summaryrefslogtreecommitdiff
path: root/include/linux/shmem_fs.h
AgeCommit message (Collapse)Author
2012-01-23SHM_UNLOCK: fix Unevictable pages stranded after swapHugh Dickins
Commit cc39c6a9bbde ("mm: account skipped entries to avoid looping in find_get_pages") correctly fixed an infinite loop; but left a problem that find_get_pages() on shmem would return 0 (appearing to callers to mean end of tree) when it meets a run of nr_pages swap entries. The only uses of find_get_pages() on shmem are via pagevec_lookup(), called from invalidate_mapping_pages(), and from shmctl SHM_UNLOCK's scan_mapping_unevictable_pages(). The first is already commented, and not worth worrying about; but the second can leave pages on the Unevictable list after an unusual sequence of swapping and locking. Fix that by using shmem_find_get_pages_and_swap() (then ignoring the swap) instead of pagevec_lookup(). But I don't want to contaminate vmscan.c with shmem internals, nor shmem.c with LRU locking. So move scan_mapping_unevictable_pages() into shmem.c, renaming it shmem_unlock_mapping(); and rename check_move_unevictable_page() to check_move_unevictable_pages(), looping down an array of pages, oftentimes under the same lock. Leave out the "rotate unevictable list" block: that's a leftover from when this was used for /proc/sys/vm/scan_unevictable_pages, whose flawed handling involved looking at pages at tail of LRU. Was there significance to the sequence first ClearPageUnevictable, then test page_evictable, then SetPageUnevictable here? I think not, we're under LRU lock, and have no barriers between those. Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: <stable@vger.kernel.org> [back to 3.1 but will need respins] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-03shmem, ramfs: propagate umode_t, open-coded S_ISREGAl Viro
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-08-03tmpfs: use kmemdup for short symlinksHugh Dickins
But we've not yet removed the old swp_entry_t i_direct[16] from shmem_inode_info. That's because it was still being shared with the inline symlink. Remove it now (saving 64 or 128 bytes from shmem inode size), and use kmemdup() for short symlinks, say, those up to 128 bytes. I wonder why mpol_free_shared_policy() is done in shmem_destroy_inode() rather than shmem_evict_inode(), where we usually do such freeing? I guess it doesn't matter, and I'm not into NUMA mpol testing right now. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-03tmpfs: convert mem_cgroup shmem to radix-swapHugh Dickins
Remove mem_cgroup_shmem_charge_fallback(): it was only required when we had to move swappage to filecache with GFP_NOWAIT. Remove the GFP_NOWAIT special case from mem_cgroup_cache_charge(), by moving its call out from shmem_add_to_page_cache() to two of thats three callers. But leave it doing mem_cgroup_uncharge_cache_page() on error: although asymmetrical, it's easier for all 3 callers to handle. These two changes would also be appropriate if anyone were to start using shmem_read_mapping_page_gfp() with GFP_NOWAIT. Remove mem_cgroup_get_shmem_target(): mc_handle_file_pte() can test radix_tree_exceptional_entry() to get what it needs for itself. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-03tmpfs: miscellaneous trivial cleanupsHugh Dickins
While it's at its least, make a number of boring nitpicky cleanups to shmem.c, mostly for consistency of variable naming. Things like "swap" instead of "entry", "pgoff_t index" instead of "unsigned long idx". And since everything else here is prefixed "shmem_", better change init_tmpfs() to shmem_init(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-03tmpfs: demolish old swap vector supportHugh Dickins
The maximum size of a shmem/tmpfs file has been limited by the maximum size of its triple-indirect swap vector. With 4kB page size, maximum filesize was just over 2TB on a 32-bit kernel, but sadly one eighth of that on a 64-bit kernel. (With 8kB page size, maximum filesize was just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel, MAX_LFS_FILESIZE being then more restrictive than swap vector layout.) It's a shame that tmpfs should be more restrictive than ramfs, and this limitation has now been noticed. Add another level to the swap vector? No, it became obscure and hard to maintain, once I complicated it to make use of highmem pages nine years ago: better choose another way. Surely, if 2.4 had had the radix tree pagecache introduced in 2.5, then tmpfs would never have invented its own peculiar radix tree: we would have fitted swap entries into the common radix tree instead, in much the same way as we fit swap entries into page tables. And why should each file have a separate radix tree for its pages and for its