS); + E1000_READ_REG(hw, E1000_MPC); + E1000_READ_REG(hw, E1000_SCC); + E1000_READ_REG(hw, E1000_ECOL); + E1000_READ_REG(hw, E1000_MCC); + E1000_READ_REG(hw, E1000_LATECOL); + E1000_READ_REG(hw, E1000_COLC); + E1000_READ_REG(hw, E1000_DC); + E1000_READ_REG(hw, E1000_SEC); + E1000_READ_REG(hw, E1000_RLEC); + E1000_READ_REG(hw, E1000_XONRXC); + E1000_READ_REG(hw, E1000_XONTXC); + E1000_READ_REG(hw, E1000_XOFFRXC); + E1000_READ_REG(hw, E1000_XOFFTXC); + E1000_READ_REG(hw, E1000_FCRUC); + E1000_READ_REG(hw, E1000_GPRC); + E1000_READ_REG(hw, E1000_BPRC); + E1000_READ_REG(hw, E1000_MPRC); + E1000_READ_REG(hw, E1000_GPTC); + E1000_READ_REG(hw, E1000_GORCL); + E1000_READ_REG(hw, E1000_GORCH); + E1000_READ_REG(hw, E1000_GOTCL); + E1000_READ_REG(hw, E1000_GOTCH); + E1000_READ_REG(hw, E1000_RNBC); + E1000_READ_REG(hw, E1000_RUC); + E1000_READ_REG(hw, E1000_RFC); + E1000_READ_REG(hw, E1000_ROC); + E1000_READ_REG(hw, E1000_RJC); + E1000_READ_REG(hw, E1000_TORL); + E1000_READ_REG(hw, E1000_TORH); + E1000_READ_REG(hw, E1000_TOTL); + E1000_READ_REG(hw, E1000_TOTH); + E1000_READ_REG(hw, E1000_TPR); + E1000_READ_REG(hw, E1000_TPT); + E1000_READ_REG(hw, E1000_MPTC); + E1000_READ_REG(hw, E1000_BPTC); } /** - * igb_check_for_copper_link - Check for link (Copper) + * e1000_check_for_copper_link_generic - Check for link (Copper) * @hw: pointer to the HW structure * * Checks to see of the link status of the hardware has changed. If a * change in link status has been detected, then we read the PHY registers * to get the current speed/duplex if link exists. **/ -s32 igb_check_for_copper_link(struct e1000_hw *hw) +s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; bool link; - /* - * We only want to go out to the PHY registers to see if Auto-Neg + DEBUGFUNC("e1000_check_for_copper_link"); + + /* We only want to go out to the PHY registers to see if Auto-Neg * has completed and/or if our link status has changed. The * get_link_status flag is set upon receiving a Link Status * Change or Rx Sequence Error interrupt. */ - if (!mac->get_link_status) { - ret_val = 0; - goto out; - } + if (!mac->get_link_status) + return E1000_SUCCESS; - /* - * First we want to see if the MII Status Register reports + /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. */ - ret_val = igb_phy_has_link(hw, 1, 0, &link); + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) - goto out; + return ret_val; if (!link) - goto out; /* No link detected */ + return E1000_SUCCESS; /* No link detected */ mac->get_link_status = false; - /* - * Check if there was DownShift, must be checked + /* Check if there was DownShift, must be checked * immediately after link-up */ - igb_check_downshift(hw); + e1000_check_downshift_generic(hw); - /* - * If we are forcing speed/duplex, then we simply return since + /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ - if (!mac->autoneg) { - ret_val = -E1000_ERR_CONFIG; - goto out; - } + if (!mac->autoneg) + return -E1000_ERR_CONFIG; - /* - * Auto-Neg is enabled. Auto Speed Detection takes care + /* Auto-Neg is enabled. Auto Speed Detection takes care * of MAC speed/duplex configuration. So we only need to * configure Collision Distance in the MAC. */ - igb_config_collision_dist(hw); + mac->ops.config_collision_dist(hw); - /* - * Configure Flow Control now that Auto-Neg has completed. + /* Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control * settings because we may have had to re-autoneg with a * different link partner. */ - ret_val = igb_config_fc_after_link_up(hw); + ret_val = e1000_config_fc_after_link_up_generic(hw); if (ret_val) - hw_dbg("Error configuring flow control\n"); + DEBUGOUT("Error configuring flow control\n"); -out: return ret_val; } /** - * igb_setup_link - Setup flow control and link settings + * e1000_check_for_fiber_link_generic - Check for link (Fiber) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + DEBUGFUNC("e1000_check_for_fiber_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && + !(rxcw & E1000_RXCW_C)) { + if (!mac->autoneg_failed) { + mac->autoneg_failed = true; + return E1000_SUCCESS; + } + DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } + + return E1000_SUCCESS; +} + +/** + * e1000_check_for_serdes_link_generic - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + DEBUGFUNC("e1000_check_for_serdes_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), and our link partner is not trying to + * auto-negotiate with us (we are receiving idles or data), + * we need to force link up. We also need to give auto-negotiation + * time to complete. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { + if (!mac->autoneg_failed) { + mac->autoneg_failed = true; + return E1000_SUCCESS; + } + DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { + /* If we force link for non-auto-negotiation switch, check + * link status based on MAC synchronization for internal + * serdes media type. + */ + /* SYNCH bit and IV bit are sticky. */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = true; + DEBUGOUT("SERDES: Link up - forced.\n"); + } + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - force failed.\n"); + } + } + + if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_LU) { + /* SYNCH bit and IV bit are sticky, so reread rxcw. */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = true; + DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n"); + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n"); + } + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - no sync.\n"); + } + } else { + mac->serdes_has_link = false; + DEBUGOUT("SERDES: Link down - autoneg failed\n"); + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_set_default_fc_generic - Set flow control default values + * @hw: pointer to the HW structure + * + * Read the EEPROM for the default values for flow control and store the + * values. + **/ +static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 nvm_data; + u16 nvm_offset = 0; + + DEBUGFUNC("e1000_set_default_fc_generic"); + + /* Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + if (hw->mac.type == e1000_i350) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func); + ret_val = hw->nvm.ops.read(hw, + NVM_INIT_CONTROL2_REG + + nvm_offset, + 1, &nvm_data); + } else { + ret_val = hw->nvm.ops.read(hw, + NVM_INIT_CONTROL2_REG, + 1, &nvm_data); + } + + + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) + hw->fc.requested_mode = e1000_fc_none; + else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == + NVM_WORD0F_ASM_DIR) + hw->fc.requested_mode = e1000_fc_tx_pause; + else + hw->fc.requested_mode = e1000_fc_full; + + return E1000_SUCCESS; +} + +/** + * e1000_setup_link_generic - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow @@ -545,105 +861,268 @@ out: * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/ -s32 igb_setup_link(struct e1000_hw *hw) +s32 e1000_setup_link_generic(struct e1000_hw *hw) { - s32 ret_val = 0; + s32 ret_val; + + DEBUGFUNC("e1000_setup_link_generic"); - /* - * In the case of the phy reset being blocked, we already have a link. + /* In the case of the phy reset being blocked, we already have a link. * We do not need to set it up again. */ - if (igb_check_reset_block(hw)) - goto out; + if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) + return E1000_SUCCESS; - /* - * If requested flow control is set to default, set flow control + /* If requested flow control is set to default, set flow control * based on the EEPROM flow control settings. */ if (hw->fc.requested_mode == e1000_fc_default) { - ret_val = igb_set_default_fc(hw); + ret_val = e1000_set_default_fc_generic(hw); if (ret_val) - goto out; + return ret_val; } - /* - * We want to save off the original Flow Control configuration just - * in case we get disconnected and then reconnected into a different - * hub or switch with different Flow Control capabilities. + /* Save off the requested flow control mode for use later. Depending + * on the link partner's capabilities, we may or may not use this mode. */ hw->fc.current_mode = hw->fc.requested_mode; - hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", + hw->fc.current_mode); /* Call the necessary media_type subroutine to configure the link. */ ret_val = hw->mac.ops.setup_physical_interface(hw); if (ret_val) - goto out; + return ret_val; - /* - * Initialize the flow control address, type, and PAUSE timer + /* Initialize the flow control address, type, and PAUSE timer * registers to their default values. This is done even if flow * control is disabled, because it does not hurt anything to * initialize these registers. */ - hw_dbg("Initializing the Flow Control address, type and timer regs\n"); - wr32(E1000_FCT, FLOW_CONTROL_TYPE); - wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); - wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); + DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); + E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); + + E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); + + return e1000_set_fc_watermarks_generic(hw); +} + +/** + * e1000_commit_fc_settings_generic - Configure flow control + * @hw: pointer to the HW structure + * + * Write the flow control settings to the Transmit Config Word Register (TXCW) + * base on the flow control settings in e1000_mac_info. + **/ +static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 txcw; - wr32(E1000_FCTTV, hw->fc.pause_time); + DEBUGFUNC("e1000_commit_fc_settings_generic"); - ret_val = igb_set_fc_watermarks(hw); + /* Check for a software override of the flow control settings, and + * setup the device accordingly. If auto-negotiation is enabled, then + * software will have to set the "PAUSE" bits to the correct value in + * the Transmit Config Word Register (TXCW) and re-start auto- + * negotiation. However, if auto-negotiation is disabled, then + * software will have to manually configure the two flow control enable + * bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we + * do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + */ + switch (hw->fc.current_mode) { + case e1000_fc_none: + /* Flow control completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case e1000_fc_rx_pause: + /* Rx Flow control is enabled and Tx Flow control is disabled + * by a software over-ride. Since there really isn't a way to + * advertise that we are capable of Rx Pause ONLY, we will + * advertise that we support both symmetric and asymmetric Rx + * PAUSE. Later, we will disable the adapter's ability to send + * PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case e1000_fc_tx_pause: + /* Tx Flow control is enabled, and Rx Flow control is disabled, + * by a software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case e1000_fc_full: + /* Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + + E1000_WRITE_REG(hw, E1000_TXCW, txcw); + mac->txcw = txcw; + + return E1000_SUCCESS; +} + +/** + * e1000_poll_fiber_serdes_link_generic - Poll for link up + * @hw: pointer to the HW structure + * + * Polls for link up by reading the status register, if link fails to come + * up with auto-negotiation, then the link is forced if a signal is detected. + **/ +static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 i, status; + s32 ret_val; + + DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); + + /* If we have a signal (the cable is plugged in, or assumed true for + * serdes media) then poll for a "Link-Up" indication in the Device + * Status Register. Time-out if a link isn't seen in 500 milliseconds + * seconds (Auto-negotiation should complete in less than 500 + * milliseconds even if the other end is doing it in SW). + */ + for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { + msec_delay(10); + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == FIBER_LINK_UP_LIMIT) { + DEBUGOUT("Never got a valid link from auto-neg!!!\n"); + mac->autoneg_failed = true; + /* AutoNeg failed to achieve a link, so we'll call + * mac->check_for_link. This routine will force the + * link up if we detect a signal. This will allow us to + * communicate with non-autonegotiating link partners. + */ + ret_val = mac->ops.check_for_link(hw); + if (ret_val) { + DEBUGOUT("Error while checking for link\n"); + return ret_val; + } + mac->autoneg_failed = false; + } else { + mac->autoneg_failed = false; + DEBUGOUT("Valid Link Found\n"); + } + + return E1000_SUCCESS; +} + +/** + * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes + * links. Upon successful setup, poll for link. + **/ +s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; -out: + DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + hw->mac.ops.config_collision_dist(hw); + + ret_val = e1000_commit_fc_settings_generic(hw); + if (ret_val) + return ret_val; + + /* Since auto-negotiation is enabled, take the link out of reset (the + * link will be in reset, because we previously reset the chip). This + * will restart auto-negotiation. If auto-negotiation is successful + * then the link-up status bit will be set and the flow control enable + * bits (RFCE and TFCE) will be set according to their negotiated value. + */ + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + + /* For these adapters, the SW definable pin 1 is set when the optics + * detect a signal. If we have a signal, then poll for a "Link-Up" + * indication. + */ + if (hw->phy.media_type == e1000_media_type_internal_serdes || + (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { + ret_val = e1000_poll_fiber_serdes_link_generic(hw); + } else { + DEBUGOUT("No signal detected\n"); + } return ret_val; } /** - * igb_config_collision_dist - Configure collision distance + * e1000_config_collision_dist_generic - Configure collision distance * @hw: pointer to the HW structure * * Configures the collision distance to the default value and is used - * during link setup. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. + * during link setup. **/ -void igb_config_collision_dist(struct e1000_hw *hw) +static void e1000_config_collision_dist_generic(struct e1000_hw *hw) { u32 tctl; - tctl = rd32(E1000_TCTL); + DEBUGFUNC("e1000_config_collision_dist_generic"); + + tctl = E1000_READ_REG(hw, E1000_TCTL); tctl &= ~E1000_TCTL_COLD; tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; - wr32(E1000_TCTL, tctl); - wrfl(); + E1000_WRITE_REG(hw, E1000_TCTL, tctl); + E1000_WRITE_FLUSH(hw); } /** - * igb_set_fc_watermarks - Set flow control high/low watermarks + * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks * @hw: pointer to the HW structure * * Sets the flow control high/low threshold (watermark) registers. If * flow control XON frame transmission is enabled, then set XON frame - * tansmission as well. + * transmission as well. **/ -static s32 igb_set_fc_watermarks(struct e1000_hw *hw) +s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw) { - s32 ret_val = 0; u32 fcrtl = 0, fcrth = 0; - /* - * Set the flow control receive threshold registers. Normally, + DEBUGFUNC("e1000_set_fc_watermarks_generic"); + + /* Set the flow control receive threshold registers. Normally, * these registers will be set to a default threshold that may be * adjusted later by the driver's runtime code. However, if the * ability to transmit pause frames is not enabled, then these * registers will be set to 0. */ if (hw->fc.current_mode & e1000_fc_tx_pause) { - /* - * We need to set up the Receive Threshold high and low water + /* We need to set up the Receive Threshold high and low water * marks as well as (optionally) enabling the transmission of * XON frames. */ @@ -653,54 +1132,14 @@ static s32 igb_set_fc_watermarks(struct e1000_hw *hw) fcrth = hw->fc.high_water; } - wr32(E1000_FCRTL, fcrtl); - wr32(E1000_FCRTH, fcrth); + E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); + E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); - return ret_val; + return E1000_SUCCESS; } /** - * igb_set_default_fc - Set flow control default values - * @hw: pointer to the HW structure - * - * Read the EEPROM for the default values for flow control and store the - * values. - **/ -static s32 igb_set_default_fc(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u16 nvm_data; - - /* - * Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); - - if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; - } - - if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) - hw->fc.requested_mode = e1000_fc_none; - else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == - NVM_WORD0F_ASM_DIR) - hw->fc.requested_mode = e1000_fc_tx_pause; - else - hw->fc.requested_mode = e1000_fc_full; - -out: - return ret_val; -} - -/** - * igb_force_mac_fc - Force the MAC's flow control settings + * e1000_force_mac_fc_generic - Force the MAC's flow control settings * @hw: pointer to the HW structure * * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the @@ -709,15 +1148,15 @@ out: * autonegotiation is managed by the PHY rather than the MAC. Software must * also configure these bits when link is forced on a fiber connection. **/ -s32 igb_force_mac_fc(struct e1000_hw *hw) +s32 e1000_force_mac_fc_generic(struct e1000_hw *hw) { u32 ctrl; - s32 ret_val = 0; - ctrl = rd32(E1000_CTRL); + DEBUGFUNC("e1000_force_mac_fc_generic"); - /* - * Because we didn't get link via the internal auto-negotiation + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Because we didn't get link via the internal auto-negotiation * mechanism (we either forced link or we got link via PHY * auto-neg), we have to manually enable/disable transmit an * receive flow control. @@ -731,10 +1170,10 @@ s32 igb_force_mac_fc(struct e1000_hw *hw) * frames but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * frames but we do not receive pause frames). - * 3: Both Rx and TX flow control (symmetric) is enabled. + * 3: Both Rx and Tx flow control (symmetric) is enabled. * other: No other values should be possible at this point. */ - hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); + DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); switch (hw->fc.current_mode) { case e1000_fc_none: @@ -752,19 +1191,17 @@ s32 igb_force_mac_fc(struct e1000_hw *hw) ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); break; default: - hw_dbg("Flow control param set incorrectly\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; } - wr32(E1000_CTRL, ctrl); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); -out: - return ret_val; + return E1000_SUCCESS; } /** - * igb_config_fc_after_link_up - Configures flow control after link + * e1000_config_fc_after_link_up_generic - Configures flow control after link * @hw: pointer to the HW structure * * Checks the status of auto-negotiation after link up to ensure that the @@ -773,76 +1210,72 @@ out: * and did not fail, then we configure flow control based on our link * partner. **/ -s32 igb_config_fc_after_link_up(struct e1000_hw *hw) +s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; + u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; u16 speed, duplex; - /* - * Check for the case where we have fiber media and auto-neg failed + DEBUGFUNC("e1000_config_fc_after_link_up_generic"); + + /* Check for the case where we have fiber media and auto-neg failed * so we had to force link. In this case, we need to force the * configuration of the MAC to match the "fc" parameter. */ if (mac->autoneg_failed) { - if (hw->phy.media_type == e1000_media_type_internal_serdes) - ret_val = igb_force_mac_fc(hw); + if (hw->phy.media_type == e1000_media_type_fiber || + hw->phy.media_type == e1000_media_type_internal_serdes) + ret_val = e1000_force_mac_fc_generic(hw); } else { if (hw->phy.media_type == e1000_media_type_copper) - ret_val = igb_force_mac_fc(hw); + ret_val = e1000_force_mac_fc_generic(hw); } if (ret_val) { - hw_dbg("Error forcing flow control settings\n"); - goto out; + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; } - /* - * Check for the case where we have copper media and auto-neg is + /* Check for the case where we have copper media and auto-neg is * enabled. In this case, we need to check and see if Auto-Neg * has completed, and if so, how the PHY and link partner has * flow control configured. */ if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { - /* - * Read the MII Status Register and check to see if AutoNeg + /* Read the MII Status Register and check to see if AutoNeg * has completed. We read this twice because this reg has * some "sticky" (latched) bits. */ - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, - &mii_status_reg); + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) - goto out; - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, - &mii_status_reg); + return ret_val; + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) - goto out; + return ret_val; if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { - hw_dbg("Copper PHY and Auto Neg " - "has not completed.\n"); - goto out; + DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); + return ret_val; } - /* - * The AutoNeg process has completed, so we now need to + /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement * Register (Address 4) and the Auto_Negotiation Base * Page Ability Register (Address 5) to determine how * flow control was negotiated. */ ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg); + &mii_nway_adv_reg); if (ret_val) - goto out; + return ret_val; ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg); + &mii_nway_lp_ability_reg); if (ret_val) - goto out; + return ret_val; - /* - * Two bits in the Auto Negotiation Advertisement Register + /* Two bits in the Auto Negotiation Advertisement Register * (Address 4) and two bits in the Auto Negotiation Base * Page Ability Register (Address 5) determine flow control * for both the PHY and the link partner. The following @@ -877,24 +1310,21 @@ s32 igb_config_fc_after_link_up(struct e1000_hw *hw) */ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* - * Now we need to check if the user selected RX ONLY + /* Now we need to check if the user selected Rx ONLY * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise RX + * FULL flow control because we could not advertise Rx * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. + * turn OFF the TRANSMISSION of PAUSE frames. */ if (hw->fc.requested_mode == e1000_fc_full) { hw->fc.current_mode = e1000_fc_full; - hw_dbg("Flow Control = FULL.\r\n"); + DEBUGOUT("Flow Control = FULL.\n"); } else { hw->fc.current_mode = e1000_fc_rx_pause; - hw_dbg("Flow Control = " - "RX PAUSE frames only.