/* * * Copyright (C) 2010 Google, Inc. * * Author: * Colin Cross * * Copyright (C) 2010-2011 NVIDIA Corporation. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "board.h" #include "clock.h" #include "dvfs.h" #include "timer.h" #define DVFS_RAIL_STATS_BIN 12500 struct dvfs_rail *tegra_cpu_rail; struct dvfs_rail *tegra_core_rail; static LIST_HEAD(dvfs_rail_list); static DEFINE_MUTEX(dvfs_lock); static DEFINE_MUTEX(rail_disable_lock); static int dvfs_rail_update(struct dvfs_rail *rail); static inline int tegra_dvfs_rail_get_disable_level(struct dvfs_rail *rail) { return rail->disable_millivolts ? : rail->nominal_millivolts; } static inline int tegra_dvfs_rail_get_suspend_level(struct dvfs_rail *rail) { return rail->suspend_millivolts ? : rail->nominal_millivolts; } void tegra_dvfs_add_relationships(struct dvfs_relationship *rels, int n) { int i; struct dvfs_relationship *rel; mutex_lock(&dvfs_lock); for (i = 0; i < n; i++) { rel = &rels[i]; list_add_tail(&rel->from_node, &rel->to->relationships_from); list_add_tail(&rel->to_node, &rel->from->relationships_to); } mutex_unlock(&dvfs_lock); } int tegra_dvfs_init_rails(struct dvfs_rail *rails[], int n) { int i, mv; mutex_lock(&dvfs_lock); for (i = 0; i < n; i++) { INIT_LIST_HEAD(&rails[i]->dvfs); INIT_LIST_HEAD(&rails[i]->relationships_from); INIT_LIST_HEAD(&rails[i]->relationships_to); mv = rails[i]->nominal_millivolts; if (rails[i]->boot_millivolts > mv) WARN(1, "%s: boot voltage %d above nominal %d\n", rails[i]->reg_id, rails[i]->boot_millivolts, mv); if (rails[i]->disable_millivolts > mv) rails[i]->disable_millivolts = mv; if (rails[i]->suspend_millivolts > mv) rails[i]->suspend_millivolts = mv; mv = tegra_dvfs_rail_get_boot_level(rails[i]); rails[i]->millivolts = mv; rails[i]->new_millivolts = mv; if (!rails[i]->step) rails[i]->step = rails[i]->max_millivolts; list_add_tail(&rails[i]->node, &dvfs_rail_list); if (!strcmp("vdd_cpu", rails[i]->reg_id)) tegra_cpu_rail = rails[i]; else if (!strcmp("vdd_core", rails[i]->reg_id)) tegra_core_rail = rails[i]; } mutex_unlock(&dvfs_lock); return 0; }; static int dvfs_solve_relationship(struct dvfs_relationship *rel) { return rel->solve(rel->from, rel->to); } /* rail statistic - called during rail init, or under dfs_lock, or with CPU0 only on-line, and interrupts disabled */ static void dvfs_rail_stats_init(struct dvfs_rail *rail, int millivolts) { int dvfs_rail_stats_range; if (!rail->stats.bin_uV) rail->stats.bin_uV = DVFS_RAIL_STATS_BIN; dvfs_rail_stats_range = (DVFS_RAIL_STATS_TOP_BIN - 1) * rail->stats.bin_uV / 1000; rail->stats.last_update = ktime_get(); if (millivolts >= rail->min_millivolts) { int i = 1 + (2 * (millivolts - rail->min_millivolts) * 1000 + rail->stats.bin_uV) / (2 * rail->stats.bin_uV); rail->stats.last_index = min(i, DVFS_RAIL_STATS_TOP_BIN); } if (rail->max_millivolts > rail->min_millivolts + dvfs_rail_stats_range) pr_warn("tegra_dvfs: %s: stats above %d mV will be squashed\n", rail->reg_id, rail->min_millivolts + dvfs_rail_stats_range); } static void dvfs_rail_stats_update( struct dvfs_rail *rail, int millivolts, ktime_t now) { rail->stats.time_at_mv[rail->stats.last_index] = ktime_add( rail->stats.time_at_mv[rail->stats.last_index], ktime_sub( now, rail->stats.last_update)); rail->stats.last_update = now; if (rail->stats.off) return; if (millivolts >= rail->min_millivolts) { int i = 1 + (2 * (millivolts - rail->min_millivolts) * 1000 + rail->stats.bin_uV) / (2 * rail->stats.bin_uV); rail->stats.last_index = min(i, DVFS_RAIL_STATS_TOP_BIN); } else if (millivolts == 0) rail->stats.last_index = 0; } static