swap entries? The swap entries are required precisely where and when the pages are not. We want to put them together in a single radix tree: which can then avoid much of the locking which was needed to prevent them from being exchanged underneath us. This also avoids the waste of memory devoted to swap vectors, first in the shmem_inode itself, then at least two more pages once a file grew beyond 16 data pages (pages accounted by df and du, but not by memcg). Allocated upfront, to avoid allocation when under swapping pressure, but pure waste when CONFIG_SWAP is not set - I have never spattered around the ifdefs to prevent that, preferring this move to sharing the common radix tree instead. There are three downsides to sharing the radix tree. One, that it binds tmpfs more tightly to the rest of mm, either requiring knowledge of swap entries in radix tree there, or duplication of its code here in shmem.c. I believe that the simplications and memory savings (and probable higher performance, not yet measured) justify that. Two, that on HIGHMEM systems with SWAP enabled, it's the lowmem radix nodes that cannot be freed under memory pressure - whereas before it was the less precious highmem swap vector pages that could not be freed. I'm hoping that 64-bit has now been accessible for long enough, that the highmem argument has grown much less persuasive. Three, that swapoff is slower than it used to be on tmpfs files, since it's using a simple generic mechanism not tailored to it: I find this noticeable, and shall want to improve, but maybe nobody else will notice. So... now remove most of the old swap vector code from shmem.c. But, for the moment, keep the simple i_direct vector of 16 pages, with simple accessors shmem_put_swap() and shmem_get_swap(), as a toy implementation to help mark where swap needs to be handled in subsequent patches. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-27tmpfs: add shmem_read_mapping_page_gfpHugh Dickins
Although it is used (by i915) on nothing but tmpfs, read_cache_page_gfp() is unsuited to tmpfs, because it inserts a page into pagecache before calling the filesystem's ->readpage: tmpfs may have pages in swapcache which only it knows how to locate and switch to filecache. At present tmpfs provides a ->readpage method, and copes with this by copying pages; but soon we can simplify it by removing its ->readpage. Provide shmem_read_mapping_page_gfp() now, ready for that transition, Export shmem_read_mapping_page_gfp() and add it to list in shmem_fs.h, with shmem_read_mapping_page() inline for the common mapping_gfp case. (shmem_read_mapping_page_gfp or shmem_read_cache_page_gfp? Generally the read_mapping_page functions use the mapping's ->readpage, and the read_cache_page functions use the supplied filler, so I think read_cache_page_gfp was slightly misnamed.) Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-27tmpfs: take control of its truncate_rangeHugh Dickins
2.6.35's new truncate convention gave tmpfs the opportunity to control its file truncation, no longer enforced from outside by vmtruncate(). We shall want to build upon that, to handle pagecache and swap together. Slightly redefine the ->truncate_range interface: let it now be called between the unmap_mapping_range()s, with the filesystem responsible for doing the truncate_inode_pages_range() from it - just as the filesystem is nowadays responsible for doing that from its ->setattr. Let's rename shmem_notify_change() to shmem_setattr(). Instead of calling the generic truncate_setsize(), bring that code in so we can call shmem_truncate_range() - which will later be updated to perform its own variant of truncate_inode_pages_range(). Remove the punch_hole unmap_mapping_range() from shmem_truncate_range(): now that the COW's unmap_mapping_range() comes after ->truncate_range, there is no need to call it a third time. Export shmem_truncate_range() and add it to the list in shmem_fs.h, so that i915_gem_object_truncate() can call it explicitly in future; get this patch in first, then update drm/i915 once this is available (until then, i915 will just be doing the truncate_inode_pages() twice). Though introduced five years ago, no other filesystem is implementing ->truncate_range, and its only other user is madvise(,,MADV_REMOVE): we expect to convert it to fallocate(,FALLOC_FL_PUNCH_HOLE,,) shortly, whereupon ->truncate_range can be removed from inode_operations - shmem_truncate_range() will help i915 across that transition too. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-27mm: move shmem prototypes to shmem_fs.hHugh Dickins
