From 3b812ecce736432e6b55e77028ea387eb1517d24 Mon Sep 17 00:00:00 2001 From: Jessica Yu Date: Tue, 22 Mar 2016 20:03:19 -0400 Subject: Documentation: livepatch: outline Elf format and requirements for patch modules Document livepatch module requirements and the special Elf constants patch modules use. Signed-off-by: Jessica Yu Acked-by: Miroslav Benes Acked-by: Josh Poimboeuf Signed-off-by: Jiri Kosina --- Documentation/livepatch/module-elf-format.txt | 311 ++++++++++++++++++++++++++ 1 file changed, 311 insertions(+) create mode 100644 Documentation/livepatch/module-elf-format.txt (limited to 'Documentation/livepatch') diff --git a/Documentation/livepatch/module-elf-format.txt b/Documentation/livepatch/module-elf-format.txt new file mode 100644 index 000000000000..eedbdcf8ba50 --- /dev/null +++ b/Documentation/livepatch/module-elf-format.txt @@ -0,0 +1,311 @@ +=========================== +Livepatch module Elf format +=========================== + +This document outlines the Elf format requirements that livepatch modules must follow. + +----------------- +Table of Contents +----------------- +0. Background and motivation +1. Livepatch modinfo field +2. Livepatch relocation sections + 2.1 What are livepatch relocation sections? + 2.2 Livepatch relocation section format + 2.2.1 Required flags + 2.2.2 Required name format + 2.2.3 Example livepatch relocation section names + 2.2.4 Example `readelf --sections` output + 2.2.5 Example `readelf --relocs` output +3. Livepatch symbols + 3.1 What are livepatch symbols? + 3.2 A livepatch module's symbol table + 3.3 Livepatch symbol format + 3.3.1 Required flags + 3.3.2 Required name format + 3.3.3 Example livepatch symbol names + 3.3.4 Example `readelf --symbols` output +4. Symbol table and Elf section access + +---------------------------- +0. Background and motivation +---------------------------- + +Formerly, livepatch required separate architecture-specific code to write +relocations. However, arch-specific code to write relocations already +exists in the module loader, so this former approach produced redundant +code. So, instead of duplicating code and re-implementing what the module +loader can already do, livepatch leverages existing code in the module +loader to perform the all the arch-specific relocation work. Specifically, +livepatch reuses the apply_relocate_add() function in the module loader to +write relocations. The patch module Elf format described in this document +enables livepatch to be able to do this. The hope is that this will make +livepatch more easily portable to other architectures and reduce the amount +of arch-specific code required to port livepatch to a particular +architecture. + +Since apply_relocate_add() requires access to a module's section header +table, symbol table, and relocation section indices, Elf information is +preserved for livepatch modules (see section 4). Livepatch manages its own +relocation sections and symbols, which are described in this document. The +Elf constants used to mark livepatch symbols and relocation sections were +selected from OS-specific ranges according to the definitions from glibc. + +0.1 Why does livepatch need to write its own relocations? +--------------------------------------------------------- +A typical livepatch module contains patched versions of functions that can +reference non-exported global symbols and non-included local symbols. +Relocations referencing these types of symbols cannot be left in as-is +since the kernel module loader cannot resolve them and will therefore +reject the livepatch module. Furthermore, we cannot apply relocations that +affect modules not yet loaded at patch module load time (e.g. a patch to a +driver that is not loaded). Formerly, livepatch solved this problem by +embedding special "dynrela" (dynamic rela) sections in the resulting patch +module Elf output. Using these dynrela sections, livepatch could resolve +symbols while taking into account its scope and what module the symbol +belongs to, and then manually apply the dynamic relocations. However this +approach required livepatch to supply arch-specific code in order to write +these relocations. In the new format, livepatch manages its own SHT_RELA +relocation sections in place of dynrela sections, and the symbols that the +relas reference are special livepatch symbols (see section 2 and 3). The +arch-specific livepatch relocation code is replaced by a call to +apply_relocate_add(). + +================================ +PATCH MODULE FORMAT REQUIREMENTS +================================ + +-------------------------- +1. Livepatch modinfo field +-------------------------- + +Livepatch