\r\n"); + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); } } - /* - * For receiving PAUSE frames ONLY. + /* For receiving PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result @@ -906,10 +1336,9 @@ s32 igb_config_fc_after_link_up(struct e1000_hw *hw) (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc.current_mode = e1000_fc_tx_pause; - hw_dbg("Flow Control = TX PAUSE frames only.\r\n"); + DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); } - /* - * For transmitting PAUSE frames ONLY. + /* For transmitting PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result @@ -921,70 +1350,167 @@ s32 igb_config_fc_after_link_up(struct e1000_hw *hw) !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc.current_mode = e1000_fc_rx_pause; - hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); - } - /* - * Per the IEEE spec, at this point flow control should be - * disabled. However, we want to consider that we could - * be connected to a legacy switch that doesn't advertise - * desired flow control, but can be forced on the link - * partner. So if we advertised no flow control, that is - * what we will resolve to. If we advertised some kind of - * receive capability (Rx Pause Only or Full Flow Control) - * and the link partner advertised none, we will configure - * ourselves to enable Rx Flow Control only. We can do - * this safely for two reasons: If the link partner really - * didn't want flow control enabled, and we enable Rx, no - * harm done since we won't be receiving any PAUSE frames - * anyway. If the intent on the link partner was to have - * flow control enabled, then by us enabling RX only, we - * can at least receive pause frames and process them. - * This is a good idea because in most cases, since we are - * predominantly a server NIC, more times than not we will - * be asked to delay transmission of packets than asking - * our link partner to pause transmission of frames. - */ - else if ((hw->fc.requested_mode == e1000_fc_none || - hw->fc.requested_mode == e1000_fc_tx_pause) || - hw->fc.strict_ieee) { - hw->fc.current_mode = e1000_fc_none; - hw_dbg("Flow Control = NONE.\r\n"); + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); } else { - hw->fc.current_mode = e1000_fc_rx_pause; - hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); + /* Per the IEEE spec, at this point flow control + * should be disabled. + */ + hw->fc.current_mode = e1000_fc_none; + DEBUGOUT("Flow Control = NONE.\n"); } - /* - * Now we need to do one last check... If we auto- + /* Now we need to do one last check... If we auto- * negotiated to HALF DUPLEX, flow control should not be * enabled per IEEE 802.3 spec. */ - ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); + ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); if (ret_val) { - hw_dbg("Error getting link speed and duplex\n"); - goto out; + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; } if (duplex == HALF_DUPLEX) hw->fc.current_mode = e1000_fc_none; - /* - * Now we call a subroutine to actually force the MAC + /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ - ret_val = igb_force_mac_fc(hw); + ret_val = e1000_force_mac_fc_generic(hw); if (ret_val) { - hw_dbg("Error forcing flow control settings\n"); - goto out; + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; } } -out: - return ret_val; + /* Check for the case where we have SerDes media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->phy.media_type == e1000_media_type_internal_serdes) && + mac->autoneg) { + /* Read the PCS_LSTS and check to see if AutoNeg + * has completed. + */ + pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT); + + if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { + DEBUGOUT("PCS Auto Neg has not completed.\n"); + return ret_val; + } + + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (PCS_ANADV) and the Auto_Negotiation Base + * Page Ability Register (PCS_LPAB) to determine how + * flow control was negotiated. + */ + pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); + pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB); + + /* Two bits in the Auto Negotiation Advertisement Register + * (PCS_ANADV) and two bits in the Auto Negotiation Base + * Page Ability Register (PCS_LPAB) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | e1000_fc_full + * + */ + if ((pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { + /* Now we need to check if the user selected Rx ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise Rx + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->fc.requested_mode == e1000_fc_full) { + hw->fc.current_mode = e1000_fc_full; + DEBUGOUT("Flow Control = FULL.\n"); + } else { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + */ + else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_adv_reg & E1000_TXCW_ASM_DIR) && + (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_tx_pause; + DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + */ + else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_adv_reg & E1000_TXCW_ASM_DIR) && + !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); + } else { + /* Per the IEEE spec, at this point flow control + * should be disabled. + */ + hw->fc.current_mode = e1000_fc_none; + DEBUGOUT("Flow Control = NONE.\n"); + } + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL); + pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; + E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg); + + ret_val = e1000_force_mac_fc_generic(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } + + return E1000_SUCCESS; } /** - * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex + * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex @@ -992,172 +1518,185 @@ out: * Read the status register for the current speed/duplex and store the current * speed and duplex for copper connections. **/ -s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, - u16 *duplex) +s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, + u16 *duplex) { u32 status; - status = rd32(E1000_STATUS); + DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); + + status = E1000_READ_REG(hw, E1000_STATUS); if (status & E1000_STATUS_SPEED_1000) { *speed = SPEED_1000; - hw_dbg("1000 Mbs, "); + DEBUGOUT("1000 Mbs, "); } else if (status & E1000_STATUS_SPEED_100) { *speed = SPEED_100; - hw_dbg("100 Mbs, "); + DEBUGOUT("100 Mbs, "); } else { *speed = SPEED_10; - hw_dbg("10 Mbs, "); + DEBUGOUT("10 Mbs, "); } if (status & E1000_STATUS_FD) { *duplex = FULL_DUPLEX; - hw_dbg("Full Duplex\n"); + DEBUGOUT("Full Duplex\n"); } else { *duplex = HALF_DUPLEX; - hw_dbg("Half Duplex\n"); + DEBUGOUT("Half Duplex\n"); } - return 0; + return E1000_SUCCESS; } /** - * igb_get_hw_semaphore - Acquire hardware semaphore + * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Sets the speed and duplex to gigabit full duplex (the only possible option) + * for fiber/serdes links. + **/ +s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw, + u16 *speed, u16 *duplex) +{ + DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); + + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + + return E1000_SUCCESS; +} + +/** + * e1000_get_hw_semaphore_generic - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore to access the PHY or NVM **/ -s32 igb_get_hw_semaphore(struct e1000_hw *hw) +s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw) { u32 swsm; - s32 ret_val = 0; s32 timeout = hw->nvm.word_size + 1; s32 i = 0; + DEBUGFUNC("e1000_get_hw_semaphore_generic"); + /* Get the SW semaphore */ while (i < timeout) { - swsm = rd32(E1000_SWSM); + swsm = E1000_READ_REG(hw, E1000_SWSM); if (!(swsm & E1000_SWSM_SMBI)) break; - udelay(50); + usec_delay(50); i++; } if (i == timeout) { - hw_dbg("Driver can't access device - SMBI bit is set.\n"); - ret_val = -E1000_ERR_NVM; - goto out; + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_NVM; } /* Get the FW semaphore. */ for (i = 0; i < timeout; i++) { - swsm = rd32(E1000_SWSM); - wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); /* Semaphore acquired if bit latched */ - if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) + if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) break; - udelay(50); + usec_delay(50); } if (i == timeout) { /* Release semaphores */ - igb_put_hw_semaphore(hw); - hw_dbg("Driver can't access the NVM\n"); - ret_val = -E1000_ERR_NVM; - goto out; + e1000_put_hw_semaphore_generic(hw); + DEBUGOUT("Driver can't access the NVM\n"); + return -E1000_ERR_NVM; } -out: - return ret_val; + return E1000_SUCCESS; } /** - * igb_put_hw_semaphore - Release hardware semaphore + * e1000_put_hw_semaphore_generic - Release hardware semaphore * @hw: pointer to the HW structure * * Release hardware semaphore used to access the PHY or NVM **/ -void igb_put_hw_semaphore(struct e1000_hw *hw) +void e1000_put_hw_semaphore_generic(struct e1000_hw *hw) { u32 swsm; - swsm = rd32(E1000_SWSM); + DEBUGFUNC("e1000_put_hw_semaphore_generic"); + + swsm = E1000_READ_REG(hw, E1000_SWSM); swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - wr32(E1000_SWSM, swsm); + E1000_WRITE_REG(hw, E1000_SWSM, swsm); } /** - * igb_get_auto_rd_done - Check for auto read completion + * e1000_get_auto_rd_done_generic - Check for auto read completion * @hw: pointer to the HW structure * * Check EEPROM for Auto Read done bit. **/ -s32 igb_get_auto_rd_done(struct e1000_hw *hw) +s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw) { s32 i = 0; - s32 ret_val = 0; + DEBUGFUNC("e1000_get_auto_rd_done_generic"); while (i < AUTO_READ_DONE_TIMEOUT) { - if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) + if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) break; - msleep(1); + msec_delay(1); i++; } if (i == AUTO_READ_DONE_TIMEOUT) { - hw_dbg("Auto read by HW from NVM has not completed.\n"); - ret_val = -E1000_ERR_RESET; - goto out; + DEBUGOUT("Auto read by HW from NVM has not completed.\n"); + return -E1000_ERR_RESET; } -out: - return ret_val; + return E1000_SUCCESS; } /** - * igb_valid_led_default - Verify a valid default LED config + * e1000_valid_led_default_generic - Verify a valid default LED config * @hw: pointer to the HW structure * @data: pointer to the NVM (EEPROM) * * Read the EEPROM for the current default LED configuration. If the * LED configuration is not valid, set to a valid LED configuration. **/ -static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) +s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) { s32 ret_val; + DEBUGFUNC("e1000_valid_led_default_generic"); + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; + DEBUGOUT("NVM Read Error\n"); + return ret_val; } - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { - switch(hw->phy.media_type) { - case e1000_media_type_internal_serdes: - *data = ID_LED_DEFAULT_82575_SERDES; - break; - case e1000_media_type_copper: - default: - *data = ID_LED_DEFAULT; - break; - } - } -out: - return ret_val; + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; + + return E1000_SUCCESS; } /** - * igb_id_led_init - + * e1000_id_led_init_generic - * @hw: pointer to the HW structure * **/ -s32 igb_id_led_init(struct e1000_hw *hw) +s32 e1000_id_led_init_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; @@ -1167,11 +1706,13 @@ s32 igb_id_led_init(struct e1000_hw *hw) u16 data, i, temp; const u16 led_mask = 0x0F; - ret_val = igb_valid_led_default(hw, &data); + DEBUGFUNC("e1000_id_led_init_generic"); + + ret_val = hw->nvm.ops.valid_led_default(hw, &data); if (ret_val) - goto out; + return ret_val; - mac->ledctl_default = rd32(E1000_LEDCTL); + mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); mac->ledctl_mode1 = mac->ledctl_default; mac->ledctl_mode2 = mac->ledctl_default; @@ -1213,135 +1754,324 @@ s32 igb_id_led_init(struct e1000_hw *hw) } } -out: - return ret_val; + return E1000_SUCCESS; +} + +/** + * e1000_setup_led_generic - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. + **/ +s32 e1000_setup_led_generic(struct e1000_hw *hw) +{ + u32 ledctl; + + DEBUGFUNC("e1000_setup_led_generic"); + + if (hw->mac.ops.setup_led != e1000_setup_led_generic) + return -E1000_ERR_CONFIG; + + if (hw->phy.media_type == e1000_media_type_fiber) { + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + hw->mac.ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << + E1000_LEDCTL_LED0_MODE_SHIFT); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + } else if (hw->phy.media_type == e1000_media_type_copper) { + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + } + + return E1000_SUCCESS; } /** - * igb_cleanup_led - Set LED config to default operation + * e1000_cleanup_led_generic - Set LED config to default operation * @hw: pointer to the HW structure * * Remove the current LED configuration and set the LED configuration * to the default value, saved from the EEPROM. **/ -s32 igb_cleanup_led(struct e1000_hw *hw) +s32 e1000_cleanup_led_generic(struct e1000_hw *hw) { - wr32(E1000_LEDCTL, hw->mac.ledctl_default); - return 0; + DEBUGFUNC("e1000_cleanup_led_generic"); + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); + return E1000_SUCCESS; } /** - * igb_blink_led - Blink LED + * e1000_blink_led_generic - Blink LED * @hw: pointer to the HW structure * - * Blink the led's which are set to be on. + * Blink the LEDs which are set to be on. **/ -s32 igb_blink_led(struct e1000_hw *hw) +s32 e1000_blink_led_generic(struct e1000_hw *hw) { u32 ledctl_blink = 0; u32 i; - /* - * set the blink bit for each LED that's "on" (0x0E) - * in ledctl_mode2 - */ - ledctl_blink = hw->mac.ledctl_mode2; - for (i = 0; i < 4; i++) - if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == - E1000_LEDCTL_MODE_LED_ON) - ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << - (i * 8)); + DEBUGFUNC("e1000_blink_led_generic"); - wr32(E1000_LEDCTL, ledctl_blink); + if (hw->phy.media_type == e1000_media_type_fiber) { + /* always blink LED0 for PCI-E fiber */ + ledctl_blink = E1000_LEDCTL_LED0_BLINK | + (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); + } else { + /* Set the blink bit for each LED that's "on" (0x0E) + * (or "off" if inverted) in ledctl_mode2. The blink + * logic in hardware only works when mode is set to "on" + * so it must be changed accordingly when the mode is + * "off" and inverted. + */ + ledctl_blink = hw->mac.ledctl_mode2; + for (i = 0; i < 32; i += 8) { + u32 mode = (hw->mac.ledctl_mode2 >> i) & + E1000_LEDCTL_LED0_MODE_MASK; + u32 led_default = hw->mac.ledctl_default >> i; + + if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && + (mode == E1000_LEDCTL_MODE_LED_ON)) || + ((led_default & E1000_LEDCTL_LED0_IVRT) && + (mode == E1000_LEDCTL_MODE_LED_OFF))) { + ledctl_blink &= + ~(E1000_LEDCTL_LED0_MODE_MASK << i); + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_MODE_LED_ON) << i; + } + } + } - return 0; + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); + + return E1000_SUCCESS; } /** - * igb_led_off - Turn LED off + * e1000_led_on_generic - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +s32 e1000_led_on_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + DEBUGFUNC("e1000_led_on_generic"); + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + break; + case e1000_media_type_copper: + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_led_off_generic - Turn LED off * @hw: pointer to the HW structure * * Turn LED off. **/ -s32 igb_led_off(struct e1000_hw *hw) +s32 e1000_led_off_generic(struct e1000_hw *hw) { + u32 ctrl; + + DEBUGFUNC("e1000_led_off_generic"); + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + break; case e1000_media_type_copper: - wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); break; default: break; } - return 0; + return E1000_SUCCESS; +} + +/** + * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities + * @hw: pointer to the HW structure + * @no_snoop: bitmap of snoop events + * + * Set the PCI-express register to snoop for events enabled in 'no_snoop'. + **/ +void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) +{ + u32 gcr; + + DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); + + if (no_snoop) { + gcr = E1000_READ_REG(hw, E1000_GCR); + gcr &= ~(PCIE_NO_SNOOP_ALL); + gcr |= no_snoop; + E1000_WRITE_REG(hw, E1000_GCR, gcr); + } } /** - * igb_disable_pcie_master - Disables PCI-express master access + * e1000_disable_pcie_master_generic - Disables PCI-express master access * @hw: pointer to the HW structure * - * Returns 0 (0) if successful, else returns -10 - * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued + * Returns E1000_SUCCESS if successful, else returns -10 + * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused * the master requests to be disabled. * * Disables PCI-Express master access and verifies there are no pending * requests. **/ -s32 igb_disable_pcie_master(struct e1000_hw *hw) +s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw) { u32 ctrl; s32 timeout = MASTER_DISABLE_TIMEOUT; - s32 ret_val = 0; - if (hw->bus.type != e1000_bus_type_pci_express) - goto out; + DEBUGFUNC("e1000_disable_pcie_master_generic"); - ctrl = rd32(E1000_CTRL); + ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; - wr32(E1000_CTRL, ctrl); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); while (timeout) { - if (!(rd32(E1000_STATUS) & + if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) break; - udelay(100); + usec_delay(100); timeout--; } if (!timeout) { - hw_dbg("Master requests are pending.\n"); - ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; - goto out; + DEBUGOUT("Master requests are pending.\n"); + return -E1000_ERR_MASTER_REQUESTS_PENDING; } -out: - return ret_val; + return E1000_SUCCESS; +} + +/** + * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Reset the Adaptive Interframe Spacing throttle to default values. + **/ +void e1000_reset_adaptive_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_reset_adaptive_generic"); + + if (!mac->adaptive_ifs) { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + return; + } + + mac->current_ifs_val = 0; + mac->ifs_min_val = IFS_MIN; + mac->ifs_max_val = IFS_MAX; + mac->ifs_step_size = IFS_STEP; + mac->ifs_ratio = IFS_RATIO; + + mac->in_ifs_mode = false; + E1000_WRITE_REG(hw, E1000_AIT, 0); } /** - * igb_validate_mdi_setting - Verify MDI/MDIx settings + * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing * @hw: pointer to the HW structure * - * Verify that when not using auto-negotitation that MDI/MDIx is correctly + * Update the Adaptive Interframe Spacing Throttle value based on the + * time between transmitted packets and time between collisions. + **/ +void e1000_update_adaptive_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_update_adaptive_generic"); + + if (!mac->adaptive_ifs) { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + return; + } + + if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { + if (mac->tx_packet_delta > MIN_NUM_XMITS) { + mac->in_ifs_mode = true; + if (mac->current_ifs_val < mac->ifs_max_val) { + if (!mac->current_ifs_val) + mac->current_ifs_val = mac->ifs_min_val; + else + mac->current_ifs_val += + mac->ifs_step_size; + E1000_WRITE_REG(hw, E1000_AIT, + mac->current_ifs_val); + } + } + } else { + if (mac->in_ifs_mode && + (mac->tx_packet_delta <= MIN_NUM_XMITS)) { + mac->current_ifs_val = 0; + mac->in_ifs_mode = false; + E1000_WRITE_REG(hw, E1000_AIT, 0); + } + } +} + +/** + * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings + * @hw: pointer to the HW structure + * + * Verify that when not using auto-negotiation that MDI/MDIx is correctly * set, which is forced to MDI mode only. **/ -s32 igb_validate_mdi_setting(struct e1000_hw *hw) +static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw) { - s32 ret_val = 0; + DEBUGFUNC("e1000_validate_mdi_setting_generic"); if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { - hw_dbg("Invalid MDI setting detected\n"); + DEBUGOUT("Invalid MDI setting detected\n"); hw->phy.mdix = 1; - ret_val = -E1000_ERR_CONFIG; - goto out; + return -E1000_ERR_CONFIG; } -out: - return ret_val; + return E1000_SUCCESS; } /** - * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register + * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings + * @hw: pointer to the HW structure + * + * Validate the MDI/MDIx setting, allowing for auto-crossover during forced + * operation. + **/ +s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic"); + + return E1000_SUCCESS; +} + +/** + * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register * @hw: pointer to the HW structure * @reg: 32bit register offset such as E1000_SCTL * @offset: register offset to write to @@ -1351,72 +2081,28 @@ out: * and they all have the format address << 8 | data and bit 31 is polled for * completion. **/ -s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, - u32 offset, u8 data) +s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, + u32 offset, u8 data) { u32 i, regvalue = 0; - s32 ret_val = 0; + + DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic"); /* Set up the address and data */ regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); - wr32(reg, regvalue); + E1000_WRITE_REG(hw, reg, regvalue); /* Poll the ready bit to see if the MDI read completed */ for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { - udelay(5); - regvalue = rd32(reg); + usec_delay(5); + regvalue = E1000_READ_REG(hw, reg); if (regvalue & E1000_GEN_CTL_READY) break; } if (!(regvalue & E1000_GEN_CTL_READY)) { - hw_dbg("Reg %08x did not indicate ready\n", reg); - ret_val = -E1000_ERR_PHY; - goto out; + DEBUGOUT1("Reg %08x did not indicate ready\n", reg); + return -E1000_ERR_PHY; } -out: - return ret_val; -} - -/** - * igb_enable_mng_pass_thru - Enable processing of ARP's - * @hw: pointer to the HW structure - * - * Verifies the hardware needs to leave interface enabled so that frames can - * be directed to and from the management interface. - **/ -bool igb_enable_mng_pass_thru(struct e1000_hw *hw) -{ - u32 manc; - u32 fwsm, factps; - bool ret_val = false; - - if (!hw->mac.asf_firmware_present) - goto out; - - manc = rd32(E1000_MANC); - - if (!(manc & E1000_MANC_RCV_TCO_EN)) - goto out; - - if (hw->mac.arc_subsystem_valid) { - fwsm = rd32(E1000_FWSM); - factps = rd32(E1000_FACTPS); - - if (!(factps & E1000_FACTPS_MNGCG) && - ((fwsm & E1000_FWSM_MODE_MASK) == - (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { - ret_val = true; - goto out; - } - } else { - if ((manc & E1000_MANC_SMBUS_EN) && - !