Before adding any more global entry points into shmem.c, gather such prototypes into shmem_fs.h. Remove mm's own declarations from swap.h, but for now leave the ones in mm.h: because shmem_file_setup() and shmem_zero_setup() are called from various places, and we should not force other subsystems to update immediately. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25tmpfs: implement generic xattr supportEric Paris
Implement generic xattrs for tmpfs filesystems. The Feodra project, while trying to replace suid apps with file capabilities, realized that tmpfs, which is used on the build systems, does not support file capabilities and thus cannot be used to build packages which use file capabilities. Xattrs are also needed for overlayfs. The xattr interface is a bit odd. If a filesystem does not implement any {get,set,list}xattr functions the VFS will call into some random LSM hooks and the running LSM can then implement some method for handling xattrs. SELinux for example provides a method to support security.selinux but no other security.* xattrs. As it stands today when one enables CONFIG_TMPFS_POSIX_ACL tmpfs will have xattr handler routines specifically to handle acls. Because of this tmpfs would loose the VFS/LSM helpers to support the running LSM. To make up for that tmpfs had stub functions that did nothing but call into the LSM hooks which implement the helpers. This new patch does not use the LSM fallback functions and instead just implements a native get/set/list xattr feature for the full security.* and trusted.* namespace like a normal filesystem. This means that tmpfs can now support both security.selinux and security.capability, which was not previously possible. The basic implementation is that I attach a: struct shmem_xattr { struct list_head list; /* anchored by shmem_inode_info->xattr_list */ char *name; size_t size; char value[0]; }; Into the struct shmem_inode_info for each xattr that is set. This implementation could easily support the user.* namespace as well, except some care needs to be taken to prevent large amounts of unswappable memory being allocated for unprivileged users. [mszeredi@suse.cz: new config option, suport trusted.*, support symlinks] Signed-off-by: Eric Paris <eparis@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Acked-by: Serge Hallyn <serge.hallyn@ubuntu.com> Tested-by: Serge Hallyn <serge.hallyn@ubuntu.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Hugh Dickins <hughd@google.com> Tested-by: Jordi Pujol <jordipujolp@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09tmpfs: make tmpfs scalable with percpu_counter for used blocksTim Chen
The current implementation of tmpfs is not scalable. We found that stat_lock is contended by multiple threads when we need to get a new page, leading to useless spinning inside this spin lock. This patch makes use of the percpu_counter library to maintain local count of used blocks to speed up getting and returning of pages. So the acquisition of stat_lock is unnecessary for getting and returning blocks, improving the performance of tmpfs on system with large number of cpus. On a 4 socket 32 core NHM-EX system, we saw improvement of 270%. The implementation below has a slight chance of race between threads causing a slight overshoot of the maximum configured blocks. However, any overshoot is small, and is bounded by the number of cpus. This happens when the number of used blocks is slightly below the maximum configured blocks when a thread checks the used block count, and another thread allocates the last block before the current thread does. This should not be a problem for tmpfs, as the overshoot is most likely to be a few blocks and bounded. If a strict limit is really desired, then configured the max blocks to be the limit less the number of cpus in system. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16make generic_acl slightly more genericChristoph Hellwig
Now that we cache the ACL pointers in the generic inode all the generic_acl cruft can go away and generic_acl.c can directly implement xattr handlers dealing with the full Posix ACL semantics for in-memory filesystems. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2009-09-15Driver Core: devtmpfs - kernel-maintained tmpfs-based /devKay Sievers