modules are required to have the "livepatch" modinfo attribute. +See the sample livepatch module in samples/livepatch/ for how this is done. + +Livepatch modules can be identified by users by using the 'modinfo' command +and looking for the presence of the "livepatch" field. This field is also +used by the kernel module loader to identify livepatch modules. + +Example modinfo output: +----------------------- +% modinfo livepatch-meminfo.ko +filename: livepatch-meminfo.ko +livepatch: Y +license: GPL +depends: +vermagic: 4.3.0+ SMP mod_unload + +-------------------------------- +2. Livepatch relocation sections +-------------------------------- + +------------------------------------------- +2.1 What are livepatch relocation sections? +------------------------------------------- +A livepatch module manages its own Elf relocation sections to apply +relocations to modules as well as to the kernel (vmlinux) at the +appropriate time. For example, if a patch module patches a driver that is +not currently loaded, livepatch will apply the corresponding livepatch +relocation section(s) to the driver once it loads. + +Each "object" (e.g. vmlinux, or a module) within a patch module may have +multiple livepatch relocation sections associated with it (e.g. patches to +multiple functions within the same object). There is a 1-1 correspondence +between a livepatch relocation section and the target section (usually the +text section of a function) to which the relocation(s) apply. It is +also possible for a livepatch module to have no livepatch relocation +sections, as in the case of the sample livepatch module (see +samples/livepatch). + +Since Elf information is preserved for livepatch modules (see Section 4), a +livepatch relocation section can be applied simply by passing in the +appropriate section index to apply_relocate_add(), which then uses it to +access the relocation section and apply the relocations. + +Every symbol referenced by a rela in a livepatch relocation section is a +livepatch symbol. These must be resolved before livepatch can call +apply_relocate_add(). See Section 3 for more information. + +--------------------------------------- +2.2 Livepatch relocation section format +--------------------------------------- + +2.2.1 Required flags +-------------------- +Livepatch relocation sections must be marked with the SHF_RELA_LIVEPATCH +section flag. See include/uapi/linux/elf.h for the definition. The module +loader recognizes this flag and will avoid applying those relocation sections +at patch module load time. These sections must also be marked with SHF_ALLOC, +so that the module loader doesn't discard them on module load (i.e. they will +be copied into memory along with the other SHF_ALLOC sections). + +2.2.2 Required name format +-------------------------- +The name of a livepatch relocation section must conform to the following format: + +.klp.rela.objname.section_name +^ ^^ ^ ^ ^ +|________||_____| |__________| + [A] [B] [C] + +[A] The relocation section name is prefixed with the string ".klp.rela." +[B] The name of the object (i.e. "vmlinux" or name of module) to + which the relocation section belongs follows immediately after the prefix. +[C] The actual name of the section to which this relocation section applies. + +2.2.3 Example livepatch relocation section names: +------------------------------------------------- +.klp.rela.ext4.text.ext4_attr_store +.klp.rela.vmlinux.text.cmdline_proc_show + +2.2.4 Example `readelf --sections` output for a patch +module that patches vmlinux and modules 9p, btrfs, ext4: +-------------------------------------------------------- + Section Headers: + [Nr] Name Type Address Off Size ES Flg Lk Inf Al + [ snip ] + [29] .klp.rela.9p.text.caches.show RELA 0000000000000000 002d58 0000c0 18 AIo 64 9 8 + [30] .klp.rela.btrfs.text.btrfs.feature.attr.show RELA 0000000000000000 002e18 000060 18 AIo 64 11 8 + [ snip ] + [34] .klp.rela.ext4.text.ext4.attr.store RELA 0000000000000000 002fd8 0000d8 18 AIo 64 13 8 + [35] .klp.rela.ext4.text.ext4.attr.show RELA 0000000000000000 0030b0 000150 18 AIo 64 15 8 + [36] .klp.rela.vmlinux.text.cmdline.proc.show RELA 0000000000000000 003200 000018 18 AIo 64 17 8 + [37] .klp.rela.vmlinux.text.meminfo.proc.show RELA 0000000000000000 003218 0000f0 18 AIo 64 19 8 + [ snip ] ^ ^ + | | + [*] [*] +[*] Livepatch relocation sections are SHT_RELA sections but with a few special +characteristics. Notice that they are marked SHF_ALLOC ("A") so that they will +not be discarded when the module is loaded into memory, as well as with the +SHF_RELA_LIVEPATCH flag ("o" - for OS-specific). + +2.2.5 Example `readelf --relocs` output