summaryrefslogtreecommitdiff
path: root/arch/um/kernel/dyn.lds.S
AgeCommit message (Collapse)Author
2008-05-13uml: use PAGE_SIZE in linker scriptsCyrill Gorcunov
This patch includes page.h header into linker scripts that allow us to use PAGE_SIZE macro instead of numeric constant. To be able to include page.h into linker scripts page.h is needed for some modification - i.e. we need to use __ASSEMBLY__ and _AC macro [jdike@linux.intel.com - fixed conflict with as-layout.h] Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com> Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: WANG Cong <xiyou.wangcong@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-01-28all archs: consolidate init and exit sections in vmlinux.lds.hSam Ravnborg
This patch consolidate all definitions of .init.text, .init.data and .exit.text, .exit.data section definitions in the generic vmlinux.lds.h. This is a preparational patch - alone it does not buy us much good. Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
2007-10-16uml: throw out CONFIG_MODE_TTJeff Dike
This patchset throws out tt mode, which has been non-functional for a while. This is done in phases, interspersed with code cleanups on the affected files. The removal is done as follows: remove all code, config options, and files which depend on CONFIG_MODE_TT get rid of the CHOOSE_MODE macro, which decided whether to call tt-mode or skas-mode code, and replace invocations with their skas portions replace all now-trivial procedures with their skas equivalents There are now a bunch of now-redundant pieces of data structures, including mode-specific pieces of the thread structure, pt_regs, and mm_context. These are all replaced with their skas-specific contents. As part of the ongoing style compliance project, I made a style pass over all files that were changed. There are three such patches, one for each phase, covering the files affected by that phase but no later ones. I noticed that we weren't freeing the LDT state associated with a process when it exited, so that's fixed in one of the later patches. The last patch is a tidying patch which I've had for a while, but which caused inexplicable crashes under tt mode. Since that is no longer a problem, this can now go in. This patch: Start getting rid of tt mode support. This patch throws out CONFIG_MODE_TT and all config options, code, and files which depend on it. CONFIG_MODE_SKAS is gone and everything that depends on it is included unconditionally. The few changed lines are in re-written Kconfig help, lines which needed something skas-related removed from them, and a few more which weren't strictly deletions. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-31uml: fix linker script alignment bugsJeff Dike
Fix a class of bugs in the UML linker scripts which caused section boundary variables to sometimes not line up with their sections. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-19all-archs: consolidate .data section definition in asm-genericSam Ravnborg
With this consolidation we can now modify the .data section definition in one spot for all archs. Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
2007-05-19all-archs: consolidate .text section definition in asm-genericSam Ravnborg
Move definition of .text section to asm-generic. Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
2007-05-11uml: iRQ stacksJeff Dike
Add a separate IRQ stack. This differs from i386 in having the entire interrupt run on a separate stack rather than starting on the normal kernel stack and switching over once some preparation has been done. The underlying mechanism, is of course, sigaltstack. Another difference is that interrupts that happen in userspace are handled on the normal kernel stack. These cause a wait wakeup instead of a signal delivery so there is no point in trying to switch stacks for these. There's no other stuff on the stack, so there is no extra stack consumption. This quirk makes it possible to have the entire interrupt run on a separate stack - process preemption (and calls to schedule()) happens on a normal kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought. The IRQ stack for CPU 0 is declared in the same way as the initial kernel stack. IRQ stacks for other CPUs will be allocated dynamically. An extra field was added to the thread_info structure. When the active thread_info is copied to the IRQ stack, the real_thread field points back to the original stack. This makes it easy to tell where to copy the thread_info struct back to when the interrupt is finished. It also serves as a marker of a nested interrupt. It is NULL for the first interrupt on the stack, and non-NULL for any nested interrupts. Care is taken to behave correctly if a second interrupt comes in when the thread_info structure is being set up or taken down. I could just disable interrupts here, but I don't feel like giving up any of the performance gained by not flipping signals on and off. If an interrupt comes in during these critical periods, the handler can't run because it has no idea what shape the stack is in. So, it sets a bit for its signal in a global mask and returns. The outer handler will deal with this signal itself. Atomicity is had with xchg. A nested interrupt that needs to bail out will xchg its signal mask into pending_mask and repeat in case yet another interrupt hit at the same time, until the mask stabilizes. The outermost interrupt will set up the thread_info and xchg a zero into pending_mask when it is done. At this point, nested interrupts will look at ->real_thread and see that no setup needs to be done. They can just continue normally. Similar care needs to be taken when exiting the outer handler. If another interrupt comes in while it is copying the thread_info, it will drop a bit into pending_mask. The outer handler will check this and if it is non-zero, will loop, set up the stack again, and handle the interrupt. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-10-31[PATCH] uml: add _text definition to linker scriptsJeff Dike