Devtmpfs lets the kernel create a tmpfs instance called devtmpfs very early at kernel initialization, before any driver-core device is registered. Every device with a major/minor will provide a device node in devtmpfs. Devtmpfs can be changed and altered by userspace at any time, and in any way needed - just like today's udev-mounted tmpfs. Unmodified udev versions will run just fine on top of it, and will recognize an already existing kernel-created device node and use it. The default node permissions are root:root 0600. Proper permissions and user/group ownership, meaningful symlinks, all other policy still needs to be applied by userspace. If a node is created by devtmps, devtmpfs will remove the device node when the device goes away. If the device node was created by userspace, or the devtmpfs created node was replaced by userspace, it will no longer be removed by devtmpfs. If it is requested to auto-mount it, it makes init=/bin/sh work without any further userspace support. /dev will be fully populated and dynamic, and always reflect the current device state of the kernel. With the commonly used dynamic device numbers, it solves the problem where static devices nodes may point to the wrong devices. It is intended to make the initial bootup logic simpler and more robust, by de-coupling the creation of the inital environment, to reliably run userspace processes, from a complex userspace bootstrap logic to provide a working /dev. Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Jan Blunck <jblunck@suse.de> Tested-By: Harald Hoyer <harald@redhat.com> Tested-By: Scott James Remnant <scott@ubuntu.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-08shmfs: use 'check_acl' instead of 'permission'Linus Torvalds
shmfs wants purely standard POSIX ACL semantics, so we can use the new generic VFS layer POSIX ACL checking rather than cooking our own 'permission()' function. Reviewed-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-24switch shmem to inode->i_aclAl Viro
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-07-26[PATCH] sanitize ->permission() prototypeAl Viro
* kill nameidata * argument; map the 3 bits in ->flags anybody cares about to new MAY_... ones and pass with the mask. * kill redundant gfs2_iop_permission() * sanitize ecryptfs_permission() * fix remaining places where ->permission() instances might barf on new MAY_... found in mask. The obvious next target in that direction is permission(9) folded fix for nfs_permission() breakage from Miklos Szeredi <mszeredi@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-04-28mempolicy: use struct mempolicy pointer in shmem_sb_infoLee Schermerhorn
This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: support optional mode flagsDavid Rientjes
With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: convert MPOL constants to enumDavid Rientjes
The mempolicy mode constants, MPOL_DEFAULT, MPOL_PREFERRED, MPOL_BIND, and MPOL_INTERLEAVE, are better declared as part of an enum since they are sequentially numbered and cannot be combined. The policy member of struct mempolicy is also converted from type short to type unsigned short. A negative policy does not have any legitimate meaning, so it is possible to change its type in preparation for adding optional mode flags later. The equivalent member of struct shmem_sb_info is also changed from int to unsigned short. For compatibility, the policy formal to get_mempolicy() remains as a pointer to an int: int get_mempolicy(int *policy, unsigned long *nmask, unsigned long maxnode, unsigned long addr, unsigned long flags); although the only possible values is the range of type unsigned short. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08mount options: fix tmpfsakpm@linux-foundation.org
Add .show_options super operation to tmpfs. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-09-29[PATCH] Access Control Lists for tmpfsAndreas Gruenbacher
Add access control lists for tmpfs. Signed-off-by: Andreas Gruenbacher <agruen@suse.de> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-14[PATCH] Add tmpfs options for memory placement policiesRobin Holt
Anything that writes into a tmpfs filesystem is liable to disproportionately decrease the available memory on a particular node. Since there's no telling what sort of application (e.g. dd/cp/cat) might be dropping large files there, this lets the admin choose the appropriate default behavior for their site's situation. Introduce a tmpfs mount option which allows specifying a memory policy and a second option to specify the nodelist for that policy. With the default policy, tmpfs will behave as it does today. This patch adds support for preferred, bind, and interleave policies. The default policy will cause pages to be added to tmpfs files on the node which is doing the writing. Some jobs expect a single process to create and manage the tmpfs files. This results in a node which has a significantly reduced number of free pages. With this patch, the administrator can specify the policy and nodes for that policy where they would prefer allocations. This patch was originally written by Brent Casavant and Hugh Dickins. I added support for the bind and preferred policies and the mpol_nodelist mount option. Signed-off-by: Brent Casavant <bcasavan@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!