(manc & E1000_MANC_ASF_EN)) { - ret_val = true; - goto out; - } - } - -out: - return ret_val; + return E1000_SUCCESS; } diff --git a/drivers/net/igb/e1000_mac.h b/drivers/net/igb/e1000_mac.h index 4927f61fbbc8..6a1b0f52f4a7 100644 --- a/drivers/net/igb/e1000_mac.h +++ b/drivers/net/igb/e1000_mac.h @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2011 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -28,63 +28,53 @@ #ifndef _E1000_MAC_H_ #define _E1000_MAC_H_ -#include "e1000_hw.h" - -#include "e1000_phy.h" -#include "e1000_nvm.h" -#include "e1000_defines.h" - -/* - * Functions that should not be called directly from drivers but can be used - * by other files in this 'shared code' - */ -s32 igb_blink_led(struct e1000_hw *hw); -s32 igb_check_for_copper_link(struct e1000_hw *hw); -s32 igb_cleanup_led(struct e1000_hw *hw); -s32 igb_config_fc_after_link_up(struct e1000_hw *hw); -s32 igb_disable_pcie_master(struct e1000_hw *hw); -s32 igb_force_mac_fc(struct e1000_hw *hw); -s32 igb_get_auto_rd_done(struct e1000_hw *hw); -s32 igb_get_bus_info_pcie(struct e1000_hw *hw); -s32 igb_get_hw_semaphore(struct e1000_hw *hw); -s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -s32 igb_id_led_init(struct e1000_hw *hw); -s32 igb_led_off(struct e1000_hw *hw); -void igb_update_mc_addr_list(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count); -s32 igb_setup_link(struct e1000_hw *hw); -s32 igb_validate_mdi_setting(struct e1000_hw *hw); -s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, - u32 offset, u8 data); - -void igb_clear_hw_cntrs_base(struct e1000_hw *hw); -void igb_clear_vfta(struct e1000_hw *hw); -s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add); -void igb_config_collision_dist(struct e1000_hw *hw); -void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count); -void igb_mta_set(struct e1000_hw *hw, u32 hash_value); -void igb_put_hw_semaphore(struct e1000_hw *hw); -void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); -s32 igb_check_alt_mac_addr(struct e1000_hw *hw); - -bool igb_enable_mng_pass_thru(struct e1000_hw *hw); - -enum e1000_mng_mode { - e1000_mng_mode_none = 0, - e1000_mng_mode_asf, - e1000_mng_mode_pt, - e1000_mng_mode_ipmi, - e1000_mng_mode_host_if_only -}; - -#define E1000_FACTPS_MNGCG 0x20000000 - -#define E1000_FWSM_MODE_MASK 0xE -#define E1000_FWSM_MODE_SHIFT 1 - -#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 - -extern void e1000_init_function_pointers_82575(struct e1000_hw *hw); +void e1000_init_mac_ops_generic(struct e1000_hw *hw); +void e1000_null_mac_generic(struct e1000_hw *hw); +s32 e1000_null_ops_generic(struct e1000_hw *hw); +s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d); +bool e1000_null_mng_mode(struct e1000_hw *hw); +void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a); +void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b); +void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a); +s32 e1000_blink_led_generic(struct e1000_hw *hw); +s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw); +s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw); +s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw); +s32 e1000_cleanup_led_generic(struct e1000_hw *hw); +s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw); +s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw); +s32 e1000_force_mac_fc_generic(struct e1000_hw *hw); +s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw); +s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw); +void e1000_set_lan_id_single_port(struct e1000_hw *hw); +s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw); +s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +s32 e1000_id_led_init_generic(struct e1000_hw *hw); +s32 e1000_led_on_generic(struct e1000_hw *hw); +s32 e1000_led_off_generic(struct e1000_hw *hw); +void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count); +s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw); +s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw); +s32 e1000_setup_led_generic(struct e1000_hw *hw); +s32 e1000_setup_link_generic(struct e1000_hw *hw); +s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw); +s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, + u32 offset, u8 data); + +u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr); + +void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw); +void e1000_clear_vfta_generic(struct e1000_hw *hw); +void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count); +void e1000_put_hw_semaphore_generic(struct e1000_hw *hw); +s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw); +void e1000_reset_adaptive_generic(struct e1000_hw *hw); +void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop); +void e1000_update_adaptive_generic(struct e1000_hw *hw); +void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value); #endif diff --git a/drivers/net/igb/e1000_manage.c b/drivers/net/igb/e1000_manage.c new file mode 100644 index 000000000000..e1a2abe08dd2 --- /dev/null +++ b/drivers/net/igb/e1000_manage.c @@ -0,0 +1,556 @@ +/******************************************************************************* + + Intel(R) Gigabit Ethernet Linux driver + Copyright(c) 2007-2013 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include "e1000_api.h" + +/** + * e1000_calculate_checksum - Calculate checksum for buffer + * @buffer: pointer to EEPROM + * @length: size of EEPROM to calculate a checksum for + * + * Calculates the checksum for some buffer on a specified length. The + * checksum calculated is returned. + **/ +u8 e1000_calculate_checksum(u8 *buffer, u32 length) +{ + u32 i; + u8 sum = 0; + + DEBUGFUNC("e1000_calculate_checksum"); + + if (!buffer) + return 0; + + for (i = 0; i < length; i++) + sum += buffer[i]; + + return (u8) (0 - sum); +} + +/** + * e1000_mng_enable_host_if_generic - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operation + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw) +{ + u32 hicr; + u8 i; + + DEBUGFUNC("e1000_mng_enable_host_if_generic"); + + if (!hw->mac.arc_subsystem_valid) { + DEBUGOUT("ARC subsystem not valid.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_EN)) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + /* check the previous command is completed */ + for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay_irq(1); + } + + if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { + DEBUGOUT("Previous command timeout failed .\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + return E1000_SUCCESS; +} + +/** + * e1000_check_mng_mode_generic - Generic check management mode + * @hw: pointer to the HW structure + * + * Reads the firmware semaphore register and returns true (>0) if + * manageability is enabled, else false (0). + **/ +bool e1000_check_mng_mode_generic(struct e1000_hw *hw) +{ + u32 fwsm = E1000_READ_REG(hw, E1000_FWSM); + + DEBUGFUNC("e1000_check_mng_mode_generic"); + + + return (fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); +} + +/** + * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + **/ +bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw) +{ + struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; + u32 *buffer = (u32 *)&hw->mng_cookie; + u32 offset; + s32 ret_val, hdr_csum, csum; + u8 i, len; + + DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic"); + + hw->mac.tx_pkt_filtering = true; + + /* No manageability, no filtering */ + if (!hw->mac.ops.check_mng_mode(hw)) { + hw->mac.tx_pkt_filtering = false; + return hw->mac.tx_pkt_filtering; + } + + /* If we can't read from the host interface for whatever + * reason, disable filtering. + */ + ret_val = e1000_mng_enable_host_if_generic(hw); + if (ret_val != E1000_SUCCESS) { + hw->mac.tx_pkt_filtering = false; + return hw->mac.tx_pkt_filtering; + } + + /* Read in the header. Length and offset are in dwords. */ + len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; + offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; + for (i = 0; i < len; i++) + *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, + offset + i); + hdr_csum = hdr->checksum; + hdr->checksum = 0; + csum = e1000_calculate_checksum((u8 *)hdr, + E1000_MNG_DHCP_COOKIE_LENGTH); + /* If either the checksums or signature don't match, then + * the cookie area isn't considered valid, in which case we + * take the safe route of assuming Tx filtering is enabled. + */ + if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { + hw->mac.tx_pkt_filtering = true; + return hw->mac.tx_pkt_filtering; + } + + /* Cookie area is valid, make the final check for filtering. */ + if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) + hw->mac.tx_pkt_filtering = false; + + return hw->mac.tx_pkt_filtering; +} + +/** + * e1000_mng_write_cmd_header_generic - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr) +{ + u16 i, length = sizeof(struct e1000_host_mng_command_header); + + DEBUGFUNC("e1000_mng_write_cmd_header_generic"); + + /* Write the whole command header structure with new checksum. */ + + hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); + + length >>= 2; + /* Write the relevant command block into the ram area. */ + for (i = 0; i < length; i++) { + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, + *((u32 *) hdr + i)); + E1000_WRITE_FLUSH(hw); + } + + return E1000_SUCCESS; +} + +/** + * e1000_mng_host_if_write_generic - Write to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, + u16 length, u16 offset, u8 *sum) +{ + u8 *tmp; + u8 *bufptr = buffer; + u32 data = 0; + u16 remaining, i, j, prev_bytes; + + DEBUGFUNC("e1000_mng_host_if_write_generic"); + + /* sum = only sum of the data and it is not checksum */ + + if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) + return -E1000_ERR_PARAM; + + tmp = (u8 *)&data; + prev_bytes = offset & 0x3; + offset >>= 2; + + if (prev_bytes) { + data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset); + for (j = prev_bytes; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data); + length -= j - prev_bytes; + offset++; + } + + remaining = length & 0x3; + length -= remaining; + + /* Calculate length in DWORDs */ + length >>= 2; + + /* The device driver writes the relevant command block into the + * ram area. + */ + for (i = 0; i < length; i++) { + for (j = 0; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, + data); + } + if (remaining) { + for (j = 0; j < sizeof(u32); j++) { + if (j < remaining) + *(tmp + j) = *bufptr++; + else + *(tmp + j) = 0; + + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, + data); + } + + return E1000_SUCCESS; +} + +/** + * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer, + u16 length) +{ + struct e1000_host_mng_command_header hdr; + s32 ret_val; + u32 hicr; + + DEBUGFUNC("e1000_mng_write_dhcp_info_generic"); + + hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; + hdr.command_length = length; + hdr.reserved1 = 0; + hdr.reserved2 = 0; + hdr.checksum = 0; + + /* Enable the host interface */ + ret_val = e1000_mng_enable_host_if_generic(hw); + if (ret_val) + return ret_val; + + /* Populate the host interface with the contents of "buffer". */ + ret_val = e1000_mng_host_if_write_generic(hw, buffer, length, + sizeof(hdr), &(hdr.checksum)); + if (ret_val) + return ret_val; + + /* Write the manageability command header */ + ret_val = e1000_mng_write_cmd_header_generic(hw, &hdr); + if (ret_val) + return ret_val; + + /* Tell the ARC a new command is pending. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); + + return E1000_SUCCESS; +} + +/** + * e1000_enable_mng_pass_thru - Check if management passthrough is needed + * @hw: pointer to the HW structure + * + * Verifies the hardware needs to leave interface enabled so that frames can + * be directed to and from the management interface. + **/ +bool e1000_enable_mng_pass_thru(struct e1000_hw *hw) +{ + u32 manc; + u32 fwsm, factps; + + DEBUGFUNC("e1000_enable_mng_pass_thru"); + + if (!hw->mac.asf_firmware_present) + return false; + + manc = E1000_READ_REG(hw, E1000_MANC); + + if (!(manc & E1000_MANC_RCV_TCO_EN)) + return false; + + if (hw->mac.has_fwsm) { + fwsm = E1000_READ_REG(hw, E1000_FWSM); + factps = E1000_READ_REG(hw, E1000_FACTPS); + + if (!(factps & E1000_FACTPS_MNGCG) && + ((fwsm & E1000_FWSM_MODE_MASK) == + (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) + return true; + } else if ((manc & E1000_MANC_SMBUS_EN) && + !(manc & E1000_MANC_ASF_EN)) { + return true; + } + + return false; +} + +/** + * e1000_host_interface_command - Writes buffer to host interface + * @hw: pointer to the HW structure + * @buffer: contains a command to write + * @length: the byte length of the buffer, must be multiple of 4 bytes + * + * Writes a buffer to the Host Interface. Upon success, returns E1000_SUCCESS + * else returns E1000_ERR_HOST_INTERFACE_COMMAND. + **/ +s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length) +{ + u32 hicr, i; + + DEBUGFUNC("e1000_host_interface_command"); + + if (!(hw->mac.arc_subsystem_valid)) { + DEBUGOUT("Hardware doesn't support host interface command.\n"); + return E1000_SUCCESS; + } + + if (!hw->mac.asf_firmware_present) { + DEBUGOUT("Firmware is not present.\n"); + return E1000_SUCCESS; + } + + if (length == 0 || length & 0x3 || + length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) { + DEBUGOUT("Buffer length failure.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_EN)) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Calculate length in DWORDs */ + length >>= 2; + + /* The device driver writes the relevant command block + * into the ram area. + */ + for (i = 0; i < length; i++) + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, + *((u32 *)buffer + i)); + + /* Setting this bit tells the ARC that a new command is pending. */ + E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); + + for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay(1); + } + + /* Check command successful completion. */ + if (i == E1000_HI_COMMAND_TIMEOUT || + (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) { + DEBUGOUT("Command has failed with no status valid.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + for (i = 0; i < length; i++) + *((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, + E1000_HOST_IF, + i); + + return E1000_SUCCESS; +} +/** + * e1000_load_firmware - Writes proxy FW code buffer to host interface + * and execute. + * @hw: pointer to the HW structure + * @buffer: contains a firmware to write + * @length: the byte length of the buffer, must be multiple of 4 bytes + * + * Upon success returns E1000_SUCCESS, returns E1000_ERR_CONFIG if not enabled + * in HW else returns E1000_ERR_HOST_INTERFACE_COMMAND. + **/ +s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length) +{ + u32 hicr, hibba, fwsm, icr, i; + + DEBUGFUNC("e1000_load_firmware"); + + if (hw->mac.type < e1000_i210) { + DEBUGOUT("Hardware doesn't support loading FW by the driver\n"); + return -E1000_ERR_CONFIG; + } + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_EN)) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_CONFIG; + } + if (!(hicr & E1000_HICR_MEMORY_BASE_EN)) { + DEBUGOUT("E1000_HICR_MEMORY_BASE_EN bit disabled.\n"); + return -E1000_ERR_CONFIG; + } + + if (length == 0 || length & 0x3 || length > E1000_HI_FW_MAX_LENGTH) { + DEBUGOUT("Buffer length failure.\n"); + return -E1000_ERR_INVALID_ARGUMENT; + } + + /* Clear notification from ROM-FW by reading ICR register */ + icr = E1000_READ_REG(hw, E1000_ICR_V2); + + /* Reset ROM-FW */ + hicr = E1000_READ_REG(hw, E1000_HICR); + hicr |= E1000_HICR_FW_RESET_ENABLE; + E1000_WRITE_REG(hw, E1000_HICR, hicr); + hicr |= E1000_HICR_FW_RESET; + E1000_WRITE_REG(hw, E1000_HICR, hicr); + E1000_WRITE_FLUSH(hw); + + /* Wait till MAC notifies about its readiness after ROM-FW reset */ + for (i = 0; i < (E1000_HI_COMMAND_TIMEOUT * 2); i++) { + icr = E1000_READ_REG(hw, E1000_ICR_V2); + if (icr & E1000_ICR_MNG) + break; + msec_delay(1); + } + + /* Check for timeout */ + if (i == E1000_HI_COMMAND_TIMEOUT) { + DEBUGOUT("FW reset failed.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Wait till MAC is ready to accept new FW code */ + for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { + fwsm = E1000_READ_REG(hw, E1000_FWSM); + if ((fwsm & E1000_FWSM_FW_VALID) && + ((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT == + E1000_FWSM_HI_EN_ONLY_MODE)) + break; + msec_delay(1); + } + + /* Check for timeout */ + if (i == E1000_HI_COMMAND_TIMEOUT) { + DEBUGOUT("FW reset failed.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Calculate length in DWORDs */ + length >>= 2; + + /* The device driver writes the relevant FW code block + * into the ram area in DWORDs via 1kB ram addressing window. + */ + for (i = 0; i < length; i++) { + if (!(i % E1000_HI_FW_BLOCK_DWORD_LENGTH)) { + /* Point to correct 1kB ram window */ + hibba = E1000_HI_FW_BASE_ADDRESS + + ((E1000_HI_FW_BLOCK_DWORD_LENGTH << 2) * + (i / E1000_HI_FW_BLOCK_DWORD_LENGTH)); + + E1000_WRITE_REG(hw, E1000_HIBBA, hibba); + } + + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, + i % E1000_HI_FW_BLOCK_DWORD_LENGTH, + *((u32 *)buffer + i)); + } + + /* Setting this bit tells the ARC that a new FW is ready to execute. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); + + for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay(1); + } + + /* Check for successful FW start. */ + if (i == E1000_HI_COMMAND_TIMEOUT) { + DEBUGOUT("New FW did not start within timeout period.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + return E1000_SUCCESS; +} + + diff --git a/drivers/net/igb/e1000_manage.h b/drivers/net/igb/e1000_manage.h new file mode 100644 index 000000000000..c94b218542e2 --- /dev/null +++ b/drivers/net/igb/e1000_manage.h @@ -0,0 +1,89 @@ +/******************************************************************************* + + Intel(R) Gigabit Ethernet Linux driver + Copyright(c) 2007-2013 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#ifndef _E1000_MANAGE_H_ +#define _E1000_MANAGE_H_ + +bool e1000_check_mng_mode_generic(struct e1000_hw *hw); +bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw); +s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw); +s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, + u16 length, u16 offset, u8 *sum); +s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr); +s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, + u8 *buffer, u16 length); +bool e1000_enable_mng_pass_thru(struct e1000_hw *hw); +u8 e1000_calculate_checksum(u8 *buffer, u32 length); +s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length); +s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length); + +enum e1000_mng_mode { + e1000_mng_mode_none = 0, + e1000_mng_mode_asf, + e1000_mng_mode_pt, + e1000_mng_mode_ipmi, + e1000_mng_mode_host_if_only +}; + +#define E1000_FACTPS_MNGCG 0x20000000 + +#define E1000_FWSM_MODE_MASK 0xE +#define E1000_FWSM_MODE_SHIFT 1 +#define E1000_FWSM_FW_VALID 0x00008000 +#define E1000_FWSM_HI_EN_ONLY_MODE 0x4 + +#define E1000_MNG_IAMT_MODE 0x3 +#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 +#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 +#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 +#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 +#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 +#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 + +#define E1000_VFTA_ENTRY_SHIFT 5 +#define E1000_VFTA_ENTRY_MASK 0x7F +#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F + +#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */ +#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */ +#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI cmd limit */ +#define E1000_HI_FW_BASE_ADDRESS 0x10000 +#define E1000_HI_FW_MAX_LENGTH (64 * 1024) /* Num of bytes */ +#define E1000_HI_FW_BLOCK_DWORD_LENGTH 256 /* Num of DWORDs per page */ +#define E1000_HICR_MEMORY_BASE_EN 0x200 /* MB Enable bit - RO */ +#define E1000_HICR_EN 0x01 /* Enable bit - RO */ +/* Driver sets this bit when done to put command in RAM */ +#define E1000_HICR_C 0x02 +#define E1000_HICR_SV 0x04 /* Status Validity */ +#define E1000_HICR_FW_RESET_ENABLE 0x40 +#define E1000_HICR_FW_RESET 0x80 + +/* Intel(R) Active Management Technology signature */ +#define E1000_IAMT_SIGNATURE 0x544D4149 + +#endif diff --git a/drivers/net/igb/e1000_mbx.c b/drivers/net/igb/e1000_mbx.c index 74f2f11ac290..8750b4634603 100644 --- a/drivers/net/igb/e1000_mbx.c +++ b/drivers/net/igb/e1000_mbx.c @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2011 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -28,7 +28,33 @@ #include "e1000_mbx.h" /** - * igb_read_mbx - Reads a message from the mailbox + * e1000_null_mbx_check_for_flag - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +static s32 e1000_null_mbx_check_for_flag(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG mbx_id) +{ + DEBUGFUNC("e1000_null_mbx_check_flag"); + + return E1000_SUCCESS; +} + +/** + * e1000_null_mbx_transact - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +static s32 e1000_null_mbx_transact(struct e1000_hw E1000_UNUSEDARG *hw, + u32 E1000_UNUSEDARG *msg, + u16 E1000_UNUSEDARG size, + u16 E1000_UNUSEDARG mbx_id) +{ + DEBUGFUNC("e1000_null_mbx_rw_msg"); + + return E1000_SUCCESS; +} + +/** + * e1000_read_mbx - Reads a message from the mailbox * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer @@ -36,11 +62,13 @@ * * returns SUCCESS if it successfuly read message from buffer **/ -s32 igb_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) { struct e1000_mbx_info *mbx = &hw->mbx; s32 ret_val = -E1000_ERR_MBX; + DEBUGFUNC("e1000_read_mbx"); + /* limit read to size of mailbox */ if (size > mbx->size) size = mbx->size; @@ -52,7 +80,7 @@ s32 igb_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) } /** - * igb_write_mbx - Write a message to the mailbox + * e1000_write_mbx - Write a message to the mailbox * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer @@ -60,10 +88,12 @@ s32 igb_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) * * returns SUCCESS if it successfully copied message into the buffer **/ -s32 igb_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) { struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_mbx"); if (size > mbx->size) ret_val = -E1000_ERR_MBX; @@ -75,17 +105,19 @@ s32 igb_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) } /** - * igb_check_for_msg - checks to see if someone sent us mail + * e1000_check_for_msg - checks to see if someone sent us mail * @hw: pointer to the HW structure * @mbx_id: id of mailbox to check * * returns SUCCESS if the Status bit was found or else ERR_MBX **/ -s32 igb_check_for_msg(struct e1000_hw *hw, u16 mbx_id) +s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id) { struct e1000_mbx_info *mbx = &hw->mbx; s32 ret_val = -E1000_ERR_MBX; + DEBUGFUNC("e1000_check_for_msg"); + if (mbx->ops.check_for_msg) ret_val = mbx->ops.check_for_msg(hw, mbx_id); @@ -93,17 +125,19 @@ s32 igb_check_for_msg(struct e1000_hw *hw, u16 mbx_id) } /** - * igb_check_for_ack - checks to see if someone sent us ACK + * e1000_check_for_ack - checks to see if someone sent us ACK * @hw: pointer to the HW structure * @mbx_id: id of mailbox to check * * returns SUCCESS if the Status bit was found or else ERR_MBX **/ -s32 igb_check_for_ack(struct e1000_hw *hw, u16 mbx_id) +s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id) { struct e1000_mbx_info *mbx = &hw->mbx; s32 ret_val = -E1000_ERR_MBX; + DEBUGFUNC("e1000_check_for_ack"); + if (mbx->ops.check_for_ack) ret_val = mbx->ops.check_for_ack(hw, mbx_id); @@ -111,17 +145,19 @@ s32 igb_check_for_ack(struct e1000_hw *hw, u16 mbx_id) } /** - * igb_check_for_rst - checks to see if other side has reset + * e1000_check_for_rst - checks to see if other side has reset * @hw: pointer to the HW structure * @mbx_id: id of mailbox to check * * returns SUCCESS if the Status bit was found or else ERR_MBX **/ -s32 igb_check_for_rst(struct e1000_hw *hw, u16 mbx_id) +s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id) { struct e1000_mbx_info *mbx = &hw->mbx; s32 ret_val = -E1000_ERR_MBX; + DEBUGFUNC("e1000_check_for_rst"); + if (mbx->ops.check_for_rst) ret_val = mbx->ops.check_for_rst(hw, mbx_id); @@ -129,17 +165,19 @@ s32 igb_check_for_rst(struct e1000_hw *hw, u16 mbx_id) } /** - * igb_poll_for_msg - Wait for message notification + * e1000_poll_for_msg - Wait for message notification * @hw: pointer to the HW structure * @mbx_id: id of mailbox to write * * returns SUCCESS if it successfully received a message notification **/ -static s32 igb_poll_for_msg(struct e1000_hw *hw, u16 mbx_id) +static s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id) { struct e1000_mbx_info *mbx = &hw->mbx; int countdown = mbx->timeout; + DEBUGFUNC("e1000_poll_for_msg"); + if (!countdown || !mbx->ops.check_for_msg) goto out; @@ -147,28 +185,30 @@ static s32 igb_poll_for_msg(struct e1000_hw *hw, u16 mbx_id) countdown--; if (!countdown) break; - udelay(mbx->usec_delay); + usec_delay(mbx->usec_delay); } /* if we failed, all future posted messages fail until reset */ if (!countdown) mbx->timeout = 0; out: - return countdown ? 