kallsyms now refers to addresses as '_text + 0xADDRESS', rather than just '0xADDRESS', so we need to define _text. Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-31[PATCH] vDSO hash-style fixRoland McGrath
The latest toolchains can produce a new ELF section in DSOs and dynamically-linked executables. The new section ".gnu.hash" replaces ".hash", and allows for more efficient runtime symbol lookups by the dynamic linker. The new ld option --hash-style={sysv|gnu|both} controls whether to produce the old ".hash", the new ".gnu.hash", or both. In some new systems such as Fedora Core 6, gcc by default passes --hash-style=gnu to the linker, so that a standard invocation of "gcc -shared" results in producing a DSO with only ".gnu.hash". The new ".gnu.hash" sections need to be dealt with the same way as ".hash" sections in all respects; only the dynamic linker cares about their contents. To work with older dynamic linkers (i.e. preexisting releases of glibc), a binary must have the old ".hash" section. The --hash-style=both option produces binaries that a new dynamic linker can use more efficiently, but an old dynamic linker can still handle. The new section runs afoul of the custom linker scripts used to build vDSO images for the kernel. On ia64, the failure mode for this is a boot-time panic because the vDSO's PT_IA_64_UNWIND segment winds up ill-formed. This patch addresses the problem in two ways. First, it mentions ".gnu.hash" in all the linker scripts alongside ".hash". This produces correct vDSO images with --hash-style=sysv (or old tools), with --hash-style=gnu, or with --hash-style=both. Second, it passes the --hash-style=sysv option when building the vDSO images, so that ".gnu.hash" is not actually produced. This is the most conservative choice for compatibility with any old userland. There is some concern that some ancient glibc builds (though not any known old production system) might choke on --hash-style=both binaries. The optimizations provided by the new style of hash section do not really matter for a DSO with a tiny number of symbols, as the vDSO has. If someone wants to use =gnu or =both for their vDSO builds and worry less about that compatibility, just change the option and the linker script changes will make any choice work fine. Signed-off-by: Roland McGrath <roland@redhat.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Andi Kleen <ak@muc.de> Cc: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10[PATCH] i386 / uml: add dwarf sections to static link scriptPaolo 'Blaisorblade' Giarrusso
Inside the linker script, insert the code for DWARF debug info sections. This may help GDB'ing a Uml binary. Actually, it seems that ld is able to guess what I added correctly, but normal linker scripts include this section so it should be correct anyway adding it. On request by Sam Ravnborg <sam@ravnborg.org>, I've added it to asm-generic/vmlinux.lds.s. I've also moved there the stabs debug section, used the new macro in i386 linker script and added DWARF debug section to that. In the truth, I've not been able to verify the difference in GDB behaviour after this change (I've seen large improvements with another patch). This may depend on my binutils version, older one may have worse defaults. However, this section is present in normal linker script, so add it at least for the sake of cleanness. Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Acked-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07[PATCH] uml: skas0 - separate kernel address space on stock hostsJeff Dike
UML has had two modes of operation - an insecure, slow mode (tt mode) in which the kernel is mapped into every process address space which requires no host kernel modifications, and a secure, faster mode (skas mode) in which the UML kernel is in a separate host address space, which requires a patch to the host kernel. This patch implements something very close to skas mode for hosts which don't support skas - I'm calling this skas0. It provides the security of the skas host patch, and some of the performance gains. The two main things that are provided by the skas patch, /proc/mm and PTRACE_FAULTINFO, are implemented in a way that require no host patch. For the remote address space changing stuff (mmap, munmap, and mprotect), we set aside two pages in the process above its stack, one of which contains a little bit of code which can call mmap et al. To update the address space, the system call information (system call number and arguments) are written to the stub page above the code. The %esp is set to the beginning of the data, the %eip is set the the start of the stub, and it repeatedly pops the information into its registers and makes the system call until it sees a system call number of zero. This is to amortize the cost of the context switch across multiple address space updates. When the updates are done, it SIGSTOPs itself, and the kernel process continues what it was doing. For a PTRACE_FAULTINFO replacement, we set up a SIGSEGV handler in the child, and let it handle segfaults rather than nullifying them. The handler is in the same