void dvfs_rail_stats_pause(struct dvfs_rail *rail, ktime_t delta, bool on) { int i = on ? rail->stats.last_index : 0; rail->stats.time_at_mv[i] = ktime_add(rail->stats.time_at_mv[i], delta); } void tegra_dvfs_rail_off(struct dvfs_rail *rail, ktime_t now) { if (rail) { dvfs_rail_stats_update(rail, 0, now); rail->stats.off = true; } } void tegra_dvfs_rail_on(struct dvfs_rail *rail, ktime_t now) { if (rail) { rail->stats.off = false; dvfs_rail_stats_update(rail, rail->millivolts, now); } } void tegra_dvfs_rail_pause(struct dvfs_rail *rail, ktime_t delta, bool on) { if (rail) dvfs_rail_stats_pause(rail, delta, on); } static int dvfs_rail_set_voltage_reg(struct dvfs_rail *rail, int millivolts) { int ret; rail->updating = true; rail->reg_max_millivolts = rail->reg_max_millivolts == rail->max_millivolts ? rail->max_millivolts + 1 : rail->max_millivolts; ret = regulator_set_voltage(rail->reg, millivolts * 1000, rail->reg_max_millivolts * 1000); rail->updating = false; return ret; } /* Sets the voltage on a dvfs rail to a specific value, and updates any * rails that depend on this rail. */ static int dvfs_rail_set_voltage(struct dvfs_rail *rail, int millivolts) { int ret = 0; struct dvfs_relationship *rel; int step = (millivolts > rail->millivolts) ? rail->step : -rail->step; int i; int steps; bool jmp_to_zero; if (!rail->reg) { if (millivolts == rail->millivolts) return 0; else return -EINVAL; } /* * DFLL adjusts rail voltage automatically, but not exactly to the * expected level - update stats, anyway. */ if (rail->dfll_mode) { rail->millivolts = rail->new_millivolts = millivolts; dvfs_rail_stats_update(rail, millivolts, ktime_get()); return 0; } if (rail->disabled) return 0; rail->resolving_to = true; jmp_to_zero = rail->jmp_to_zero && ((millivolts == 0) || (rail->millivolts == 0)); steps = jmp_to_zero ? 1 : DIV_ROUND_UP(abs(millivolts - rail->millivolts), rail->step); for (i = 0; i < steps; i++) { if (!jmp_to_zero && (abs(millivolts - rail->millivolts) > rail->step)) rail->new_millivolts = rail->millivolts + step; else rail->new_millivolts = millivolts; /* Before changing the voltage, tell each rail that depends * on this rail that the voltage will change. * This rail will be the "from" rail in the relationship, * the rail that depends on this rail will be the "to" rail. * from->millivolts will be the old voltage * from->new_millivolts will be the new voltage */ list_for_each_entry(rel, &rail->relationships_to, to_node) { ret = dvfs_rail_update(rel->to); if (ret) goto out; } ret = dvfs_rail_set_voltage_reg(rail, rail->new_millivolts); if (ret) { pr_err("Failed to set dvfs regulator %s\n", rail->reg_id); goto out; } rail->millivolts = rail->new_millivolts; dvfs_rail_stats_update(rail, rail->millivolts, ktime_get()); /* After changing the voltage, tell each rail that depends * on this rail that the voltage has changed. * from->millivolts and from->new_millivolts will be the * new voltage */ list_for_each_entry(rel, &rail->relationships_to, to_node) { ret = dvfs_rail_update(rel->to); if (ret) goto out; } } if (unlikely(rail->millivolts != millivolts)) { pr_err("%s: rail didn't reach target %d in %d steps (%d)\n", __func__, millivolts, steps, rail->millivolts); ret = -EINVAL; } out: rail->resolving_to = false; return ret; } /* Determine the minimum valid voltage for a rail, taking into account * the dvfs clocks and any rails that this rail depends on. Calls * dvfs_rail_set_voltage with the new voltage, which will call * dvfs_rail_update on any rails that depend on this rail. */ static inline int dvfs_rail_apply_limits(struct dvfs_rail *rail, int millivolts) { int min_mv = rail->min_millivolts; if (rail->pll_mode_cdev) min_mv = max(min_mv, rail->thermal_idx ? 