for a patch module: +----------------------------------------------------------- +Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries: + Offset Info Type Symbol's Value Symbol's Name + Addend +000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4 +0000000000000028 0000003d0000000b R_X86_64_32S 0000000000000000 .klp.sym.btrfs.btrfs_ktype,0 + 0 +0000000000000036 0000003b00000002 R_X86_64_PC32 0000000000000000 .klp.sym.btrfs.can_modify_feature.isra.3,0 - 4 +000000000000004c 0000004900000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.snprintf,0 - 4 +[ snip ] ^ + | + [*] +[*] Every symbol referenced by a relocation is a livepatch symbol. + +-------------------- +3. Livepatch symbols +-------------------- + +------------------------------- +3.1 What are livepatch symbols? +------------------------------- +Livepatch symbols are symbols referred to by livepatch relocation sections. +These are symbols accessed from new versions of functions for patched +objects, whose addresses cannot be resolved by the module loader (because +they are local or unexported global syms). Since the module loader only +resolves exported syms, and not every symbol referenced by the new patched +functions is exported, livepatch symbols were introduced. They are used +also in cases where we cannot immediately know the address of a symbol when +a patch module loads. For example, this is the case when livepatch patches +a module that is not loaded yet. In this case, the relevant livepatch +symbols are resolved simply when the target module loads. In any case, for +any livepatch relocation section, all livepatch symbols referenced by that +section must be resolved before livepatch can call apply_relocate_add() for +that reloc section. + +Livepatch symbols must be marked with SHN_LIVEPATCH so that the module +loader can identify and ignore them. Livepatch modules keep these symbols +in their symbol tables, and the symbol table is made accessible through +module->symtab. + +------------------------------------- +3.2 A livepatch module's symbol table +------------------------------------- +Normally, a stripped down copy of a module's symbol table (containing only +"core" symbols) is made available through module->symtab (See layout_symtab() +in kernel/module.c). For livepatch modules, the symbol table copied into memory +on module load must be exactly the same as the symbol table produced when the +patch module was compiled. This is because the relocations in each livepatch +relocation section refer to their respective symbols with their symbol indices, +and the original symbol indices (and thus the symtab ordering) must be +preserved in order for apply_relocate_add() to find the right symbol. + +For example, take this particular rela from a livepatch module: +Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries: + Offset Info Type Symbol's Value Symbol's Name + Addend +000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4 + +This rela refers to the symbol '.klp.sym.vmlinux.printk,0', and the symbol index is encoded +in 'Info'. Here its symbol index is 0x5e, which is 94 in decimal, which refers to the +symbol index 94. +And in this patch module's corresponding symbol table, symbol index 94 refers to that very symbol: +[ snip ] +94: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.printk,0 +[ snip ] + +--------------------------- +3.3 Livepatch symbol format +--------------------------- + +3.3.1 Required flags +-------------------- +Livepatch symbols must have their section index marked as SHN_LIVEPATCH, so +that the module loader can identify them and not attempt to resolve them. +See include/uapi/linux/elf.h for the actual definitions. + +3.3.2 Required name format +-------------------------- +Livepatch symbol names must conform to the following format: + +.klp.sym.objname.symbol_name,sympos +^ ^^ ^ ^ ^ ^ +|_______||_____| |_________| | + [A] [B] [C] [D] + +[A] The symbol name is prefixed with the string ".klp.sym." +[B] The name of the object (i.e. "vmlinux" or name of module) to + which the symbol belongs follows immediately after the prefix. +[C] The actual name of the symbol. +[D] The position of the symbol in the object (as according to kallsyms) + This is used to differentiate duplicate symbols within the same + object. The symbol position is expressed numerically (0, 1, 2...). + The symbol position of a unique symbol is 0. + +3.3.3 Example livepatch symbol names: +------------------------------------- +.klp.sym.vmlinux.snprintf,0 +.klp.sym.vmlinux.printk,0 +.klp.sym.btrfs.btrfs_ktype,0 + +3.3.4 Example `readelf --symbols` output for a patch module: +------------------------------------------------------------ +Symbol table '.symtab' contains 127 entries: + Num: Value Size Type Bind Vis Ndx Name + [ snip ] + 73: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.snprintf,0 + 74: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.capable,0 + 75: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.find_next_bit,0 + 76: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.si_swapinfo,0 + [ snip ] ^ + | + [*] +[*] Note that the 'Ndx' (Section index) for these symbols is SHN_LIVEPATCH (0xff20). + "OS" means OS-specific. + +-------------------------------------- +4. Symbol table and Elf section access +-------------------------------------- +A livepatch module's symbol table is accessible through module->symtab. + +Since apply_relocate_add() requires access to a module's section headers, +symbol table, and relocation section indices, Elf information is preserved for +livepatch modules and is made accessible by the module loader through +module->klp_info, which is a klp_modinfo struct. When a livepatch module loads, +this struct is filled in by the module loader. Its fields are documented below: + +struct klp_modinfo { + Elf_Ehdr hdr; /* Elf header */ + Elf_Shdr *sechdrs; /* Section header table */ + char *secstrings; /* String table for the section headers */ + unsigned int symndx; /* The symbol table section index */ +}; -- cgit v1.2.3 From 5e4e38446a62a4f50d77b0dd11d4b379dee08988 Mon Sep 17 00:00:00 2001 From: Petr Mladek Date: Mon, 25 Apr 2016 17:14:35 +0200 Subject: livepatch: Add some basic livepatch documentation livepatch framework deserves some documentation, definitely. This is an attempt to provide some basic info. I hope that it will be useful for both LivePatch producers and also potential developers of the framework itself. [jkosina@suse.cz: - incorporated feedback (grammar fixes) from Chris J Arges - s/LivePatch/livepatch in changelog as pointed out by Josh Poimboeuf - incorporated part of feedback (grammar fixes / reformulations) from Balbir Singh ] Acked-by: Jessica Yu Signed-off-by: Petr Mladek Signed-off-by: Jiri Kosina --- Documentation/livepatch/livepatch.txt | 394 ++++++++++++++++++++++++++++++++++ 1 file changed, 394 insertions(+) create mode 100644 Documentation/livepatch/livepatch.txt (limited to 'Documentation/livepatch') diff --git a/Documentation/livepatch/livepatch.txt b/Documentation/livepatch/livepatch.txt new file mode 100644 index 000000000000..6c43f6ebee8d --- /dev/null +++ b/Documentation/livepatch/livepatch.txt @@ -0,0 +1,394 @@ +========= +Livepatch +========= + +This document outlines basic information about kernel livepatching. + +Table of Contents: + +1. Motivation +2. Kprobes, Ftrace, Livepatching +3. Consistency model +4. Livepatch module + 4.1. New functions + 4.2. Metadata + 4.3. Livepatch module handling +5. Livepatch life-cycle + 5.1. Registration + 5.2. Enabling + 5.3. Disabling + 5.4. Unregistration +6. Sysfs +7. Limitations + + +1. Motivation +============= + +There are many situations where users are reluctant to reboot a system. It may +be because their system is performing complex scientific computations or under +heavy load during peak usage. In addition to keeping systems up and running, +users want to also have a stable and secure system. Livepatching gives users +both by allowing for function calls to be redirected; thus, fixing critical +functions without a system reboot. + + +2. Kprobes, Ftrace, Livepatching +================================ + +There are multiple mechanisms in the Linux kernel that are directly related +to redirection of code execution; namely: kernel probes, function tracing, +and livepatching: + + + The kernel probes are the most generic. The code can be redirected by + putting a breakpoint instruction instead of any instruction. + + + The function tracer calls the code from a predefined location that is + close to the function entry point. This location is generated by the + compiler using the '-pg' gcc option. + + + Livepatching typically needs to redirect the code at the very beginning + of the function entry before the function parameters or the stack + are in any way modified. + +All three approaches need to modify the existing code at runtime. Therefore +they need to be aware of each other and not step over each other's toes. +Most of these problems are solved by using the dynamic ftrace framework as +a base. A Kprobe is registered as a ftrace handler when the function entry +is probed, see CONFIG_KPROBES_ON_FTRACE. Also an alternative function from +a live patch is called with the help of a custom ftrace handler. But there are +some limitations, see below. + + +3. Consistency model +==================== + +Functions are there for a reason. They take some input parameters, get or +release locks, read, process, and even write some data in a defined way, +have return values. In other words, each function has a defined semantic. + +Many fixes do not change the semantic of the modified functions. For +example, they add a NULL pointer or a boundary check, fix a race by adding +a missing memory barrier, or add some locking around a critical section. +Most of these changes are self contained and the function presents itself +the same way to the rest of the system. In this case, the functions might +be updated independently one by one. + +But there are more complex fixes. For example, a patch might change +ordering of locking in multiple functions at the same time. Or a patch +might exchange meaning of some temporary structures and update +all the relevant functions. In this case, the affected unit +(thread, whole kernel) need to start using all new versions of +the functions at the same time. Also the switch must happen only +when it is safe to do so, e.g. when the affected locks are released +or no data are stored in the modified structures at the moment. + +The theory about how to apply functions a safe way is rather complex. +The aim is to define a so-called consistency model. It attempts to define +conditions when the new implementation could be used so that the system +stays consistent. The theory is not yet finished. See the discussion at +http://thread.gmane.org/gmane.linux.kernel/1823033/focus=1828189 + +The current consistency model is very simple. It guarantees that either +the old or the new function is called. But various functions get redirected +one by one without any synchronization. + +In other words, the current implementation _never_ modifies the behavior +in the middle of the call. It is because it does _not_ rewrite the entire +function in the memory. Instead, the function gets redirected at the +very beginning. But this redirection is used immediately even when +some other functions from the same patch have not been redirected yet. + +See also the section "Limitations" below. + + +4. Livepatch module +=================== + +Livepatches are distributed using kernel modules, see +samples/livepatch/livepatch-sample.c. + +The module includes a new implementation of functions that we want +to replace. In addition, it defines some structures describing the +relation between the original and the new implementation. Then there +is code that makes the kernel start using the new code when the livepatch +module is loaded. Also there is code that cleans up before the +livepatch module is removed. All this is explained in more details in +the next sections. + + +4.1. New functions +------------------ + +New versions of functions are typically just copied from the original +sources. A good practice is to add a prefix to the names so that they +can be distinguished from the original ones, e.g. in a backtrace. Also +they can be declared as static because they are not called directly +and do not need the global visibility. + +The patch contains only functions that are really modified. But they +might want to access functions or data from the original source file +that may only be locally accessible. This can be solved by a special +relocation section in the generated livepatch module, see +Documentation/livepatch/module-elf-format.txt for more details. + + +4.2. Metadata +------------ + +The patch is described by several structures that split the information +into three levels: + + + struct klp_func is defined for each patched function. It describes + the relation between the original and the new implementation of a + particular function. + + The structure includes the name, as a string, of the original function. + The function address is found via kallsyms at runtime. + + Then it includes the address of the new function. It is defined + directly by assigning the function pointer. Note that the new + function is typically defined in the same source file. + + As an optional parameter, the symbol position in the kallsyms database can + be used to disambiguate functions of the same name. This is not the + absolute position in the database, but rather the order it has been found + only for a particular object ( vmlinux or a kernel module ). Note that + kallsyms allows for searching symbols according to the object name. + + + struct klp_object defines an array of patched functions (struct + klp_func) in the same object. Where the object is either vmlinux + (NULL) or a module name. + + The structure helps to group and handle functions for each object + together. Note