page as the mmap stub. The second page is used as the stack. The handler reads cr2 and err from the sigcontext, sticks them at the base of the stack in a faultinfo struct, and SIGSTOPs itself. The kernel then reads the faultinfo and handles the fault. A complication on x86_64 is that this involves resetting the registers to the segfault values when the process is inside the kill system call. This breaks on x86_64 because %rcx will contain %rip because you tell SYSRET where to return to by putting the value in %rcx. So, this corrupts $rcx on return from the segfault. To work around this, I added an arch_finish_segv, which on x86 does nothing, but which on x86_64 ptraces the child back through the sigreturn. This causes %rcx to be restored by sigreturn and avoids the corruption. Ultimately, I think I will replace this with the trick of having it send itself a blocked signal which will be unblocked by the sigreturn. This will allow it to be stopped just after the sigreturn, and PTRACE_SYSCALLed without all the back-and-forth of PTRACE_SYSCALLing it through sigreturn. This runs on a stock host, so theoretically (and hopefully), tt mode isn't needed any more. We need to make sure that this is better in every way than tt mode, though. I'm concerned about the speed of address space updates and page fault handling, since they involve extra round-trips to the child. We can amortize the round-trip cost for large address space updates by writing all of the operations to the data page and having the child execute them all at the same time. This will help fork and exec, but not page faults, since they involve only one page. I can't think of any way to help page faults, except to add something like PTRACE_FAULTINFO to the host. There is PTRACE_SIGINFO, but UML doesn't use siginfo for SIGSEGV (or anything else) because there isn't enough information in the siginfo struct to handle page faults (the faulting operation type is missing). Adding that would make PTRACE_SIGINFO a usable equivalent to PTRACE_FAULTINFO. As for the code itself: - The system call stub is in arch/um/kernel/sys-$(SUBARCH)/stub.S. It is put in its own section of the binary along with stub_segv_handler in arch/um/kernel/skas/process.c. This is manipulated with run_syscall_stub in arch/um/kernel/skas/mem_user.c. syscall_stub will execute any system call at all, but it's only used for mmap, munmap, and mprotect. - The x86_64 stub calls sigreturn by hand rather than allowing the normal sigreturn to happen, because the normal sigreturn is a SA_RESTORER in UML's address space provided by libc. Needless to say, this is not available in the child's address space. Also, it does a couple of odd pops before that which restore the stack to the state it was in at the time the signal handler was called. - There is a new field in the arch mmu_context, which is now a union. This is the pid to be manipulated rather than the /proc/mm file descriptor. Code which deals with this now checks proc_mm to see whether it should use the usual skas code or the new code. - userspace_tramp is now used to create a new host process for every UML process, rather than one per UML processor. It checks proc_mm and ptrace_faultinfo to decide whether to map in the pages above its stack. - start_userspace now makes CLONE_VM conditional on proc_mm since we need separate address spaces now. - switch_mm_skas now just sets userspace_pid[0] to the new pid rather than PTRACE_SWITCH_MM. There is an addition to userspace which updates its idea of the pid being manipulated each time around the loop. This is important on exec, when the pid will change underneath userspace(). - The stub page has a pte, but it can't be mapped in using tlb_flush because it is part of tlb_flush. This is why it's required for it to be mapped in by userspace_tramp. Other random things: - The stub section in uml.lds.S is page aligned. This page is written out to the backing vm file in setup_physmem because it is mapped from there into user processes. - There's some confusion with TASK_SIZE now that there are a couple of extra pages that the process can't use. TASK_SIZE is considered by the elf code to be the usable process memory, which is reasonable, so it is decreased by two pages. This confuses the definition of USER_PGDS_IN_LAST_PML4, making it too small because of the rounding down of the uneven division. So we round it to the nearest PGDIR_SIZE rather than the lower one. - I added a missing PT_SYSCALL_ARG6_OFFSET macro. - um_mmu.h was made into a userspace-usable file. - proc_mm and ptrace_faultinfo are globals which say whether the host supports these features. - There is a bad interaction between the mm.nr_ptes check at the end of exit_mmap, stack randomization, and skas0. exit_mmap will stop freeing pages at the PGDIR_SIZE boundary after the last vma. If the stack isn't on the last page table page, the last pte page won't be freed, as it should be since the stub ptes are there, and exit_mmap will BUG because there is an unfreed page. To get around this, TASK_SIZE is set to the next lowest PGDIR_SIZE boundary and mm->nr_ptes is decremented after the calls to init_stub_pte. This ensures that we know the process stack (and all other process mappings) will be below the top page table page, and thus we know that mm->nr_ptes will be one too many, and can be decremented. Things that need fixing: - We may need better assurrences that the stub code is PIC. - The stub pte is set up in init_new_context_skas. - alloc_pgdir is probably the right place. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!