0 : -E1000_ERR_MBX; + return countdown ? E1000_SUCCESS : -E1000_ERR_MBX; } /** - * igb_poll_for_ack - Wait for message acknowledgement + * e1000_poll_for_ack - Wait for message acknowledgement * @hw: pointer to the HW structure * @mbx_id: id of mailbox to write * * returns SUCCESS if it successfully received a message acknowledgement **/ -static s32 igb_poll_for_ack(struct e1000_hw *hw, u16 mbx_id) +static s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id) { struct e1000_mbx_info *mbx = &hw->mbx; int countdown = mbx->timeout; + DEBUGFUNC("e1000_poll_for_ack"); + if (!countdown || !mbx->ops.check_for_ack) goto out; @@ -176,18 +216,18 @@ static s32 igb_poll_for_ack(struct e1000_hw *hw, u16 mbx_id) countdown--; if (!countdown) break; - udelay(mbx->usec_delay); + usec_delay(mbx->usec_delay); } /* if we failed, all future posted messages fail until reset */ if (!countdown) mbx->timeout = 0; out: - return countdown ? 0 : -E1000_ERR_MBX; + return countdown ? E1000_SUCCESS : -E1000_ERR_MBX; } /** - * igb_read_posted_mbx - Wait for message notification and receive message + * e1000_read_posted_mbx - Wait for message notification and receive message * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer @@ -196,16 +236,19 @@ out: * returns SUCCESS if it successfully received a message notification and * copied it into the receive buffer. **/ -static s32 igb_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) { struct e1000_mbx_info *mbx = &hw->mbx; s32 ret_val = -E1000_ERR_MBX; + DEBUGFUNC("e1000_read_posted_mbx"); + if (!mbx->ops.read) goto out; - ret_val = igb_poll_for_msg(hw, mbx_id); + ret_val = e1000_poll_for_msg(hw, mbx_id); + /* if ack received read message, otherwise we timed out */ if (!ret_val) ret_val = mbx->ops.read(hw, msg, size, mbx_id); out: @@ -213,7 +256,7 @@ out: } /** - * igb_write_posted_mbx - Write a message to the mailbox, wait for ack + * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer @@ -222,11 +265,13 @@ out: * returns SUCCESS if it successfully copied message into the buffer and * received an ack to that message within delay * timeout period **/ -static s32 igb_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) { struct e1000_mbx_info *mbx = &hw->mbx; s32 ret_val = -E1000_ERR_MBX; + DEBUGFUNC("e1000_write_posted_mbx"); + /* exit if either we can't write or there isn't a defined timeout */ if (!mbx->ops.write || !mbx->timeout) goto out; @@ -236,37 +281,58 @@ static s32 igb_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx /* if msg sent wait until we receive an ack */ if (!ret_val) - ret_val = igb_poll_for_ack(hw, mbx_id); + ret_val = e1000_poll_for_ack(hw, mbx_id); out: return ret_val; } -static s32 igb_check_for_bit_pf(struct e1000_hw *hw, u32 mask) +/** + * e1000_init_mbx_ops_generic - Initialize mbx function pointers + * @hw: pointer to the HW structure + * + * Sets the function pointers to no-op functions + **/ +void e1000_init_mbx_ops_generic(struct e1000_hw *hw) { - u32 mbvficr = rd32(E1000_MBVFICR); + struct e1000_mbx_info *mbx = &hw->mbx; + mbx->ops.init_params = e1000_null_ops_generic; + mbx->ops.read = e1000_null_mbx_transact; + mbx->ops.write = e1000_null_mbx_transact; + mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag; + mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag; + mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag; + mbx->ops.read_posted = e1000_read_posted_mbx; + mbx->ops.write_posted = e1000_write_posted_mbx; +} + +static s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask) +{ + u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR); s32 ret_val = -E1000_ERR_MBX; if (mbvficr & mask) { - ret_val = 0; - wr32(E1000_MBVFICR, mask); + ret_val = E1000_SUCCESS; + E1000_WRITE_REG(hw, E1000_MBVFICR, mask); } return ret_val; } /** - * igb_check_for_msg_pf - checks to see if the VF has sent mail + * e1000_check_for_msg_pf - checks to see if the VF has sent mail * @hw: pointer to the HW structure * @vf_number: the VF index * * returns SUCCESS if the VF has set the Status bit or else ERR_MBX **/ -static s32 igb_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number) +static s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number) { s32 ret_val = -E1000_ERR_MBX; - if (!igb_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) { - ret_val = 0; + DEBUGFUNC("e1000_check_for_msg_pf"); + + if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) { + ret_val = E1000_SUCCESS; hw->mbx.stats.reqs++; } @@ -274,18 +340,20 @@ static s32 igb_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number) } /** - * igb_check_for_ack_pf - checks to see if the VF has ACKed + * e1000_check_for_ack_pf - checks to see if the VF has ACKed * @hw: pointer to the HW structure * @vf_number: the VF index * * returns SUCCESS if the VF has set the Status bit or else ERR_MBX **/ -static s32 igb_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number) +static s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number) { s32 ret_val = -E1000_ERR_MBX; - if (!igb_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) { - ret_val = 0; + DEBUGFUNC("e1000_check_for_ack_pf"); + + if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) { + ret_val = E1000_SUCCESS; hw->mbx.stats.acks++; } @@ -293,20 +361,22 @@ static s32 igb_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number) } /** - * igb_check_for_rst_pf - checks to see if the VF has reset + * e1000_check_for_rst_pf - checks to see if the VF has reset * @hw: pointer to the HW structure * @vf_number: the VF index * * returns SUCCESS if the VF has set the Status bit or else ERR_MBX **/ -static s32 igb_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number) +static s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number) { - u32 vflre = rd32(E1000_VFLRE); + u32 vflre = E1000_READ_REG(hw, E1000_VFLRE); s32 ret_val = -E1000_ERR_MBX; + DEBUGFUNC("e1000_check_for_rst_pf"); + if (vflre & (1 << vf_number)) { - ret_val = 0; - wr32(E1000_VFLRE, (1 << vf_number)); + ret_val = E1000_SUCCESS; + E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number)); hw->mbx.stats.rsts++; } @@ -314,31 +384,32 @@ static s32 igb_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number) } /** - * igb_obtain_mbx_lock_pf - obtain mailbox lock + * e1000_obtain_mbx_lock_pf - obtain mailbox lock * @hw: pointer to the HW structure * @vf_number: the VF index * * return SUCCESS if we obtained the mailbox lock **/ -static s32 igb_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number) +static s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number) { s32 ret_val = -E1000_ERR_MBX; u32 p2v_mailbox; + DEBUGFUNC("e1000_obtain_mbx_lock_pf"); /* Take ownership of the buffer */ - wr32(E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU); + E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU); /* reserve mailbox for vf use */ - p2v_mailbox = rd32(E1000_P2VMAILBOX(vf_number)); + p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number)); if (p2v_mailbox & E1000_P2VMAILBOX_PFU) - ret_val = 0; + ret_val = E1000_SUCCESS; return ret_val; } /** - * igb_write_mbx_pf - Places a message in the mailbox + * e1000_write_mbx_pf - Places a message in the mailbox * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer @@ -346,27 +417,29 @@ static s32 igb_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number) * * returns SUCCESS if it successfully copied message into the buffer **/ -static s32 igb_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, - u16 vf_number) +static s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, + u16 vf_number) { s32 ret_val; u16 i; + DEBUGFUNC("e1000_write_mbx_pf"); + /* lock the mailbox to prevent pf/vf race condition */ - ret_val = igb_obtain_mbx_lock_pf(hw, vf_number); + ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number); if (ret_val) goto out_no_write; /* flush msg and acks as we are overwriting the message buffer */ - igb_check_for_msg_pf(hw, vf_number); - igb_check_for_ack_pf(hw, vf_number); + e1000_check_for_msg_pf(hw, vf_number); + e1000_check_for_ack_pf(hw, vf_number); /* copy the caller specified message to the mailbox memory buffer */ for (i = 0; i < size; i++) - array_wr32(E1000_VMBMEM(vf_number), i, msg[i]); + E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]); /* Interrupt VF to tell it a message has been sent and release buffer*/ - wr32(E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS); + E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS); /* update stats */ hw->mbx.stats.msgs_tx++; @@ -377,7 +450,7 @@ out_no_write: } /** - * igb_read_mbx_pf - Read a message from the mailbox + * e1000_read_mbx_pf - Read a message from the mailbox * @hw: pointer to the HW structure * @msg: The message buffer * @size: Length of buffer @@ -387,23 +460,25 @@ out_no_write: * memory buffer. The presumption is that the caller knows that there was * a message due to a VF request so no polling for message is needed. **/ -static s32 igb_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, - u16 vf_number) +static s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, + u16 vf_number) { s32 ret_val; u16 i; + DEBUGFUNC("e1000_read_mbx_pf"); + /* lock the mailbox to prevent pf/vf race condition */ - ret_val = igb_obtain_mbx_lock_pf(hw, vf_number); + ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number); if (ret_val) goto out_no_read; /* copy the message to the mailbox memory buffer */ for (i = 0; i < size; i++) - msg[i] = array_rd32(E1000_VMBMEM(vf_number), i); + msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i); /* Acknowledge the message and release buffer */ - wr32(E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK); + E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK); /* update stats */ hw->mbx.stats.msgs_rx++; @@ -418,29 +493,34 @@ out_no_read: * * Initializes the hw->mbx struct to correct values for pf mailbox */ -s32 igb_init_mbx_params_pf(struct e1000_hw *hw) +s32 e1000_init_mbx_params_pf(struct e1000_hw *hw) { struct e1000_mbx_info *mbx = &hw->mbx; - mbx->timeout = 0; - mbx->usec_delay = 0; - - mbx->size = E1000_VFMAILBOX_SIZE; - - mbx->ops.read = igb_read_mbx_pf; - mbx->ops.write = igb_write_mbx_pf; - mbx->ops.read_posted = igb_read_posted_mbx; - mbx->ops.write_posted = igb_write_posted_mbx; - mbx->ops.check_for_msg = igb_check_for_msg_pf; - mbx->ops.check_for_ack = igb_check_for_ack_pf; - mbx->ops.check_for_rst = igb_check_for_rst_pf; - - mbx->stats.msgs_tx = 0; - mbx->stats.msgs_rx = 0; - mbx->stats.reqs = 0; - mbx->stats.acks = 0; - mbx->stats.rsts = 0; - - return 0; + switch (hw->mac.type) { + case e1000_82576: + case e1000_i350: + case e1000_i354: + mbx->timeout = 0; + mbx->usec_delay = 0; + + mbx->size = E1000_VFMAILBOX_SIZE; + + mbx->ops.read = e1000_read_mbx_pf; + mbx->ops.write = e1000_write_mbx_pf; + mbx->ops.read_posted = e1000_read_posted_mbx; + mbx->ops.write_posted = e1000_write_posted_mbx; + mbx->ops.check_for_msg = e1000_check_for_msg_pf; + mbx->ops.check_for_ack = e1000_check_for_ack_pf; + mbx->ops.check_for_rst = e1000_check_for_rst_pf; + + mbx->stats.msgs_tx = 0; + mbx->stats.msgs_rx = 0; + mbx->stats.reqs = 0; + mbx->stats.acks = 0; + mbx->stats.rsts = 0; + default: + return E1000_SUCCESS; + } } diff --git a/drivers/net/igb/e1000_mbx.h b/drivers/net/igb/e1000_mbx.h index eddb0f83dcea..bbf838c8cb4d 100644 --- a/drivers/net/igb/e1000_mbx.h +++ b/drivers/net/igb/e1000_mbx.h @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2011 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -28,50 +28,60 @@ #ifndef _E1000_MBX_H_ #define _E1000_MBX_H_ -#include "e1000_hw.h" +#include "e1000_api.h" -#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */ -#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */ -#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ -#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ -#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */ +#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */ +#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */ +#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ +#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ +#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */ #define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */ -#define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */ +#define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */ #define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */ -#define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */ +#define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */ -#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */ +#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */ /* If it's a E1000_VF_* msg then it originates in the VF and is sent to the * PF. The reverse is true if it is E1000_PF_*. * Message ACK's are the value or'd with 0xF0000000 */ -#define E1000_VT_MSGTYPE_ACK 0x80000000 /* Messages below or'd with - * this are the ACK */ -#define E1000_VT_MSGTYPE_NACK 0x40000000 /* Messages below or'd with - * this are the NACK */ -#define E1000_VT_MSGTYPE_CTS 0x20000000 /* Indicates that VF is still - clear to send requests */ -#define E1000_VT_MSGINFO_SHIFT 16 -/* bits 23:16 are used for exra info for certain messages */ -#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT) - -#define E1000_VF_RESET 0x01 /* VF requests reset */ -#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */ -#define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */ -#define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */ -#define E1000_VF_SET_LPE 0x05 /* VF requests to set VMOLR.LPE */ -#define E1000_VF_SET_PROMISC 0x06 /*VF requests to clear VMOLR.ROPE/MPME*/ -#define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT) - -#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */ - -s32 igb_read_mbx(struct e1000_hw *, u32 *, u16, u16); -s32 igb_write_mbx(struct e1000_hw *, u32 *, u16, u16); -s32 igb_check_for_msg(struct e1000_hw *, u16); -s32 igb_check_for_ack(struct e1000_hw *, u16); -s32 igb_check_for_rst(struct e1000_hw *, u16); -s32 igb_init_mbx_params_pf(struct e1000_hw *); +/* Msgs below or'd with this are the ACK */ +#define E1000_VT_MSGTYPE_ACK 0x80000000 +/* Msgs below or'd with this are the NACK */ +#define E1000_VT_MSGTYPE_NACK 0x40000000 +/* Indicates that VF is still clear to send requests */ +#define E1000_VT_MSGTYPE_CTS 0x20000000 +#define E1000_VT_MSGINFO_SHIFT 16 +/* bits 23:16 are used for extra info for certain messages */ +#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT) + +#define E1000_VF_RESET 0x01 /* VF requests reset */ +#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */ +#define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */ +#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_MULTICAST_OVERFLOW (0x80 << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */ +#define E1000_VF_SET_VLAN_ADD (0x01 << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_LPE 0x05 /* reqs to set VMOLR.LPE */ +#define E1000_VF_SET_PROMISC 0x06 /* reqs to clear VMOLR.ROPE/MPME*/ +#define E1000_VF_SET_PROMISC_UNICAST (0x01 << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT) + +#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */ + +#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* number of retries on mailbox */ +#define E1000_VF_MBX_INIT_DELAY 500 /* microseconds between retries */ + +s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_check_for_msg(struct e1000_hw *, u16); +s32 e1000_check_for_ack(struct e1000_hw *, u16); +s32 e1000_check_for_rst(struct e1000_hw *, u16); +void e1000_init_mbx_ops_generic(struct e1000_hw *hw); +s32 e1000_init_mbx_params_pf(struct e1000_hw *); #endif /* _E1000_MBX_H_ */ diff --git a/drivers/net/igb/e1000_nvm.c b/drivers/net/igb/e1000_nvm.c index 38047a584605..b87f6d0ce711 100644 --- a/drivers/net/igb/e1000_nvm.c +++ b/drivers/net/igb/e1000_nvm.c @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2011 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -25,44 +25,110 @@ *******************************************************************************/ -#include <linux/if_ether.h> -#include <linux/delay.h> +#include "e1000_api.h" -#include "e1000_mac.h" -#include "e1000_nvm.h" +static void e1000_reload_nvm_generic(struct e1000_hw *hw); /** - * igb_raise_eec_clk - Raise EEPROM clock + * e1000_init_nvm_ops_generic - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_nvm_ops_generic(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + DEBUGFUNC("e1000_init_nvm_ops_generic"); + + /* Initialize function pointers */ + nvm->ops.init_params = e1000_null_ops_generic; + nvm->ops.acquire = e1000_null_ops_generic; + nvm->ops.read = e1000_null_read_nvm; + nvm->ops.release = e1000_null_nvm_generic; + nvm->ops.reload = e1000_reload_nvm_generic; + nvm->ops.update = e1000_null_ops_generic; + nvm->ops.valid_led_default = e1000_null_led_default; + nvm->ops.validate = e1000_null_ops_generic; + nvm->ops.write = e1000_null_write_nvm; +} + +/** + * e1000_null_nvm_read - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, + u16 E1000_UNUSEDARG *c) +{ + DEBUGFUNC("e1000_null_read_nvm"); + return E1000_SUCCESS; +} + +/** + * e1000_null_nvm_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_null_nvm_generic"); + return; +} + +/** + * e1000_null_led_default - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG *data) +{ + DEBUGFUNC("e1000_null_led_default"); + return E1000_SUCCESS; +} + +/** + * e1000_null_write_nvm - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, + u16 E1000_UNUSEDARG *c) +{ + DEBUGFUNC("e1000_null_write_nvm"); + return E1000_SUCCESS; +} + +/** + * e1000_raise_eec_clk - Raise EEPROM clock * @hw: pointer to the HW structure * @eecd: pointer to the EEPROM * * Enable/Raise the EEPROM clock bit. **/ -static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) +static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) { *eecd = *eecd | E1000_EECD_SK; - wr32(E1000_EECD, *eecd); - wrfl(); - udelay(hw->nvm.delay_usec); + E1000_WRITE_REG(hw, E1000_EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->nvm.delay_usec); } /** - * igb_lower_eec_clk - Lower EEPROM clock + * e1000_lower_eec_clk - Lower EEPROM clock * @hw: pointer to the HW structure * @eecd: pointer to the EEPROM * * Clear/Lower the EEPROM clock bit. **/ -static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) +static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) { *eecd = *eecd & ~E1000_EECD_SK; - wr32(E1000_EECD, *eecd); - wrfl(); - udelay(hw->nvm.delay_usec); + E1000_WRITE_REG(hw, E1000_EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->nvm.delay_usec); } /** - * igb_shift_out_eec_bits - Shift data bits our to the EEPROM + * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM * @hw: pointer to the HW structure * @data: data to send to the EEPROM * @count: number of bits to shift out @@ -71,12 +137,14 @@ static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) * "data" parameter will be shifted out to the EEPROM one bit at a time. * In order to do this, "data" must be broken down into bits. **/ -static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) +static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) { struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = rd32(E1000_EECD); + u32 eecd = E1000_READ_REG(hw, E1000_EECD); u32 mask; + DEBUGFUNC("e1000_shift_out_eec_bits"); + mask = 0x01 << (count - 1); if (nvm->type == e1000_nvm_eeprom_spi) eecd |= E1000_EECD_DO; @@ -87,23 +155,23 @@ static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) if (data & mask) eecd |= E1000_EECD_DI; - wr32(E1000_EECD, eecd); - wrfl(); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); - udelay(nvm->delay_usec); + usec_delay(nvm->delay_usec); - igb_raise_eec_clk(hw, &eecd); - igb_lower_eec_clk(hw, &eecd); + e1000_raise_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); mask >>= 1; } while (mask); eecd &= ~E1000_EECD_DI; - wr32(E1000_EECD, eecd); + E1000_WRITE_REG(hw, E1000_EECD, eecd); } /** - * igb_shift_in_eec_bits - Shift data bits in from the EEPROM + * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM * @hw: pointer to the HW structure * @count: number of bits to shift in * @@ -113,121 +181,124 @@ static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) * "DO" bit. During this "shifting in" process the data in "DI" bit should * always be clear. **/ -static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) +static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) { u32 eecd; u32 i; u16 data; - eecd = rd32(E1000_EECD); + DEBUGFUNC("e1000_shift_in_eec_bits"); + + eecd = E1000_READ_REG(hw, E1000_EECD); eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); data = 0; for (i = 0; i < count; i++) { data <<= 1; - igb_raise_eec_clk(hw, &eecd); + e1000_raise_eec_clk(hw, &eecd); - eecd = rd32(E1000_EECD); + eecd = E1000_READ_REG(hw, E1000_EECD); eecd &= ~E1000_EECD_DI; if (eecd & E1000_EECD_DO) data |= 1; - igb_lower_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); } return data; } /** - * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion + * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion * @hw: pointer to the HW structure * @ee_reg: EEPROM flag for polling * * Polls the EEPROM status bit for either read or write completion based * upon the value of 'ee_reg'. **/ -static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) +s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) { u32 attempts = 100000; u32 i, reg = 0; - s32 ret_val = -E1000_ERR_NVM; + + DEBUGFUNC("e1000_poll_eerd_eewr_done"); for (i = 0; i < attempts; i++) { if (ee_reg == E1000_NVM_POLL_READ) - reg = rd32(E1000_EERD); + reg = E1000_READ_REG(hw, E1000_EERD); else - reg = rd32(E1000_EEWR); + reg = E1000_READ_REG(hw, E1000_EEWR); - if (reg & E1000_NVM_RW_REG_DONE) { - ret_val = 0; - break; - } + if (reg & E1000_NVM_RW_REG_DONE) + return E1000_SUCCESS; - udelay(5); + usec_delay(5); } - return ret_val; + return -E1000_ERR_NVM; } /** - * igb_acquire_nvm - Generic request for access to EEPROM + * e1000_acquire_nvm_generic - Generic request for access to EEPROM * @hw: pointer to the HW structure * * Set the EEPROM access request bit and wait for EEPROM access grant bit. * Return successful if access grant bit set, else clear the request for * EEPROM access and return -E1000_ERR_NVM (-1). **/ -s32 igb_acquire_nvm(struct e1000_hw *hw) +s32 e1000_acquire_nvm_generic(struct e1000_hw *hw) { - u32 eecd = rd32(E1000_EECD); + u32 eecd = E1000_READ_REG(hw, E1000_EECD); s32 timeout = E1000_NVM_GRANT_ATTEMPTS; - s32 ret_val = 0; + DEBUGFUNC("e1000_acquire_nvm_generic"); - wr32(E1000_EECD, eecd | E1000_EECD_REQ); - eecd = rd32(E1000_EECD); + E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); + eecd = E1000_READ_REG(hw, E1000_EECD); while (timeout) { if (eecd & E1000_EECD_GNT) break; - udelay(5); - eecd = rd32(E1000_EECD); + usec_delay(5); + eecd = E1000_READ_REG(hw, E1000_EECD); timeout--; } if (!timeout) { eecd &= ~E1000_EECD_REQ; - wr32(E1000_EECD, eecd); - hw_dbg("Could not acquire NVM grant\n"); - ret_val = -E1000_ERR_NVM; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + DEBUGOUT("Could not acquire NVM grant\n"); + return -E1000_ERR_NVM; } - return ret_val; + return E1000_SUCCESS; } /** - * igb_standby_nvm - Return EEPROM to standby state + * e1000_standby_nvm - Return EEPROM to standby state * @hw: pointer to the HW structure * * Return the EEPROM to a standby state. **/ -static void igb_standby_nvm(struct e1000_hw *hw) +static void e1000_standby_nvm(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = rd32(E1000_EECD); + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + + DEBUGFUNC("e1000_standby_nvm"); if (nvm->type == e1000_nvm_eeprom_spi) { /* Toggle CS to flush commands */ eecd |= E1000_EECD_CS; - wr32(E1000_EECD, eecd); - wrfl(); - udelay(nvm->delay_usec); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); eecd &= ~E1000_EECD_CS; - wr32(E1000_EECD, eecd); - wrfl(); - udelay(nvm->delay_usec); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); } } @@ -241,85 +312,86 @@ static void e1000_stop_nvm(struct e1000_hw *hw) { u32 eecd; - eecd = rd32(E1000_EECD); + DEBUGFUNC("e1000_stop_nvm"); + + eecd = E1000_READ_REG(hw, E1000_EECD); if (hw->nvm.type == e1000_nvm_eeprom_spi) { /* Pull CS high */ eecd |= E1000_EECD_CS; - igb_lower_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); } } /** - * igb_release_nvm - Release exclusive access to EEPROM + * e1000_release_nvm_generic - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit. **/ -void igb_release_nvm(struct e1000_hw *hw) +void e1000_release_nvm_generic(struct e1000_hw *hw) { u32 eecd; + DEBUGFUNC("e1000_release_nvm_generic"); + e1000_stop_nvm(hw); - eecd = rd32(E1000_EECD); + eecd = E1000_READ_REG(hw, E1000_EECD); eecd &= ~E1000_EECD_REQ; - wr32(E1000_EECD, eecd); + E1000_WRITE_REG(hw, E1000_EECD, eecd); } /** - * igb_ready_nvm_eeprom - Prepares EEPROM for read/write + * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write * @hw: pointer to the HW structure * * Setups the EEPROM for reading and writing. **/ -static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) +static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = rd32(E1000_EECD); - s32 ret_val = 0; - u16 timeout = 0; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); u8 spi_stat_reg; + DEBUGFUNC("e1000_ready_nvm_eeprom"); if (nvm->type == e1000_nvm_eeprom_spi) { + u16 timeout = NVM_MAX_RETRY_SPI; + /* Clear SK and CS */ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - wr32(E1000_EECD, eecd); - wrfl(); - udelay(1); - timeout = NVM_MAX_RETRY_SPI; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(1); - /* - * Read "Status Register" repeatedly until the LSB is cleared. + /* Read "Status Register" repeatedly until the LSB is cleared. * The EEPROM will signal that the command has been completed * by clearing bit 0 of the internal status register. If it's * not cleared within 'timeout', then error out. */ while (timeout) { - igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, + e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, hw->nvm.opcode_bits); - spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); + spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) break; - udelay(5); - igb_standby_nvm(hw); + usec_delay(5); + e1000_standby_nvm(hw); timeout--; } if (!timeout) { - hw_dbg("SPI NVM Status error\n"); - ret_val = -E1000_ERR_NVM; - goto out; + DEBUGOUT("SPI NVM Status error\n"); + return -E1000_ERR_NVM; } } -out: - return ret_val; + return E1000_SUCCESS; } /** - * igb_read_nvm_spi - Read EEPROM's using SPI + * e1000_read_nvm_spi - Read EEPROM's using SPI * @hw: pointer to the HW structure * @offset: offset of word in the EEPROM to read * @words: number of words to read @@ -327,7 +399,7 @@ out: * * Reads a 16 bit word from the EEPROM. **/ -s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i = 0; @@ -335,53 +407,51 @@ s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) u16 word_in; u8 read_opcode = NVM_READ_OPCODE_SPI; - /* - * A check for invalid values: offset too large, too many words, + DEBUGFUNC("e1000_read_nvm_spi"); + + /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { - hw_dbg("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; } ret_val = nvm->ops.acquire(hw); if (ret_val) - goto out; + return ret_val; - ret_val = igb_ready_nvm_eeprom(hw); + ret_val = e1000_ready_nvm_eeprom(hw); if (ret_val) goto release; - igb_standby_nvm(hw); + e1000_standby_nvm(hw); if ((nvm->address_bits == 8) && (offset >= 128)) read_opcode |= NVM_A8_OPCODE_SPI; /* Send the READ command (opcode + addr) */ - igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); - igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); + e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); - /* - * Read the data. SPI NVMs increment the address with each byte + /* Read the data. SPI NVMs increment the address with each byte * read and will roll over if reading beyond the end. This allows * us to read the whole NVM from any offset */ for (i = 0; i < words; i++) { - word_in = igb_shift_in_eec_bits(hw, 16); + word_in = e1000_shift_in_eec_bits(hw, 16); data[i] = (word_in >> 8) | (word_in << 8); } release: nvm->ops.release(hw); -out: return ret_val; } /** - * igb_read_nvm_eerd - Reads EEPROM using EERD register + * e1000_read_nvm_eerd - Reads EEPROM using EERD register * @hw: pointer to the HW structure * @offset: offset of word in the EEPROM to read * @words: number of words to read @@ -389,42 +459,41 @@ out: * * Reads a 16 bit word from the EEPROM using the EERD register. **/ -s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i, eerd = 0; - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; - /* - * A check for invalid values: offset too large, too many words, - * and not enough words. + DEBUGFUNC("e1000_read_nvm_eerd"); + + /* A check for invalid values: offset too large, too many words, + * too many words for the offset, and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { - hw_dbg("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; } for (i = 0; i < words; i++) { eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + E1000_NVM_RW_REG_START; - wr32(E1000_EERD, eerd); - ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); + E1000_WRITE_REG(hw, E1000_EERD, eerd); + ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); if (ret_val) break; - data[i] = (rd32(E1000_EERD) >> - E1000_NVM_RW_REG_DATA); + data[i] = (E1000_READ_REG(hw, E1000_EERD) >> + E1000_NVM_RW_REG_DATA); } -out: return ret_val; } /** - * igb_write_nvm_spi - Write to EEPROM using SPI + * e1000_write_nvm_spi - Write to EEPROM using SPI * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write @@ -433,208 +502,271 @@ out: * Writes data to EEPROM at offset using SPI interface. * * If e1000_update_nvm_checksum is not called after this function , the - * EEPROM will most likley contain an invalid checksum. + * EEPROM will most likely contain an invalid checksum. **/ -s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val; + s32 ret_val = -E1000_ERR_NVM; u16 widx = 0; - /* - * A check for invalid values: offset too large, too many words, + DEBUGFUNC("e1000_write_nvm_spi"); + + /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { - hw_dbg("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; } - ret_val = hw->nvm.ops.acquire(hw); - if (ret_val) - goto out; - - msleep(10); - while (widx < words) { u8 write_opcode = NVM_WRITE_OPCODE_SPI; - ret_val = igb_ready_nvm_eeprom(hw); + ret_val = nvm->ops.acquire(hw); if (ret_val) - goto release; + return ret_val; - igb_standby_nvm(hw); + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) { + nvm->ops.release(hw); + return ret_val; + } + + e1000_standby_nvm(hw); /* Send the WRITE ENABLE command (8 bit opcode) */ - igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, + e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, nvm->opcode_bits); - igb_standby_nvm(hw); + e1000_standby_nvm(hw); - /* - * Some SPI eeproms use the 8th address bit embedded in the + /* Some SPI eeproms use the 8th address bit embedded in the * opcode */ if ((nvm->address_bits == 8) && (offset >= 128)) write_opcode |= NVM_A8_OPCODE_SPI; /* Send the Write command (8-bit opcode + addr) */ - igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); - igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), + e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), nvm->address_bits); /* Loop to allow for up to whole page write of eeprom */ while (widx < words) { u16 word_out = data[widx]; word_out = (word_out >> 8) | (word_out << 8); - igb_shift_out_eec_bits(hw, word_out, 16); + e1000_shift_out_eec_bits(hw, word_out, 16); widx++; if ((((offset + widx) * 2) % nvm->page_size) == 0) { - igb_standby_nvm(hw); + e1000_standby_nvm(hw); break; } } + msec_delay(10); + nvm->ops.release(hw); } - msleep(10); -release: - hw->nvm.ops.release(hw); - -out: return ret_val; } /** - * igb_read_part_string - Read device part number + * e1000_read_pba_string_generic - Read device part number * @hw: pointer to the HW structure - * @part_num: pointer to device part number - * @part_num_size: size of part number buffer + * @pba_num: pointer to device part number + * @pba_num_size: size of part number buffer * * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in part_num. + * the value in pba_num. **/ -s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size) +s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, + u32 pba_num_size) { s32 ret_val; u16 nvm_data; - u16 pointer; + u16 pba_ptr; u16 offset; u16 length; - if (part_num == NULL) { - hw_dbg("PBA string buffer was null\n"); - ret_val = E1000_ERR_INVALID_ARGUMENT; - goto out; + DEBUGFUNC("e1000_read_pba_string_generic"); + + if ((hw->mac.type >= e1000_i210) && + !e1000_get_flash_presence_i210(hw)) { + DEBUGOUT("Flashless no PBA string\n"); + return -E1000_ERR_NVM_PBA_SECTION; + } + + if (pba_num == NULL) { + DEBUGOUT("PBA string buffer was null\n"); + return -E1000_ERR_INVALID_ARGUMENT; } ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; + DEBUGOUT("NVM Read Error\n"); + return ret_val; } - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer); + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; + DEBUGOUT("NVM Read Error\n"); + return ret_val; } - /* - * if nvm_data is not ptr guard the PBA must be in legacy format which - * means pointer is actually our second data word for the PBA number + /* if nvm_data is not ptr guard the PBA must be in legacy format which + * means pba_ptr is actually our second data word for the PBA number * and we can decode it into an ascii string */ if (nvm_data != NVM_PBA_PTR_GUARD) { - hw_dbg("NVM PBA number is not stored as string\n"); + DEBUGOUT("NVM PBA number is not stored as string\n"); - /* we will need 11 characters to store the PBA */ - if (part_num_size < 11) { - hw_dbg("PBA string buffer too small\n"); + /* make sure callers buffer is big enough to store the PBA */ + if (pba_num_size < E1000_PBANUM_LENGTH) { + DEBUGOUT("PBA string buffer too small\n"); return E1000_ERR_NO_SPACE; } - /* extract hex string from data and pointer */ - part_num[0] = (nvm_data >> 12) & 0xF; - part_num[1] = (nvm_data >> 8) & 0xF; - part_num[2] = (nvm_data >> 4) & 0xF; - part_num[3] = nvm_data & 0xF; - part_num[4] = (pointer >> 12) & 0xF; - part_num[5] = (pointer >> 8) & 0xF; - part_num[6] = '-'; - part_num[7] = 0; - part_num[8] = (pointer >> 4) & 0xF; - part_num[9] = pointer & 0xF; + /* extract hex string from data and pba_ptr */ + pba_num[0] = (nvm_data >> 12) & 0xF; + pba_num[1] = (nvm_data >> 8) & 0xF; + pba_num[2] = (nvm_data >> 4) & 0xF; + pba_num[3] = nvm_data & 0xF; + pba_num[4] = (pba_ptr >> 12) & 0xF; + pba_num[5] = (pba_ptr >> 8) & 0xF; + pba_num[6] = '-'; + pba_num[7] = 0; + pba_num[8] = (pba_ptr >> 4) & 0xF; + pba_num[9] = pba_ptr & 0xF; /* put a null character on the end of our string */ - part_num[10] = '\0'; + pba_num[10] = '\0'; /* switch all the data but the '-' to hex char */ for (offset = 0; offset < 10; offset++) { - if (part_num[offset] < 0xA) - part_num[offset] += '0'; - else if (part_num[offset] < 0x10) - part_num[offset] += 'A' - 0xA; + if (pba_num[offset] < 0xA) + pba_num[offset] += '0'; + else if (pba_num[offset] < 0x10) + pba_num[offset] += 'A' - 0xA; } - goto out; + return E1000_SUCCESS; } - ret_val = hw->nvm.ops.read(hw, pointer, 1, &length); + ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; + DEBUGOUT("NVM Read Error\n"); + return ret_val; } if (length == 0xFFFF || length == 0) { - hw_dbg("NVM PBA number section invalid length\n"); - ret_val = E1000_ERR_NVM_PBA_SECTION; - goto out; + DEBUGOUT("NVM PBA number section invalid length\n"); + return -E1000_ERR_NVM_PBA_SECTION; } - /* check if part_num buffer is big enough */ - if (part_num_size < (((u32)length * 2) - 1)) { - hw_dbg("PBA string buffer too small\n"); - ret_val = E1000_ERR_NO_SPACE; - goto out; + /* check if pba_num buffer is big enough */ + if (pba_num_size < (((u32)length * 2) - 1)) { + DEBUGOUT("PBA string buffer too small\n"); + return -E1000_ERR_NO_SPACE; } /* trim pba length from start of string */ - pointer++; + pba_ptr++; length--; for (offset = 0; offset < length; offset++) { - ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data); + ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data); if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; + DEBUGOUT("NVM Read Error\n"); + return ret_val; } - part_num[offset * 2] = (u8)(nvm_data >> 8); - part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); + pba_num[offset * 2] = (u8)(nvm_data >> 8); + pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); } - part_num[offset * 2] = '\0'; + pba_num[offset * 2] = '\0'; -out: - return ret_val; + return E1000_SUCCESS; } /** - * igb_read_mac_addr - Read device MAC address + * e1000_read_pba_length_generic - Read device part number length + * @hw: pointer to the HW structure + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number length from the EEPROM and + * stores the value in pba_num_size. + **/ +s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size) +{ + s32 ret_val; + u16 nvm_data; + u16 pba_ptr; + u16 length; + + DEBUGFUNC("e1000_read_pba_length_generic"); + + if (pba_num_size == NULL) { + DEBUGOUT("PBA buffer size was null\n"); + return -E1000_ERR_INVALID_ARGUMENT; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + /* if data is not ptr guard the PBA must be in legacy format */ + if (nvm_data != NVM_PBA_PTR_GUARD) { + *pba_num_size = E1000_PBANUM_LENGTH; + return E1000_SUCCESS; + } + + ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (length == 0xFFFF || length == 0) { + DEBUGOUT("NVM PBA number section invalid length\n"); + return -E1000_ERR_NVM_PBA_SECTION; + } + + /* Convert from length in u16 values to u8 chars, add 1 for NULL, + * and subtract 2 because length field is included in length. + */ + *pba_num_size = ((u32)length * 2) - 1; + + return E1000_SUCCESS; +} + + + + + +/** + * e1000_read_mac_addr_generic - Read device MAC address * @hw: pointer to the HW structure * * Reads the device MAC address from the EEPROM and stores the value. * Since devices with two ports use the same EEPROM, we increment the * last bit in the MAC address for the second port. **/ -s32 igb_read_mac_addr(struct e1000_hw *hw) +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) { u32 rar_high; u32 rar_low; u16 i; - rar_high = rd32(E1000_RAH(0)); - rar_low = rd32(E1000_RAL(0)); + rar_high = E1000_READ_REG(hw, E1000_RAH(0)); + rar_low = E1000_READ_REG(hw, E1000_RAL(0)); for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); @@ -642,71 +774,201 @@ s32 igb_read_mac_addr(struct e1000_hw *hw) for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); - for (i = 0; i < ETH_ALEN; i++) + for (i = 0; i < ETH_ADDR_LEN; i++) hw->mac.addr[i] = hw->mac.perm_addr[i]; - return 0; + return E1000_SUCCESS; } /** - * igb_validate_nvm_checksum - Validate EEPROM checksum + * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. **/ -s32 igb_validate_nvm_checksum(struct e1000_hw *hw) +s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) { - s32 ret_val = 0; + s32 ret_val; u16 checksum = 0; u16 i, nvm_data; + DEBUGFUNC("e1000_validate_nvm_checksum_generic"); + for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; + DEBUGOUT("NVM Read Error\n"); + return ret_val; } checksum += nvm_data; } if (checksum != (u16) NVM_SUM) { - hw_dbg("NVM Checksum Invalid\n"); - ret_val = -E1000_ERR_NVM; - goto out; + DEBUGOUT("NVM Checksum Invalid\n"); + return -E1000_ERR_NVM; } -out: - return ret_val; + return E1000_SUCCESS; } /** - * igb_update_nvm_checksum - Update EEPROM checksum + * e1000_update_nvm_checksum_generic - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. **/ -s32 igb_update_nvm_checksum(struct e1000_hw *hw) +s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw) { - s32 ret_val; + s32 ret_val; u16 checksum = 0; u16 i, nvm_data; + DEBUGFUNC("e1000_update_nvm_checksum"); + for (i = 0; i < NVM_CHECKSUM_REG; i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { - hw_dbg("NVM Read Error while updating checksum.\n"); - goto out; + DEBUGOUT("NVM Read Error while updating checksum.\n"); + return ret_val; } checksum += nvm_data; } checksum = (u16) NVM_SUM - checksum; ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); if (ret_val) - hw_dbg("NVM Write Error while updating checksum.\n"); + DEBUGOUT("NVM Write Error while updating checksum.\n"); -out: return ret_val; } + +/** + * e1000_reload_nvm_generic - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +static void e1000_reload_nvm_generic(struct e1000_hw *hw) +{ + u32 ctrl_ext; + + DEBUGFUNC("e1000_reload_nvm_generic"); + + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_get_fw_version - Get firmware version information + * @hw: pointer to the HW structure + * @fw_vers: pointer to output version structure + * + * unsupported/not present features return 0 in version structure + **/ +void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) +{ + u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; + u8 q, hval, rem, result; + u16 comb_verh, comb_verl, comb_offset; + + memset(fw_vers, 0, sizeof(struct e1000_fw_version)); + + /* basic eeprom version numbers, bits used vary by part and by tool + * used to create the nvm images */ + /* Check which data format we have */ + switch (hw->mac.type) { + case e1000_i211: + e1000_read_invm_version(hw, fw_vers); + return; + case e1000_82575: + case e1000_82576: + case e1000_82580: + hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); + /* Use this format, unless EETRACK ID exists, + * then use alternate format + */ + if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { + hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); + fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) + >> NVM_MAJOR_SHIFT; + fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) + >> NVM_MINOR_SHIFT; + fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); + goto etrack_id; + } + break; + case e1000_i210: + if (!