that patched modules might be loaded later than + the patch itself and the relevant functions might be patched + only when they are available. + + + + struct klp_patch defines an array of patched objects (struct + klp_object). + + This structure handles all patched functions consistently and eventually, + synchronously. The whole patch is applied only when all patched + symbols are found. The only exception are symbols from objects + (kernel modules) that have not been loaded yet. Also if a more complex + consistency model is supported then a selected unit (thread, + kernel as a whole) will see the new code from the entire patch + only when it is in a safe state. + + +4.3. Livepatch module handling +------------------------------ + +The usual behavior is that the new functions will get used when +the livepatch module is loaded. For this, the module init() function +has to register the patch (struct klp_patch) and enable it. See the +section "Livepatch life-cycle" below for more details about these +two operations. + +Module removal is only safe when there are no users of the underlying +functions. The immediate consistency model is not able to detect this; +therefore livepatch modules cannot be removed. See "Limitations" below. + +5. Livepatch life-cycle +======================= + +Livepatching defines four basic operations that define the life cycle of each +live patch: registration, enabling, disabling and unregistration. There are +several reasons why it is done this way. + +First, the patch is applied only when all patched symbols for already +loaded objects are found. The error handling is much easier if this +check is done before particular functions get redirected. + +Second, the immediate consistency model does not guarantee that anyone is not +sleeping in the new code after the patch is reverted. This means that the new +code needs to stay around "forever". If the code is there, one could apply it +again. Therefore it makes sense to separate the operations that might be done +once and those that need to be repeated when the patch is enabled (applied) +again. + +Third, it might take some time until the entire system is migrated +when a more complex consistency model is used. The patch revert might +block the livepatch module removal for too long. Therefore it is useful +to revert the patch using a separate operation that might be called +explicitly. But it does not make sense to remove all information +until the livepatch module is really removed. + + +5.1. Registration +----------------- + +Each patch first has to be registered using klp_register_patch(). This makes +the patch known to the livepatch framework. Also it does some preliminary +computing and checks. + +In particular, the patch is added into the list of known patches. The +addresses of the patched functions are found according to their names. +The special relocations, mentioned in the section "New functions", are +applied. The relevant entries are created under +/sys/kernel/livepatch/. The patch is rejected when any operation +fails. + + +5.2. Enabling +------------- + +Registered patches might be enabled either by calling klp_enable_patch() or +by writing '1' to /sys/kernel/livepatch//enabled. The system will +start using the new implementation of the patched functions at this stage. + +In particular, if an original function is patched for the first time, a +function specific struct klp_ops is created and an universal ftrace handler +is registered. + +Functions might be patched multiple times. The ftrace handler is registered +only once for the given function. Further patches just add an entry to the +list (see field `func_stack`) of the struct klp_ops. The last added +entry is chosen by the ftrace handler and becomes the active function +replacement. + +Note that the patches might be enabled in a different order than they were +registered. + + +5.3. Disabling +-------------- + +Enabled patches might get disabled either by calling klp_disable_patch() or +by writing '0' to /sys/kernel/livepatch//enabled. At this stage +either the code from the previously enabled patch or even the original +code gets used. + +Here all the functions (struct klp_func) associated with the to-be-disabled +patch are removed from the corresponding struct klp_ops. The ftrace handler +is unregistered and the struct klp_ops is freed when the func_stack list +becomes empty. + +Patches must be disabled in exactly the reverse order in which they were +enabled. It makes the problem and the implementation much easier. + + +5.4. Unregistration +------------------- + +Disabled patches might be unregistered by calling klp_unregister_patch(). +This