(e1000_get_flash_presence_i210(hw))) { + e1000_read_invm_version(hw, fw_vers); + return; + } + /* fall through */ + case e1000_i350: + hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); + /* find combo image version */ + hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); + if ((comb_offset != 0x0) && + (comb_offset != NVM_VER_INVALID)) { + + hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset + + 1), 1, &comb_verh); + hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), + 1, &comb_verl); + + /* get Option Rom version if it exists and is valid */ + if ((comb_verh && comb_verl) && + ((comb_verh != NVM_VER_INVALID) && + (comb_verl != NVM_VER_INVALID))) { + + fw_vers->or_valid = true; + fw_vers->or_major = + comb_verl >> NVM_COMB_VER_SHFT; + fw_vers->or_build = + (comb_verl << NVM_COMB_VER_SHFT) + | (comb_verh >> NVM_COMB_VER_SHFT); + fw_vers->or_patch = + comb_verh & NVM_COMB_VER_MASK; + } + } + break; + default: + hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); + return; + } + hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); + fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) + >> NVM_MAJOR_SHIFT; + + /* check for old style version format in newer images*/ + if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { + eeprom_verl = (fw_version & NVM_COMB_VER_MASK); + } else { + eeprom_verl = (fw_version & NVM_MINOR_MASK) + >> NVM_MINOR_SHIFT; + } + /* Convert minor value to hex before assigning to output struct + * Val to be converted will not be higher than 99, per tool output + */ + q = eeprom_verl / NVM_HEX_CONV; + hval = q * NVM_HEX_TENS; + rem = eeprom_verl % NVM_HEX_CONV; + result = hval + rem; + fw_vers->eep_minor = result; + +etrack_id: + if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { + hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); + hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); + fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) + | eeprom_verl; + } + return; +} + + diff --git a/drivers/net/igb/e1000_nvm.h b/drivers/net/igb/e1000_nvm.h index a2a7ca9fa733..fe62785a04e6 100644 --- a/drivers/net/igb/e1000_nvm.h +++ b/drivers/net/igb/e1000_nvm.h @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2011 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -28,16 +28,48 @@ #ifndef _E1000_NVM_H_ #define _E1000_NVM_H_ -s32 igb_acquire_nvm(struct e1000_hw *hw); -void igb_release_nvm(struct e1000_hw *hw); -s32 igb_read_mac_addr(struct e1000_hw *hw); -s32 igb_read_part_num(struct e1000_hw *hw, u32 *part_num); -s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, - u32 part_num_size); -s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 igb_validate_nvm_checksum(struct e1000_hw *hw); -s32 igb_update_nvm_checksum(struct e1000_hw *hw); + +struct e1000_fw_version { + u32 etrack_id; + u16 eep_major; + u16 eep_minor; + u16 eep_build; + + u8 invm_major; + u8 invm_minor; + u8 invm_img_type; + + bool or_valid; + u16 or_major; + u16 or_build; + u16 or_patch; +}; + + +void e1000_init_nvm_ops_generic(struct e1000_hw *hw); +s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); +void e1000_null_nvm_generic(struct e1000_hw *hw); +s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data); +s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); +s32 e1000_acquire_nvm_generic(struct e1000_hw *hw); + +s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); +s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, + u32 pba_num_size); +s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size); +s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data); +s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw); +s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw); +void e1000_release_nvm_generic(struct e1000_hw *hw); +void e1000_get_fw_version(struct e1000_hw *hw, + struct e1000_fw_version *fw_vers); + +#define E1000_STM_OPCODE 0xDB00 #endif diff --git a/drivers/net/igb/e1000_osdep.h b/drivers/net/igb/e1000_osdep.h new file mode 100644 index 000000000000..70f5bd8c6d5b --- /dev/null +++ b/drivers/net/igb/e1000_osdep.h @@ -0,0 +1,132 @@ +/******************************************************************************* + + Intel(R) Gigabit Ethernet Linux driver + Copyright(c) 2007-2013 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + + +/* glue for the OS independent part of e1000 + * includes register access macros + */ + +#ifndef _E1000_OSDEP_H_ +#define _E1000_OSDEP_H_ + +#include <linux/pci.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/if_ether.h> +#include <linux/sched.h> +#include "kcompat.h" + +#define usec_delay(x) udelay(x) +#define usec_delay_irq(x) udelay(x) +#ifndef msec_delay +#define msec_delay(x) do { \ + /* Don't mdelay in interrupt context! */ \ + if (in_interrupt()) \ + BUG(); \ + else \ + msleep(x); \ +} while (0) + +/* Some workarounds require millisecond delays and are run during interrupt + * context. Most notably, when establishing link, the phy may need tweaking + * but cannot process phy register reads/writes faster than millisecond + * intervals...and we establish link due to a "link status change" interrupt. + */ +#define msec_delay_irq(x) mdelay(x) +#endif + +#define PCI_COMMAND_REGISTER PCI_COMMAND +#define CMD_MEM_WRT_INVALIDATE PCI_COMMAND_INVALIDATE +#define ETH_ADDR_LEN ETH_ALEN + +#ifdef __BIG_ENDIAN +#define E1000_BIG_ENDIAN __BIG_ENDIAN +#endif + + +#ifdef DEBUG +#define DEBUGOUT(S) printk(KERN_DEBUG S) +#define DEBUGOUT1(S, A...) printk(KERN_DEBUG S, ## A) +#else +#define DEBUGOUT(S) +#define DEBUGOUT1(S, A...) +#endif + +#ifdef DEBUG_FUNC +#define DEBUGFUNC(F) DEBUGOUT(F "\n") +#else +#define DEBUGFUNC(F) +#endif +#define DEBUGOUT2 DEBUGOUT1 +#define DEBUGOUT3 DEBUGOUT2 +#define DEBUGOUT7 DEBUGOUT3 + +#define E1000_REGISTER(a, reg) reg + +#define E1000_WRITE_REG(a, reg, value) ( \ + writel((value), ((a)->hw_addr + E1000_REGISTER(a, reg)))) + +#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_REGISTER(a, reg))) + +#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \ + writel((value), ((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 2)))) + +#define E1000_READ_REG_ARRAY(a, reg, offset) ( \ + readl((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 2))) + +#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY +#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY + +#define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \ + writew((value), ((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 1)))) + +#define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \ + readw((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 1))) + +#define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \ + writeb((value), ((a)->hw_addr + E1000_REGISTER(a, reg) + (offset)))) + +#define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \ + readb((a)->hw_addr + E1000_REGISTER(a, reg) + (offset))) + +#define E1000_WRITE_REG_IO(a, reg, offset) do { \ + outl(reg, ((a)->io_base)); \ + outl(offset, ((a)->io_base + 4)); } while (0) + +#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS) + +#define E1000_WRITE_FLASH_REG(a, reg, value) ( \ + writel((value), ((a)->flash_address + reg))) + +#define E1000_WRITE_FLASH_REG16(a, reg, value) ( \ + writew((value), ((a)->flash_address + reg))) + +#define E1000_READ_FLASH_REG(a, reg) (readl((a)->flash_address + reg)) + +#define E1000_READ_FLASH_REG16(a, reg) (readw((a)->flash_address + reg)) + +#endif /* _E1000_OSDEP_H_ */ diff --git a/drivers/net/igb/e1000_phy.c b/drivers/net/igb/e1000_phy.c index d9e0ec065cf7..fc5ef7d186ba 100644 --- a/drivers/net/igb/e1000_phy.c +++ b/drivers/net/igb/e1000_phy.c @@ -1,7 +1,7 @@ /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2011 Intel Corporation. + Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, @@ -25,132 +25,254 @@ *******************************************************************************/ -#include <linux/if_ether.h> -#include <linux/delay.h> - -#include "e1000_mac.h" -#include "e1000_phy.h" - -static s32 igb_phy_setup_autoneg(struct e1000_hw *hw); -static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, - u16 *phy_ctrl); -static s32 igb_wait_autoneg(struct e1000_hw *hw); -static s32 igb_set_master_slave_mode(struct e1000_hw *hw); +#include "e1000_api.h" +static s32 e1000_wait_autoneg(struct e1000_hw *hw); /* Cable length tables */ -static const u16 e1000_m88_cable_length_table[] = - { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; +static const u16 e1000_m88_cable_length_table[] = { + 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ - (sizeof(e1000_m88_cable_length_table) / \ - sizeof(e1000_m88_cable_length_table[0])) - -static const u16 e1000_igp_2_cable_length_table[] = - { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, - 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, - 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, - 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, - 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, - 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, - 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, - 104, 109, 114, 118, 121, 124}; + (sizeof(e1000_m88_cable_length_table) / \ + sizeof(e1000_m88_cable_length_table[0])) + +static const u16 e1000_igp_2_cable_length_table[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, + 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, + 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, + 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, + 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, + 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, + 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, + 124}; #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ (sizeof(e1000_igp_2_cable_length_table) / \ sizeof(e1000_igp_2_cable_length_table[0])) /** - * igb_check_reset_block - Check if PHY reset is blocked + * e1000_init_phy_ops_generic - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_phy_ops_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + DEBUGFUNC("e1000_init_phy_ops_generic"); + + /* Initialize function pointers */ + phy->ops.init_params = e1000_null_ops_generic; + phy->ops.acquire = e1000_null_ops_generic; + phy->ops.check_polarity = e1000_null_ops_generic; + phy->ops.check_reset_block = e1000_null_ops_generic; + phy->ops.commit = e1000_null_ops_generic; + phy->ops.force_speed_duplex = e1000_null_ops_generic; + phy->ops.get_cfg_done = e1000_null_ops_generic; + phy->ops.get_cable_length = e1000_null_ops_generic; + phy->ops.get_info = e1000_null_ops_generic; + phy->ops.set_page = e1000_null_set_page; + phy->ops.read_reg = e1000_null_read_reg; + phy->ops.read_reg_locked = e1000_null_read_reg; + phy->ops.read_reg_page = e1000_null_read_reg; + phy->ops.release = e1000_null_phy_generic; + phy->ops.reset = e1000_null_ops_generic; + phy->ops.set_d0_lplu_state = e1000_null_lplu_state; + phy->ops.set_d3_lplu_state = e1000_null_lplu_state; + phy->ops.write_reg = e1000_null_write_reg; + phy->ops.write_reg_locked = e1000_null_write_reg; + phy->ops.write_reg_page = e1000_null_write_reg; + phy->ops.power_up = e1000_null_phy_generic; + phy->ops.power_down = e1000_null_phy_generic; + phy->ops.read_i2c_byte = e1000_read_i2c_byte_null; + phy->ops.write_i2c_byte = e1000_write_i2c_byte_null; +} + +/** + * e1000_null_set_page - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG data) +{ + DEBUGFUNC("e1000_null_set_page"); + return E1000_SUCCESS; +} + +/** + * e1000_null_read_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw, + u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data) +{ + DEBUGFUNC("e1000_null_read_reg"); + return E1000_SUCCESS; +} + +/** + * e1000_null_phy_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_null_phy_generic"); + return; +} + +/** + * e1000_null_lplu_state - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw, + bool E1000_UNUSEDARG active) +{ + DEBUGFUNC("e1000_null_lplu_state"); + return E1000_SUCCESS; +} + +/** + * e1000_null_write_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw, + u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data) +{ + DEBUGFUNC("e1000_null_write_reg"); + return E1000_SUCCESS; +} + +/** + * e1000_read_i2c_byte_null - No-op function, return 0 + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: data value read + * + **/ +s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, + u8 E1000_UNUSEDARG byte_offset, + u8 E1000_UNUSEDARG dev_addr, + u8 E1000_UNUSEDARG *data) +{ + DEBUGFUNC("e1000_read_i2c_byte_null"); + return E1000_SUCCESS; +} + +/** + * e1000_write_i2c_byte_null - No-op function, return 0 + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: data value to write + * + **/ +s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, + u8 E1000_UNUSEDARG byte_offset, + u8 E1000_UNUSEDARG dev_addr, + u8 E1000_UNUSEDARG data) +{ + DEBUGFUNC("e1000_write_i2c_byte_null"); + return E1000_SUCCESS; +} + +/** + * e1000_check_reset_block_generic - Check if PHY reset is blocked * @hw: pointer to the HW structure * * Read the PHY management control register and check whether a PHY reset - * is blocked. If a reset is not blocked return 0, otherwise + * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise * return E1000_BLK_PHY_RESET (12). **/ -s32 igb_check_reset_block(struct e1000_hw *hw) +s32 e1000_check_reset_block_generic(struct e1000_hw *hw) { u32 manc; - manc = rd32(E1000_MANC); + DEBUGFUNC("e1000_check_reset_block"); + + manc = E1000_READ_REG(hw, E1000_MANC); return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? - E1000_BLK_PHY_RESET : 0; + E1000_BLK_PHY_RESET : E1000_SUCCESS; } /** - * igb_get_phy_id - Retrieve the PHY ID and revision + * e1000_get_phy_id - Retrieve the PHY ID and revision * @hw: pointer to the HW structure * * Reads the PHY registers and stores the PHY ID and possibly the PHY * revision in the hardware structure. **/ -s32 igb_get_phy_id(struct e1000_hw *hw) +s32 e1000_get_phy_id(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; u16 phy_id; + DEBUGFUNC("e1000_get_phy_id"); + + if (!phy->ops.read_reg) + return E1000_SUCCESS; + ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); if (ret_val) - goto out; + return ret_val; phy->id = (u32)(phy_id << 16); - udelay(20); + usec_delay(20); ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); if (ret_val) - goto out; + return ret_val; phy->id |= (u32)(phy_id & PHY_REVISION_MASK); phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); -out: - return ret_val; + + return E1000_SUCCESS; } /** - * igb_phy_reset_dsp - Reset PHY DSP + * e1000_phy_reset_dsp_generic - Reset PHY DSP * @hw: pointer to the HW structure * * Reset the digital signal processor. **/ -static s32 igb_phy_reset_dsp(struct e1000_hw *hw) +s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) { - s32 ret_val = 0; + s32 ret_val; - if (!(hw->phy.ops.write_reg)) - goto out; + DEBUGFUNC("e1000_phy_reset_dsp_generic"); + + if (!hw->phy.ops.write_reg) + return E1000_SUCCESS; ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); + return ret_val; -out: - return ret_val; + return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); } /** - * igb_read_phy_reg_mdic - Read MDI control register + * e1000_read_phy_reg_mdic - Read MDI control register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * - * Reads the MDI control regsiter in the PHY at offset and stores the + * Reads the MDI control register in the PHY at offset and stores the * information read to data. **/ -s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) +s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) { struct e1000_phy_info *phy = &hw->phy; u32 i, mdic = 0; - s32 ret_val = 0; + + DEBUGFUNC("e1000_read_phy_reg_mdic"); if (offset > MAX_PHY_REG_ADDRESS) { - hw_dbg("PHY Address %d is out of range\n", offset); - ret_val = -E1000_ERR_PARAM; - goto out; + DEBUGOUT1("PHY Address %d is out of range\n", offset); + return -E1000_ERR_PARAM; } - /* - * Set up Op-code, Phy Address, and register offset in the MDI + /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ @@ -158,57 +280,58 @@ s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) (phy->addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_READ)); - wr32(E1000_MDIC, mdic); + E1000_WRITE_REG(hw, E1000_MDIC, mdic); - /* - * Poll the ready bit to see if the MDI read completed + /* Poll the ready bit to see if the MDI read completed * Increasing the time out as testing showed failures with * the lower time out */ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - udelay(50); - mdic = rd32(E1000_MDIC); + usec_delay_irq(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { - hw_dbg("MDI Read did not complete\n"); - ret_val = -E1000_ERR_PHY; - goto out; + DEBUGOUT("MDI Read did not complete\n"); + return -E1000_ERR_PHY; } if (mdic & E1000_MDIC_ERROR) { - hw_dbg("MDI Error\n"); - ret_val = -E1000_ERR_PHY; - goto out; + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { + DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n", + offset, + (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); + return -E1000_ERR_PHY; } *data = (u16) mdic; -out: - return ret_val; + return E1000_SUCCESS; } /** - * igb_write_phy_reg_mdic - Write MDI control register + * e1000_write_phy_reg_mdic - Write MDI control register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write to register at offset * * Writes data to MDI control register in the PHY at offset. **/ -s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) +s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) { struct e1000_phy_info *phy = &hw->phy; u32 i, mdic = 0; - s32 ret_val = 0; + + DEBUGFUNC("e1000_write_phy_reg_mdic"); if (offset > MAX_PHY_REG_ADDRESS) { - hw_dbg("PHY Address %d is out of range\n", offset); - ret_val = -E1000_ERR_PARAM; - goto out; + DEBUGOUT1("PHY Address %d is out of range\n", offset); + return -E1000_ERR_PARAM; } - /* - * Set up Op-code, Phy Address, and register offset in the MDI + /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ @@ -217,36 +340,38 @@ s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) (phy->addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_WRITE)); - wr32(E1000_MDIC, mdic); + E1000_WRITE_REG(hw, E1000_MDIC, mdic); - /* - * Poll the ready bit to see if the MDI read completed + /* Poll the ready bit to see if the MDI read completed * Increasing the time out as testing showed failures with * the lower time out */ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - udelay(50); - mdic = rd32(E1000_MDIC); + usec_delay_irq(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { - hw_dbg("MDI Write did not complete\n"); - ret_val = -E1000_ERR_PHY; - goto out; + DEBUGOUT("MDI Write did not complete\n"); + return -E1000_ERR_PHY; } if (mdic & E1000_MDIC_ERROR) { - hw_dbg("MDI Error\n"); - ret_val = -E1000_ERR_PHY; - goto out; + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { + DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n", + offset, + (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); + return -E1000_ERR_PHY; } -out: - return ret_val; + return E1000_SUCCESS; } /** - * igb_read_phy_reg_i2c - Read PHY register using i2c + * e1000_read_phy_reg_i2c - Read PHY register using i2c * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data @@ -254,96 +379,231 @@ out: * Reads the PHY register at offset using the i2c interface and stores the * retrieved information in data. **/ -s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) +s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) { struct e1000_phy_info *phy = &hw->phy; u32 i, i2ccmd = 0; + DEBUGFUNC("e1000_read_phy_reg_i2c"); - /* - * Set up Op-code, Phy Address, and register address in the I2CCMD + /* Set up Op-code, Phy Address, and register address in the I2CCMD * register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | - (E1000_I2CCMD_OPCODE_READ)); + (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | + (E1000_I2CCMD_OPCODE_READ)); - wr32(E1000_I2CCMD, i2ccmd); + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); /* Poll the ready bit to see if the I2C read completed */ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - udelay(50); - i2ccmd = rd32(E1000_I2CCMD); + usec_delay(50); + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); if (i2ccmd & E1000_I2CCMD_READY) break; } if (!(i2ccmd & E1000_I2CCMD_READY)) { - hw_dbg("I2CCMD Read did not complete\n"); + DEBUGOUT("I2CCMD Read did not complete\n"); return -E1000_ERR_PHY; } if (i2ccmd & E1000_I2CCMD_ERROR) { - hw_dbg("I2CCMD Error bit set\n"); + DEBUGOUT("I2CCMD Error bit set\n"); return -E1000_ERR_PHY; } /* Need to byte-swap the 16-bit value. */ *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); - return 0; + return E1000_SUCCESS; } /** - * igb_write_phy_reg_i2c - Write PHY register using i2c + * e1000_write_phy_reg_i2c - Write PHY register using i2c * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Writes the data to PHY register at the offset using the i2c interface. **/ -s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) +s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) { struct e1000_phy_info *phy = &hw->phy; u32 i, i2ccmd = 0; u16 phy_data_swapped; + DEBUGFUNC("e1000_write_phy_reg_i2c"); + + /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ + if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { + DEBUGOUT1("PHY I2C Address %d is out of range.\n", + hw->phy.addr); + return -E1000_ERR_CONFIG; + } /* Swap the data bytes for the I2C interface */ phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); - /* - * Set up Op-code, Phy Address, and register address in the I2CCMD + /* Set up Op-code, Phy Address, and register address in the I2CCMD * register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | - E1000_I2CCMD_OPCODE_WRITE | - phy_data_swapped); + (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_WRITE | + phy_data_swapped); - wr32(E1000_I2CCMD, i2ccmd); + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); /* Poll the ready bit to see if the I2C read completed */ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - udelay(50); - i2ccmd = rd32(E1000_I2CCMD); + usec_delay(50); + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); if (i2ccmd & E1000_I2CCMD_READY) break; } if (!(i2ccmd & E1000_I2CCMD_READY)) { - hw_dbg("I2CCMD Write did not complete\n"); + DEBUGOUT("I2CCMD Write did not complete\n"); return -E1000_ERR_PHY; } if (i2ccmd & E1000_I2CCMD_ERROR) { - hw_dbg("I2CCMD Error bit set\n"); + DEBUGOUT("I2CCMD Error bit set\n"); return -E1000_ERR_PHY; } - return 0; + return E1000_SUCCESS; } /** - * igb_read_phy_reg_igp - Read igp PHY register + * e1000_read_sfp_data_byte - Reads SFP module data. + * @hw: pointer to the HW structure + * @offset: byte location offset to be read + * @data: read data buffer pointer + * + * Reads one byte from SFP module data stored + * in SFP resided EEPROM memory or SFP diagnostic area. + * Function should be called with + * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access + * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters + * access + **/ +s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) +{ + u32 i = 0; + u32 i2ccmd = 0; + u32 data_local = 0; + + DEBUGFUNC("e1000_read_sfp_data_byte"); + + if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { + DEBUGOUT("I2CCMD command address exceeds upper limit\n"); + return -E1000_ERR_PHY; + } + + /* Set up Op-code, EEPROM Address,in the I2CCMD + * register. The MAC will take care of interfacing with the + * EEPROM to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_READ); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + data_local = E1000_READ_REG(hw, E1000_I2CCMD); + if (data_local & E1000_I2CCMD_READY) + break; + } + if (!