can be done only when the patch is disabled and the code is no longer +used. It must be called before the livepatch module gets unloaded. + +At this stage, all the relevant sys-fs entries are removed and the patch +is removed from the list of known patches. + + +6. Sysfs +======== + +Information about the registered patches can be found under +/sys/kernel/livepatch. The patches could be enabled and disabled +by writing there. + +See Documentation/ABI/testing/sysfs-kernel-livepatch for more details. + + +7. Limitations +============== + +The current Livepatch implementation has several limitations: + + + + The patch must not change the semantic of the patched functions. + + The current implementation guarantees only that either the old + or the new function is called. The functions are patched one + by one. It means that the patch must _not_ change the semantic + of the function. + + + + Data structures can not be patched. + + There is no support to version data structures or anyhow migrate + one structure into another. Also the simple consistency model does + not allow to switch more functions atomically. + + Once there is more complex consistency mode, it will be possible to + use some workarounds. For example, it will be possible to use a hole + for a new member because the data structure is aligned. Or it will + be possible to use an existing member for something else. + + There are no plans to add more generic support for modified structures + at the moment. + + + + Only functions that can be traced could be patched. + + Livepatch is based on the dynamic ftrace. In particular, functions + implementing ftrace or the livepatch ftrace handler could not be + patched. Otherwise, the code would end up in an infinite loop. A + potential mistake is prevented by marking the problematic functions + by "notrace". + + + + Anything inlined into __schedule() can not be patched. + + The switch_to macro is inlined into __schedule(). It switches the + context between two processes in the middle of the macro. It does + not save RIP in x86_64 version (contrary to 32-bit version). Instead, + the currently used __schedule()/switch_to() handles both processes. + + Now, let's have two different tasks. One calls the original + __schedule(), its registers are stored in a defined order and it + goes to sleep in the switch_to macro and some other task is restored + using the original __schedule(). Then there is the second task which + calls patched__schedule(), it goes to sleep there and the first task + is picked by the patched__schedule(). Its RSP is restored and now + the registers should be restored as well. But the order is different + in the new patched__schedule(), so... + + There is work in progress to remove this limitation. + + + + Livepatch modules can not be removed. + + The current implementation just redirects the functions at the very + beginning. It does not check if the functions are in use. In other + words, it knows when the functions get called but it does not + know when the functions return. Therefore it can not decide when + the livepatch module can be safely removed. + + This will get most likely solved once a more complex consistency model + is supported. The idea is that a safe state for patching should also + mean a safe state for removing the patch. + + Note that the patch itself might get disabled by writing zero + to /sys/kernel/livepatch//enabled. It causes that the new + code will not longer get called. But it does not guarantee + that anyone is not sleeping anywhere in the new code. + + + + Livepatch works reliably only when the dynamic ftrace is located at + the very beginning of the function. + + The function need to be redirected before the stack or the function + parameters are modified in any way. For example, livepatch requires + using -fentry gcc compiler option on x86_64. + + One exception is the PPC port. It uses relative addressing and TOC. + Each function has to handle TOC and save LR before it could call + the ftrace handler. This operation has to be reverted on return. + Fortunately, the generic ftrace code has the same problem and all + this is is handled on the ftrace level. + + + + Kretprobes using the ftrace framework conflict with the patched + functions. + + Both kretprobes and livepatches use a ftrace handler that modifies + the return address. The first user wins. Either the probe or the patch + is rejected when the handler is already in use by the other. + + + + Kprobes in the original function are ignored when the code is + redirected to the new implementation. + + There is a work in progress to add warnings about this situation. -- cgit v1.2.3