(data_local & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (data_local & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + *data = (u8) data_local & 0xFF; + + return E1000_SUCCESS; +} + +/** + * e1000_write_sfp_data_byte - Writes SFP module data. + * @hw: pointer to the HW structure + * @offset: byte location offset to write to + * @data: data to write + * + * Writes one byte to SFP module data stored + * in SFP resided EEPROM memory or SFP diagnostic area. + * Function should be called with + * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access + * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters + * access + **/ +s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data) +{ + u32 i = 0; + u32 i2ccmd = 0; + u32 data_local = 0; + + DEBUGFUNC("e1000_write_sfp_data_byte"); + + if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { + DEBUGOUT("I2CCMD command address exceeds upper limit\n"); + return -E1000_ERR_PHY; + } + /* The programming interface is 16 bits wide + * so we need to read the whole word first + * then update appropriate byte lane and write + * the updated word back. + */ + /* Set up Op-code, EEPROM Address,in the I2CCMD + * register. The MAC will take care of interfacing + * with an EEPROM to write the data given. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_READ); + /* Set a command to read single word */ + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + /* Poll the ready bit to see if lastly + * launched I2C operation completed + */ + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) { + /* Check if this is READ or WRITE phase */ + if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) == + E1000_I2CCMD_OPCODE_READ) { + /* Write the selected byte + * lane and update whole word + */ + data_local = i2ccmd & 0xFF00; + data_local |= data; + i2ccmd = ((offset << + E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_WRITE | data_local); + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + } else { + break; + } + } + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg_m88 - Read m88 PHY register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data @@ -352,38 +612,29 @@ s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) * and storing the retrieved information in data. Release any acquired * semaphores before exiting. **/ -s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) +s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) { - s32 ret_val = 0; + s32 ret_val; + + DEBUGFUNC("e1000_read_phy_reg_m88"); - if (!(hw->phy.ops.acquire)) - goto out; + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; ret_val = hw->phy.ops.acquire(hw); if (ret_val) - goto out; - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - ret_val = igb_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, - (u16)offset); - if (ret_val) { - hw->phy.ops.release(hw); - goto out; - } - } + return ret_val; - ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); hw->phy.ops.release(hw); -out: return ret_val; } /** - * igb_write_phy_reg_igp - Write igp PHY register + * e1000_write_phy_reg_m88 - Write m88 PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset @@ -391,105 +642,462 @@ out: * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ -s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) +s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) { - s32 ret_val = 0; + s32 ret_val; + + DEBUGFUNC("e1000_write_phy_reg_m88"); - if (!(hw->phy.ops.acquire)) - goto out; + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; ret_val = hw->phy.ops.acquire(hw); if (ret_val) - goto out; + return ret_val; + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_set_page_igp - Set page as on IGP-like PHY(s) + * @hw: pointer to the HW structure + * @page: page to set (shifted left when necessary) + * + * Sets PHY page required for PHY register access. Assumes semaphore is + * already acquired. Note, this function sets phy.addr to 1 so the caller + * must set it appropriately (if necessary) after this function returns. + **/ +s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) +{ + DEBUGFUNC("e1000_set_page_igp"); + + DEBUGOUT1("Setting page 0x%x\n", page); + + hw->phy.addr = 1; + + return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); +} + +/** + * __e1000_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and stores the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("__e1000_read_phy_reg_igp"); + + if (!locked) { + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } - if (offset > MAX_PHY_MULTI_PAGE_REG) { - ret_val = igb_write_phy_reg_mdic(hw, + if (offset > MAX_PHY_MULTI_PAGE_REG) + ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, (u16)offset); - if (ret_val) { - hw->phy.ops.release(hw); - goto out; - } - } + if (!ret_val) + ret_val = e1000_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + if (!locked) + hw->phy.ops.release(hw); - ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); + return ret_val; +} - hw->phy.ops.release(hw); +/** + * e1000_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset and stores the + * retrieved information in data. + * Release the acquired semaphore before exiting. + **/ +s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_igp(hw, offset, data, false); +} + +/** + * e1000_read_phy_reg_igp_locked - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired. + **/ +s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_igp(hw, offset, data, true); +} + +/** + * e1000_write_phy_reg_igp - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, + bool locked) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_igp"); + + if (!locked) { + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + if (offset > MAX_PHY_MULTI_PAGE_REG) + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (!ret_val) + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & + offset, + data); + if (!locked) + hw->phy.ops.release(hw); -out: return ret_val; } /** - * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link + * e1000_write_phy_reg_igp - Write igp PHY register * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset * - * Sets up Carrier-sense on Transmit and downshift values. + * Acquires semaphore then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. **/ -s32 igb_copper_link_setup_82580(struct e1000_hw *hw) +s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_igp(hw, offset, data, false); +} + +/** + * e1000_write_phy_reg_igp_locked - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. + * Assumes semaphore already acquired. + **/ +s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_igp(hw, offset, data, true); +} + +/** + * __e1000_read_kmrn_reg - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary. Then reads the PHY register at offset + * using the kumeran interface. The information retrieved is stored in data. + * Release any acquired semaphores before exiting. + **/ +static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked) +{ + u32 kmrnctrlsta; + + DEBUGFUNC("__e1000_read_kmrn_reg"); + + if (!locked) { + s32 ret_val = E1000_SUCCESS; + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); + + usec_delay(2); + + kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); + *data = (u16)kmrnctrlsta; + + if (!locked) + hw->phy.ops.release(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_kmrn_reg_generic - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset using the + * kumeran interface. The information retrieved is stored in data. + * Release the acquired semaphore before exiting. + **/ +s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_kmrn_reg(hw, offset, data, false); +} + +/** + * e1000_read_kmrn_reg_locked - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the kumeran interface. The + * information retrieved is stored in data. + * Assumes semaphore already acquired. + **/ +s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_kmrn_reg(hw, offset, data, true); +} + +/** + * __e1000_write_kmrn_reg - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary. Then write the data to PHY register + * at the offset using the kumeran interface. Release any acquired semaphores + * before exiting. + **/ +static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, + bool locked) +{ + u32 kmrnctrlsta; + + DEBUGFUNC("e1000_write_kmrn_reg_generic"); + + if (!locked) { + s32 ret_val = E1000_SUCCESS; + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | data; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); + + usec_delay(2); + + if (!locked) + hw->phy.ops.release(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_write_kmrn_reg_generic - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to the PHY register at the offset + * using the kumeran interface. Release the acquired semaphore before exiting. + **/ +s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_kmrn_reg(hw, offset, data, false); +} + +/** + * e1000_write_kmrn_reg_locked - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Write the data to PHY register at the offset using the kumeran interface. + * Assumes semaphore already acquired. + **/ +s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_kmrn_reg(hw, offset, data, true); +} + +/** + * e1000_set_master_slave_mode - Setup PHY for Master/slave mode + * @hw: pointer to the HW structure + * + * Sets up Master/slave mode + **/ +static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) { - struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; + /* Resolve Master/Slave mode */ + ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; - if (phy->reset_disable) { - ret_val = 0; - goto out; + /* load defaults for future use */ + hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? + ((phy_data & CR_1000T_MS_VALUE) ? + e1000_ms_force_master : + e1000_ms_force_slave) : e1000_ms_auto; + + switch (hw->phy.ms_type) { + case e1000_ms_force_master: + phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case e1000_ms_force_slave: + phy_data |= CR_1000T_MS_ENABLE; + phy_data &= ~(CR_1000T_MS_VALUE); + break; + case e1000_ms_auto: + phy_data &= ~CR_1000T_MS_ENABLE; + /* fall-through */ + default: + break; } - if (phy->type == e1000_phy_82580) { + return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); +} + +/** + * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link + * @hw: pointer to the HW structure + * + * Sets up Carrier-sense on Transmit and downshift values. + **/ +s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_82577"); + + if (hw->phy.reset_disable) + return E1000_SUCCESS; + + if (hw->phy.type == e1000_phy_82580) { ret_val = hw->phy.ops.reset(hw); if (ret_val) { - hw_dbg("Error resetting the PHY.\n"); - goto out; + DEBUGOUT("Error resetting the PHY.\n"); + return ret_val; } } - /* Enable CRS on TX. This must be set for half-duplex operation. */ - ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data); + /* Enable CRS on Tx. This must be set for half-duplex operation. */ + ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data); if (ret_val) - goto out; + return ret_val; - phy_data |= I82580_CFG_ASSERT_CRS_ON_TX; + phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; /* Enable downshift */ - phy_data |= I82580_CFG_ENABLE_DOWNSHIFT; + phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; - ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data); + ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data); + if (ret_val) + return ret_val; -out: - return ret_val; + /* Set MDI/MDIX mode */ + ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; + /* Options: + * 0 - Auto (default) + * 1 - MDI mode + * 2 - MDI-X mode + */ + switch (hw->phy.mdix) { + case 1: + break; + case 2: + phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; + break; + case 0: + default: + phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; + break; + } + ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data); + if (ret_val) + return ret_val; + + return e1000_set_master_slave_mode(hw); } /** - * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link + * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link * @hw: pointer to the HW structure * * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock * and downshift values are set also. **/ -s32 igb_copper_link_setup_m88(struct e1000_hw *hw) +s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; - if (phy->reset_disable) { - ret_val = 0; - goto out; - } + DEBUGFUNC("e1000_copper_link_setup_m88"); + + if (phy->reset_disable) + return E1000_SUCCESS; - /* Enable CRS on TX. This must be set for half-duplex operation. */ + /* Enable CRS on Tx. This must be set for half-duplex operation. */ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) - goto out; + return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - /* - * Options: + /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode @@ -514,30 +1122,28 @@ s32 igb_copper_link_setup_m88(struct e1000_hw *hw) break; } - /* - * Options: + /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (phy->disable_polarity_correction == 1) + if (phy->disable_polarity_correction) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) - goto out; + return ret_val; if (phy->revision < E1000_REVISION_4) { - /* - * Force TX_CLK in the Extended PHY Specific Control Register + /* Force TX_CLK in the Extended PHY Specific Control Register * to 25MHz clock. */ ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - &phy_data); + &phy_data); if (ret_val) - goto out; + return ret_val; phy_data |= M88E1000_EPSCR_TX_CLK_25; @@ -549,57 +1155,50 @@ s32 igb_copper_link_setup_m88(struct e1000_hw *hw) } else { /* Configure Master and Slave downshift values */ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); } ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) - goto out; + return ret_val; } /* Commit the changes. */ - ret_val = igb_phy_sw_reset(hw); + ret_val = phy->ops.commit(hw); if (ret_val) { - hw_dbg("Error committing the PHY changes\n"); - goto out; - } - if (phy->type == e1000_phy_i210) { - ret_val = igb_set_master_slave_mode(hw); - if (ret_val) - return ret_val; + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; } -out: - return ret_val; + return E1000_SUCCESS; } /** - * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link + * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link * @hw: pointer to the HW structure * * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. * Also enables and sets the downshift parameters. **/ -s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw) +s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; - if (phy->reset_disable) { - ret_val = 0; - goto out; - } + DEBUGFUNC("e1000_copper_link_setup_m88_gen2"); + + if (phy->reset_disable) + return E1000_SUCCESS; /* Enable CRS on Tx. This must be set for half-duplex operation. */ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) - goto out; + return ret_val; - /* - * Options: + /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode @@ -627,91 +1226,94 @@ s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw) break; } - /* - * Options: + /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (phy->disable_polarity_correction == 1) + if (phy->disable_polarity_correction) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; /* Enable downshift and setting it to X6 */ + if (phy->id == M88E1543_E_PHY_ID) { + phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; + ret_val = + phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + } + phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) - goto out; + return ret_val; /* Commit the changes. */ - ret_val = igb_phy_sw_reset(hw); + ret_val = phy->ops.commit(hw); if (ret_val) { - hw_dbg("Error committing the PHY changes\n"); - goto out; + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; } -out: - return ret_val; + ret_val = e1000_set_master_slave_mode(hw); + if (ret_val) + return ret_val; + + return E1000_SUCCESS; } /** - * igb_copper_link_setup_igp - Setup igp PHY's for copper link + * e1000_copper_link_setup_igp - Setup igp PHY's for copper link * @hw: pointer to the HW structure * * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for * igp PHY's. **/ -s32 igb_copper_link_setup_igp(struct e1000_hw *hw) +s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; - if (phy->reset_disable) { - ret_val = 0; - goto out; - } + DEBUGFUNC("e1000_copper_link_setup_igp"); - ret_val = phy->ops.reset(hw); + if (phy->reset_disable) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.reset(hw); if (ret_val) { - hw_dbg("Error resetting the PHY.\n"); - goto out; + DEBUGOUT("Error resetting the PHY.\n"); + return ret_val; } - /* - * Wait 100ms for MAC to configure PHY from NVM settings, to avoid + /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid * timeout issues when LFS is enabled. */ - msleep(100); + msec_delay(100); - /* - * The NVM settings will configure LPLU in D3 for - * non-IGP1 PHYs. - */ - if (phy->type == e1000_phy_igp) { - /* disable lplu d3 during driver init */ - if (phy->ops.set_d3_lplu_state) - ret_val = phy->ops.set_d3_lplu_state(hw, false); + /* disable lplu d0 during driver init */ + if (hw->phy.ops.set_d0_lplu_state) { + ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); if (ret_val) { - hw_dbg("Error Disabling LPLU D3\n"); - goto out; + DEBUGOUT("Error Disabling LPLU D0\n"); + return ret_val; } } - - /* disable lplu d0 during driver init */ - ret_val = phy->ops.set_d0_lplu_state(hw, false); - if (ret_val) { - hw_dbg("Error Disabling LPLU D0\n"); - goto out; - } /* Configure mdi-mdix settings */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); if (ret_val) - goto out; + return ret_val; data &= ~IGP01E1000_PSCR_AUTO_MDIX; @@ -729,12 +1331,11 @@ s32 igb_copper_link_setup_igp(struct e1000_hw *hw) } ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); if (ret_val) - goto out; + return ret_val; /* set auto-master slave resolution settings */ if (hw->mac.autoneg) { - /* - * when autonegotiation advertisement is only 1000Mbps then we + /* when autonegotiation advertisement is only 1000Mbps then we * should disable SmartSpeed and enable Auto MasterSlave * resolution as hardware default. */ @@ -744,129 +1345,34 @@ s32 igb_copper_link_setup_igp(struct e1000_hw *hw) IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) - goto out; + return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) - goto out; + return ret_val; /* Set auto Master/Slave resolution process */ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); if (ret_val) - goto out; + return ret_val; data &= ~CR_1000T_MS_ENABLE; ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); if (ret_val) - goto out; - } - - ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); - if (ret_val) - goto out; - - /* load defaults for future use */ - phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? - ((data & CR_1000T_MS_VALUE) ? - e1000_ms_force_master : - e1000_ms_force_slave) : - e1000_ms_auto; - - switch (phy->ms_type) { - case e1000_ms_force_master: - data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case e1000_ms_force_slave: - data |= CR_1000T_MS_ENABLE; - data &= ~(CR_1000T_MS_VALUE); - break; - case e1000_ms_auto: - data &= ~CR_1000T_MS_ENABLE; - default: - break; + return ret_val; } - ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); - if (ret_val) - goto out; - } - -out: - return ret_val; -} - -/** - * igb_copper_link_autoneg - Setup/Enable autoneg for copper link - * @hw: pointer to the HW structure - * - * Performs initial bounds checking on autoneg advertisement parameter, then - * configure to advertise the full capability. Setup the PHY to autoneg - * and restart the negotiation process between the link partner. If - * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. - **/ -static s32 igb_copper_link_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_ctrl; - - /* - * Perform some bounds checking on the autoneg advertisement - * parameter. - */ - phy->autoneg_advertised &= phy->autoneg_mask; - - /* - * If autoneg_advertised is zero, we assume it was not defaulted - * by the calling code so we set to advertise full capability. - */ - if (phy->autoneg_advertised == 0) - phy->autoneg_advertised = phy->autoneg_mask; - - hw_dbg("Reconfiguring auto-neg advertisement params\n"); - ret_val = igb_phy_setup_autoneg(hw); - if (ret_val) { - hw_dbg("Error Setting up Auto-Negotiation\n"); - goto out; - } - hw_dbg("Restarting Auto-Neg\n"); - - /* - * Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - goto out; - - phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - goto out; - /* - * Does the user want to wait for Auto-Neg to complete here, or - * check at a later time (for example, callback routine). - */ - if (phy->autoneg_wait_to_complete) { - ret_val = igb_wait_autoneg(hw); - if (ret_val) { - hw_dbg("Error while waiting for " - "autoneg to complete\n"); - goto out; - } + ret_val = e1000_set_master_slave_mode(hw); } - hw->mac.get_link_status = true; - -out: return ret_val; } /** - * igb_phy_setup_autoneg - Configure PHY for auto-negotiation + * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation * @hw: pointer to the HW structure * * Reads the MII auto-neg advertisement register and/or the 1000T control @@ -874,38 +1380,38 @@ out: * return successful. Otherwise, setup advertisement and flow control to * the appropriate values for the wanted auto-negotiation. **/ -static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) +static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 mii_autoneg_adv_reg; u16 mii_1000t_ctrl_reg = 0; + DEBUGFUNC("e1000_phy_setup_autoneg"); + phy->autoneg_advertised &= phy->autoneg_mask; /* Read the MII Auto-Neg Advertisement Register (Address 4). */ ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); if (ret_val) - goto out; + return ret_val; if (phy->autoneg_mask & ADVERTISE_1000_FULL) { /* Read the MII 1000Base-T Control Register (Address 9). */ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); if (ret_val) - goto out; + return ret_val; } - /* - * Need to parse both autoneg_advertised and fc and set up + /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for * autoneg_advertised software override. Since we can advertise * a plethora of combinations, we need to check each bit * individually. */ - /* - * First we clear all the 10/100 mb speed bits in the Auto-Neg + /* First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T Control Register (Address 9). */ @@ -915,44 +1421,43 @@ static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) NWAY_AR_10T_HD_CAPS); mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); - hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); + DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_HALF) { - hw_dbg("Advertise 10mb Half duplex\n"); + DEBUGOUT("Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_FULL) { - hw_dbg("Advertise 10mb Full duplex\n"); + DEBUGOUT("Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_HALF) { - hw_dbg("Advertise 100mb Half duplex\n"); + DEBUGOUT("Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_FULL) { - hw_dbg("Advertise 100mb Full duplex\n"); + DEBUGOUT("Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ if (phy->autoneg_advertised & ADVERTISE_1000_HALF) - hw_dbg("Advertise 1000mb Half duplex request denied!\n"); + DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); /* Do we want to advertise 1000 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { - hw_dbg("Advertise 1000mb Full duplex\n"); + DEBUGOUT("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; } - /* - * Check for a software override of the flow control settings, and + /* Check for a software override of the flow control settings, and * setup the PHY advertisement registers accordingly. If * auto-negotiation is enabled, then software will have to set the * "PAUSE" bits to the correct value in the Auto-Negotiation @@ -965,72 +1470,126 @@ static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * but we do not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. + * 3: Both Rx and Tx flow control (symmetric) are enabled. * other: No software override. The flow control configuration * in the EEPROM is used. */ switch (hw->fc.current_mode) { case e1000_fc_none: - /* - * Flow control (RX & TX) is completely disabled by a + /* Flow control (Rx & Tx) is completely disabled by a * software over-ride. */ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_rx_pause: - /* - * RX Flow control is enabled, and TX Flow control is + /* Rx Flow control is enabled, and Tx Flow control is * disabled, by a software over-ride. * * Since there really isn't a way to advertise that we are - * capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later + * capable of Rx Pause ONLY, we will advertise that we + * support both symmetric and asymmetric Rx PAUSE. Later * (in e1000_config_fc_after_link_up) we will disable the * hw's ability to send PAUSE frames. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_tx_pause: - /* - * TX Flow control is enabled, and RX Flow control is + /* Tx Flow control is enabled, and Rx Flow control is * disabled, by a software over-ride. */ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; break; case e1000_fc_full: - /* - * Flow control (both RX and TX) is enabled by a software + /* Flow control (both Rx and Tx) is enabled by a software * over-ride. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; default: - hw_dbg("Flow control param set incorrectly\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; } ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); if (ret_val) - goto out; + return ret_val; - hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - if (phy->autoneg_mask & ADVERTISE_1000_FULL) { - ret_val = phy->ops.write_reg(hw, - PHY_1000T_CTRL, + if (phy->autoneg_mask & ADVERTISE_1000_FULL) + ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); - if (ret_val) - goto out; + + return ret_val; +} + +/** + * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link + * @hw: pointer to the HW structure + * + * Performs initial bounds checking on autoneg advertisement parameter, then + * configure to advertise the full capability. Setup the PHY to autoneg + * and restart the negotiation process between the link partner. If + * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. + **/ +static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_ctrl; + + DEBUGFUNC("e1000_copper_link_autoneg"); + + /* Perform some bounds checking on the autoneg advertisement + * parameter. + */ + phy->autoneg_advertised &= phy->autoneg_mask; + + /* If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if (!phy->autoneg_advertised) + phy->autoneg_advertised = phy->autoneg_mask; + + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); + ret_val = e1000_phy_setup_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error Setting up Auto-Negotiation\n"); + return ret_val; + } + DEBUGOUT("Restarting Auto-Neg\n"); + + /* Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + return ret_val; + + phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + return ret_val; + + /* Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if (phy->autoneg_wait_to_complete) { + ret_val = e1000_wait_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error while waiting for autoneg to complete\n"); + return ret_val; + } } -out: + hw->mac.get_link_status = true; + return ret_val; } /** - * igb_setup_copper_link - Configure copper link settings + * e1000_setup_copper_link_generic - Configure copper link settings * @hw: pointer to the HW structure * * Calls the appropriate function to configure the link for auto-neg or forced @@ -1038,186 +1597,185 @@ out: * to configure collision distance and flow control are called. If link is * not established, we return -E1000_ERR_PHY (-2). **/ -s32 igb_setup_copper_link(struct e1000_hw *hw) +s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) { s32 ret_val; bool link; + DEBUGFUNC("e1000_setup_copper_link_generic"); if (hw->mac.autoneg) { - /* - * Setup autoneg and flow control advertisement and perform + /* Setup autoneg and flow control advertisement and perform * autonegotiation. */ - ret_val = igb_copper_link_autoneg(hw); + ret_val = e1000_copper_link_autoneg(hw); if (ret_val) - goto out; + return ret_val; } else { - /* - * PHY will be set to 10H, 10F, 100H or 100F + /* PHY will be set to 10H, 10F, 100H or 100F * depending on user settings. */ - hw_dbg("Forcing Speed and Duplex\n"); + DEBUGOUT("Forcing Speed and Duplex\n"); ret_val = hw->phy.ops.force_speed_duplex(hw); if (ret_val) { - hw_dbg("Error Forcing Speed and Duplex\n"); - goto out; + DEBUGOUT("Error Forcing Speed and Duplex\n"); + return ret_val; } } - /* - * Check link status. Wait up to 100 microseconds for link to become + /* Check link status. Wait up to 100 microseconds for link to become * valid. */ - ret_val = igb_phy_has_link(hw, - COPPER_LINK_UP_LIMIT, - 10, - &link); + ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, + &link); if (ret_val) - goto out; + return ret_val; if (link) { - hw_dbg("Valid link established!!!\n"); - igb_config_collision_dist(hw); - ret_val = igb_config_fc_after_link_up(hw); + DEBUGOUT("Valid link established!!!\n"); + hw->mac.ops.config_collision_dist(hw); + ret_val = e1000_config_fc_after_link_up_generic(hw); } else { - hw_dbg("Unable to establish link!!!\n"); + DEBUGOUT("Unable to establish link!!!\n"); } -out: return ret_val; } /** - * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY + * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY * @hw: pointer to the HW structure * * Calls the PHY setup function to force speed and duplex. Clears the * auto-crossover to force MDI manually. Waits for link and returns * successful if link up is successful, else -E1000_ERR_PHY (-2). **/ -s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw) +s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; bool link; + DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); if (ret_val) - goto out; + return ret_val; - igb_phy_force_speed_duplex_setup(hw, &phy_data); + e1000_phy_force_speed_duplex_setup(hw, &phy_data); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); if (ret_val) - goto out; + return ret_val; - /* - * Clear Auto-Crossover to force MDI manually. IGP requires MDI + /* Clear Auto-Crossover to force MDI manually. IGP requires MDI * forced whenever speed and duplex are forced. */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); if (ret_val) - goto out; + return ret_val; phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); if (ret_val) - goto out; + return ret_val; - hw_dbg("IGP PSCR: %X\n", phy_data); + DEBUGOUT1("IGP PSCR: %X\n", phy_data); - udelay(1); + usec_delay(1); if (phy->autoneg_wait_to_complete) { - hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); + DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); - ret_val = igb_phy_has_link(hw, - PHY_FORCE_LIMIT, - 100000, - &link); + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); if (ret_val) - goto out; + return ret_val; if (!link) - hw_dbg("Link taking longer than expected.\n"); + DEBUGOUT("Link taking longer than expected.\n"); /* Try once more */ - ret_val = igb_phy_has_link(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); } -out: return ret_val; } /** - * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY + * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY * @hw: pointer to the HW structure * * Calls the PHY setup function to force speed and duplex. Clears the * auto-crossover to force MDI manually. Resets the PHY to commit the * changes. If time expires while waiting for link up, we reset the DSP. - * After reset, TX_CLK and CRS on TX must be set. Return successful upon + * After reset, TX_CLK and CRS on Tx must be set. Return successful upon * successful completion, else return corresponding error code. **/ -s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) +s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; bool link; - /* - * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - goto out; + DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - goto out; + /* I210 and I211 devices support Auto-Crossover in forced operation. */ + if (phy->type != e1000_phy_i210) { + /* Clear Auto-Crossover to force MDI manually. M88E1000 + * requires MDI forced whenever speed and duplex are forced. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; - hw_dbg("M88E1000 PSCR: %X\n", phy_data); + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + + DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); if (ret_val) - goto out; + return ret_val; - igb_phy_force_speed_duplex_setup(hw, &phy_data); + e1000_phy_force_speed_duplex_setup(hw, &phy_data); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); if (ret_val) - goto out; + return ret_val; /* Reset the phy to commit changes. */ - ret_val = igb_phy_sw_reset(hw); + ret_val = hw->phy.ops.commit(hw); if (ret_val) - goto out; + return ret_val; if (phy->autoneg_wait_to_complete) { - hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); + DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); - ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); if (ret_val) - goto out; + return ret_val; if (!link) { bool reset_dsp = true; switch (hw->phy.id) { case I347AT4_E_PHY_ID: + case M88E1340M_E_PHY_ID: case M88E1112_E_PHY_ID: + case M88E1543_E_PHY_ID: + case M88E1512_E_PHY_ID: case I210_I_PHY_ID: reset_dsp = false; break; @@ -1226,68 +1784,135 @@ s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) reset_dsp = false; break; } - if (!reset_dsp) - hw_dbg("Link taking longer than expected.\n"); - else { - /* - * We didn't get link. + + if (!reset_dsp) { + DEBUGOUT("Link taking longer than expected.\n"); + } else { + /* We didn't get link. * Reset the DSP and cross our fingers. */ ret_val = phy->ops.write_reg(hw, - M88E1000_PHY_PAGE_SELECT, - 0x001d); + M88E1000_PHY_PAGE_SELECT, + 0x001d); if (ret_val) - goto out; - ret_val = igb_phy_reset_dsp(hw); + return ret_val; + ret_val = e1000_phy_reset_dsp_generic(hw); if (ret_val) - goto out; + return ret_val; } } /* Try once more */ - ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, - 100000, &link); + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); if (ret_val) - goto out; + return ret_val; } - if (hw->phy.type != e1000_phy_m88 || - hw->phy.id == I347AT4_E_PHY_ID || - hw->phy.id == M88E1112_E_PHY_ID || - hw->phy.id == I210_I_PHY_ID) - goto out; + if (hw->phy.type != e1000_phy_m88) + return E1000_SUCCESS; + if (hw->phy.id == I347AT4_E_PHY_ID || + hw->phy.id == M88E1340M_E_PHY_ID || + hw->phy.id == M88E1112_E_PHY_ID) + return E1000_SUCCESS; + if (hw->phy.id == I210_I_PHY_ID) + return E1000_SUCCESS; + if ((hw->phy.id == M88E1543_E_PHY_ID) || + (hw->phy.id == M88E1512_E_PHY_ID)) + return E1000_SUCCESS; ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); if (ret_val) - goto out; + return ret_val; - /* - * Resetting the phy means we need to re-force TX_CLK in the + /* Resetting the phy means we need to re-force TX_CLK in the * Extended PHY Specific Control Register to 25MHz clock from * the reset value of 2.5MHz. */ phy_data |= M88E1000_EPSCR_TX_CLK_25; ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) - goto out; + return ret_val; - /* - * In addition, we must re-enable CRS on Tx for both half and full + /* In addition, we must re-enable CRS on Tx for both half and full * duplex. */ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) - goto out; + return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); -out: return ret_val; } /** - * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex + * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex + * @hw: pointer to the HW structure + * + * Forces the speed and duplex settings of the PHY. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); + if (ret_val) + return ret_val; + + /* Disable MDI-X support for 10/100 */ + ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + return ret_val; + + data &= ~IFE_PMC_AUTO_MDIX; + data &= ~IFE_PMC_FORCE_MDIX; + + ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); + if (ret_val) + return ret_val; + + DEBUGOUT1("IFE PMC: %X\n", data); + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex * @hw: pointer to the HW structure * @phy_ctrl: pointer to current value of PHY_CONTROL * @@ -1298,17 +1923,18 @@ out: * caller must write to the PHY_CONTROL register for these settings to * take affect. **/ -static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, - u16 *phy_ctrl) +void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) { struct e1000_mac_info *mac = &hw->mac; u32 ctrl; + DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); + /* Turn off flow control when forcing speed/duplex */ hw->fc.current_mode = e1000_fc_none; /* Force speed/duplex on the mac */ - ctrl = rd32(E1000_CTRL); + ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl &= ~E1000_CTRL_SPD_SEL; @@ -1322,33 +1948,32 @@ static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { ctrl &= ~E1000_CTRL_FD; *phy_ctrl &= ~MII_CR_FULL_DUPLEX; - hw_dbg("Half Duplex\n"); + DEBUGOUT("Half Duplex\n"); } else { ctrl |= E1000_CTRL_FD; *phy_ctrl |= MII_CR_FULL_DUPLEX; - hw_dbg("Full Duplex\n"); + DEBUGOUT("Full Duplex\n"); } /* Forcing 10mb or 100mb? */ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { ctrl |= E1000_CTRL_SPD_100; *phy_ctrl |= MII_CR_SPEED_100; - *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); - hw_dbg("Forcing 100mb\n"); + *phy_ctrl &= ~MII_CR_SPEED_1000; + DEBUGOUT("Forcing 100mb\n"); } else { ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - *phy_ctrl |= MII_CR_SPEED_10; *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); - hw_dbg("Forcing 10mb\n"); + DEBUGOUT("Forcing 10mb\n"); } - igb_config_collision_dist(hw); + hw->mac.ops.config_collision_dist(hw); - wr32(E1000_CTRL, ctrl); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); } /** - * igb_set_d3_lplu_state - Sets low power link up state for D3 + * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * @@ -1361,27 +1986,28 @@ static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, * During driver activity, SmartSpeed should be enabled so performance is * maintained. **/ -s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) +s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = 0; + s32 ret_val; u16 data; - if (!(hw->phy.ops.read_reg)) - goto out; + DEBUGFUNC("e1000_set_d3_lplu_state_generic"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); if (ret_val) - goto out; + return ret_val; if (!active) { data &= ~IGP02E1000_PM_D3_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) - goto out; - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used + return ret_val; + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. @@ -1391,121 +2017,121 @@ s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) - goto out; + return ret_val; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) - goto out; + return ret_val; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); + IGP01E1000_PHY_PORT_CONFIG, + &data); if (ret_val) - goto out; + return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) - goto out; + return ret_val; } } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { data |= IGP02E1000_PM_D3_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); + data); if (ret_val) - goto out; + return ret_val; /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); + &data); if (ret_val) - goto out; + return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - data); + data); } -out: return ret_val; } /** - * igb_check_downshift - Checks whether a downshift in speed occurred + * e1000_check_downshift_generic - Checks whether a downshift in speed occurred * @hw: pointer to the HW structure * * Success returns 0, Failure returns 1 * * A downshift is detected by querying the PHY link health. **/ -s32 igb_check_downshift(struct e1000_hw *hw) +s32 e1000_check_downshift_generic(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, offset, mask; + DEBUGFUNC("e1000_check_downshift_generic"); + switch (phy->type) { case e1000_phy_i210: case e1000_phy_m88: case e1000_phy_gg82563: - offset = M88E1000_PHY_SPEC_STATUS; - mask = M88E1000_PSSR_DOWNSHIFT; + offset = M88E1000_PHY_SPEC_STATUS; + mask = M88E1000_PSSR_DOWNSHIFT; break; case e1000_phy_igp_2: - case e1000_phy_igp: case e1000_phy_igp_3: - offset = IGP01E1000_PHY_LINK_HEALTH; - mask = IGP01E1000_PLHR_SS_DOWNGRADE; + offset = IGP01E1000_PHY_LINK_HEALTH; + mask = IGP01E1000_PLHR_SS_DOWNGRADE; break; default: /* speed downshift not supported */ phy->speed_downgraded = false; - ret_val = 0; - goto out; + return E1000_SUCCESS; } ret_val = phy->ops.read_reg(hw, offset, &phy_data); if (!ret_val) - phy->speed_downgraded = (phy_data & mask) ? true : false; + phy->speed_downgraded = !!(phy_data & mask); -out: return ret_val; } /** - * igb_check_polarity_m88 - Checks the polarity. + * e1000_check_polarity_m88 - Checks the polarity. * @hw: pointer to the HW structure * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) * * Polarity is determined based on the PHY specific status register. **/ -s32 igb_check_polarity_m88(struct e1000_hw *hw) +s32 e1000_check_polarity_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; + DEBUGFUNC("e1000_check_polarity_m88"); + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); if (!ret_val) - phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; + phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); return ret_val; } /** - * igb_check_polarity_igp - Checks the polarity. + * e1000_check_polarity_igp - Checks the polarity. * @hw: pointer to the HW structure * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) @@ -1513,56 +2139,94 @@ s32 igb_check_polarity_m88(struct e1000_hw *hw) * Polarity is determined based on the PHY port status register, and the * current speed (since there is no polarity at 100Mbps). **/ -static s32 igb_check_polarity_igp(struct e1000_hw *hw) +s32 e1000_check_polarity_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data, offset, mask; - /* - * Polarity is determined based on the speed of + DEBUGFUNC("e1000_check_polarity_igp"); + + /* Polarity is determined based on the speed of * our connection. */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); if (ret_val) - goto out; + return ret_val; if ((data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { - offset = IGP01E1000_PHY_PCS_INIT_REG; - mask = IGP01E1000_PHY_POLARITY_MASK; + offset = IGP01E1000_PHY_PCS_INIT_REG; + mask = IGP01E1000_PHY_POLARITY_MASK; } else { - /* - * This really only applies to 10Mbps since + /* This really only applies to 10Mbps since * there is no polarity for 100Mbps (always 0). */ - offset = IGP01E1000_PHY_PORT_STATUS; - mask = IGP01E1000_PSSR_POLARITY_REVERSED; + offset = IGP01E1000_PHY_PORT_STATUS; + mask = IGP01E1000_PSSR_POLARITY_REVERSED; } ret_val = phy->ops.read_reg(hw, offset, &data); if (!ret_val) - phy->cable_polarity = (data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; + phy->cable_polarity = ((data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); -out: return ret_val; } /** - * igb_wait_autoneg - Wait for auto-neg compeletion + * e1000_check_polarity_ife - Check cable polarity for IFE PHY + * @hw: pointer to the HW structure + * + * Polarity is determined on the polarity reversal feature being enabled. + **/ +s32 e1000_check_polarity_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + DEBUGFUNC("e1000_check_polarity_ife"); + + /* Polarity is determined based on the reversal feature being enabled. + */ + if (phy->polarity_correction) { + offset = IFE_PHY_EXTENDED_STATUS_CONTROL; + mask = IFE_PESC_POLARITY_REVERSED; + } else { + offset = IFE_PHY_SPECIAL_CONTROL; + mask = IFE_PSC_FORCE_POLARITY; + } + + ret_val = phy->ops.read_reg(hw, offset, &phy_data); + + if (!ret_val) + phy->cable_polarity = ((phy_data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); + + return ret_val; +} + +/** + * e1000_wait_autoneg - Wait for auto-neg completion * @hw: pointer to the HW structure * * Waits for auto-negotiation to complete or for the auto-negotiation time * limit to expire, which ever happens first. **/ -static s32 igb_wait_autoneg(struct e1000_hw *hw) +static s32 e1000_wait_autoneg(struct e1000_hw *hw) { - s32 ret_val = 0; + s32 ret_val = E1000_SUCCESS; u16 i, phy_status; + DEBUGFUNC("e1000_wait_autoneg"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); @@ -1573,18 +2237,17 @@ static s32 igb_wait_autoneg(struct e1000_hw *hw) break; if (phy_status & MII_SR_AUTONEG_COMPLETE) break; - msleep(100); + msec_delay(100); } - /* - * PHY_AUTO_NEG |