0 : rail->min_millivolts_cold); if (rail->override_millivolts) millivolts = rail->override_millivolts; else millivolts += rail->offs_millivolts; if (millivolts > rail->max_millivolts) millivolts = rail->max_millivolts; else if (millivolts < min_mv) millivolts = min_mv; return millivolts; } static int dvfs_rail_update(struct dvfs_rail *rail) { int millivolts = 0; struct dvfs *d; struct dvfs_relationship *rel; int ret = 0; int steps; /* if dvfs is suspended, return and handle it during resume */ if (rail->suspended) return 0; /* if regulators are not connected yet, return and handle it later */ if (!rail->reg) return 0; /* if rail update is entered while resolving circular dependencies, abort recursion */ if (rail->resolving_to) return 0; /* Find the maximum voltage requested by any clock */ list_for_each_entry(d, &rail->dvfs, reg_node) millivolts = max(d->cur_millivolts, millivolts); /* Apply offset and min/max limits if any clock is requesting voltage */ if (millivolts) millivolts = dvfs_rail_apply_limits(rail, millivolts); /* retry update if limited by from-relationship to account for circular dependencies */ steps = DIV_ROUND_UP(abs(millivolts - rail->millivolts), rail->step); for (; steps >= 0; steps--) { rail->new_millivolts = millivolts; /* Check any rails that this rail depends on */ list_for_each_entry(rel, &rail->relationships_from, from_node) rail->new_millivolts = dvfs_solve_relationship(rel); if (rail->new_millivolts == rail->millivolts) break; ret = dvfs_rail_set_voltage(rail, rail->new_millivolts); } return ret; } static int dvfs_rail_connect_to_regulator(struct dvfs_rail *rail) { struct regulator *reg; int v; if (!rail->reg) { reg = regulator_get(NULL, rail->reg_id); if (IS_ERR(reg)) { pr_err("tegra_dvfs: failed to connect %s rail\n", rail->reg_id); return -EINVAL; } rail->reg = reg; } v = regulator_enable(rail->reg); if (v < 0) { pr_err("tegra_dvfs: failed on enabling regulator %s\n, err %d", rail->reg_id, v); return v; } v = regulator_get_voltage(rail->reg); if (v < 0) { pr_err("tegra_dvfs: failed initial get %s voltage\n", rail->reg_id); return v; } rail->millivolts = v / 1000; rail->new_millivolts = rail->millivolts; dvfs_rail_stats_init(rail, rail->millivolts); if (rail->boot_millivolts && (rail->boot_millivolts != rail->millivolts)) { WARN(1, "%s boot voltage %d does not match expected %d\n", rail->reg_id, rail->millivolts, rail->boot_millivolts); rail->boot_millivolts = rail->millivolts; } return 0; } static inline unsigned long *dvfs_get_freqs(struct dvfs *d) { return d->alt_freqs ? : &d->freqs[0]; } static inline const int *dvfs_get_millivolts(struct dvfs *d, unsigned long rate) { if (tegra_dvfs_is_dfll_scale(d, rate)) return d->dfll_millivolts; return d->millivolts; } static int __tegra_dvfs_set_rate(struct dvfs *d, unsigned long rate) { int i = 0; int ret, mv, detach_mv; unsigned long *freqs = dvfs_get_freqs(d); const int *millivolts = dvfs_get_millivolts(d, rate); if (freqs == NULL || millivolts == NULL) return -ENODEV; /* On entry to dfll range limit 1st step to range bottom (full ramp of voltage/rate is completed automatically in dfll mode) */ if (tegra_dvfs_is_dfll_range_entry(d, rate)) rate = d->dfll_data.use_dfll_rate_min; if (rate > freqs[d->num_freqs - 1]) { pr_warn("tegra_dvfs: rate %lu too high for dvfs on %s\n", rate, d->clk_name); return -EINVAL; } if (rate == 0) { d->cur_millivolts = 0; } else { while (i < d->num_freqs && rate > freqs[i]) i++; if ((d->max_millivolts) && (millivolts[i] > d->max_millivolts)) { pr_warn("tegra_dvfs: voltage %d too high for dvfs on" " %s\n", millivolts[i], d->clk_name); return -EINVAL; } mv = millivolts[i]; detach_mv = tegra_dvfs_rail_get_boot_level(d->dvfs_rail); if (!d->dvfs_rail->reg && (mv > detach_mv)) { pr_warn("%s: %s: voltage %d above boot limit %d\n", __func__, d->clk_name, mv, detach_mv); return -EINVAL; } detach_mv = tegra_dvfs_rail_get_disable_level(d->dvfs_rail); if (d->dvfs_rail->disabled && (mv > detach_mv)) { pr_warn("%s: %s: voltage %d above disable limit %d\n", __func__, d->clk_name, mv, detach_mv); return -EINVAL; } detach_mv = tegra_dvfs_rail_get_suspend_level(d->dvfs_rail); if (d->dvfs_rail->suspended && (mv > detach_mv)) { pr_warn("%s: %s: voltage %d above disable limit %d\n", __func__, d->clk_name, mv, detach_mv); return -EINVAL; } d->cur_millivolts = millivolts[i]; } d->cur_rate = rate; ret = dvfs_rail_update(d->dvfs_rail); if (ret) pr_err("Failed to set regulator %s for clock %s to %d mV\n", d->dvfs_rail->reg_id, d->clk_name, d->cur_millivolts); return ret; } int tegra_dvfs_alt_freqs_set(struct dvfs *d, unsigned long *alt_freqs) { int ret = 0; mutex_lock(&dvfs_lock); if (d->alt_freqs != alt_freqs) { d->alt_freqs = alt_freqs; ret = __tegra_dvfs_set_rate(d, d->cur_rate); } mutex_unlock(&dvfs_lock); return ret; } static int predict_millivolts(struct clk *c, const int *millivolts, unsigned long rate) { int i; if (!millivolts) return -ENODEV; /* * Predicted voltage can not be used across the switch to alternative * frequency limits. For now, just fail the call for clock that has * alternative limits initialized. */ if (c->dvfs->alt_freqs) return -ENOSYS; for (i = 0; i < c->dvfs->num_freqs; i++) { if (rate <= c->dvfs->freqs[i]) break; } if (i == c->dvfs->num_freqs) return -EINVAL; return millivolts[i]; } int tegra_dvfs_predict_millivolts(struct clk *c, unsigned long rate) { const int *millivolts; if (!rate || !c->dvfs) return 0; millivolts = dvfs_get_millivolts(c->dvfs, rate); return predict_millivolts(c, millivolts, rate); } int tegra_dvfs_predict_millivolts_pll(struct clk *c, unsigned long rate) { const int *millivolts; if (!rate || !c->dvfs) return 0; millivolts = c->dvfs->millivolts; return predict_millivolts(c, millivolts, rate); } int tegra_dvfs_predict_millivolts_dfll(struct clk *c, unsigned long rate) { const int *millivolts; if (!rate || !c->dvfs) return 0; millivolts = c->dvfs->dfll_millivolts; return predict_millivolts(c, millivolts, rate); } int tegra_dvfs_set_rate(struct clk *c, unsigned long rate) { int ret; if (!c->dvfs) return -EINVAL; mutex_lock(&dvfs_lock); ret = __tegra_dvfs_set_rate(c->dvfs, rate); mutex_unlock(&dvfs_lock); return ret; } EXPORT_SYMBOL(tegra_dvfs_set_rate); #ifdef CONFIG_TEGRA_VDD_CORE_OVERRIDE static DEFINE_MUTEX(rail_override_lock); int tegra_dvfs_override_core_voltage(int override_mv) { int ret, floor, ceiling; struct dvfs_rail *rail = tegra_core_rail; if (!rail) return -ENOENT; floor = rail->min_override_millivolts; ceiling = rail->nominal_millivolts; if (override_mv && ((override_mv < floor) || (override_mv > ceiling))) { pr_err("%s: override level %d outside the range [%d...%d]\n", __func__, override_mv, floor, ceiling); return -EINVAL; } mutex_lock(&rail_override_lock); if (override_mv == rail->override_millivolts) { ret = 0; goto out; } if (override_mv) { ret = tegra_dvfs_core_cap_level_apply(override_mv); if (ret) { pr_err("%s: failed to set cap for override level %d\n", __func__, override_mv); goto out; } } mutex_lock(&dvfs_lock); if (rail->disabled || rail->suspended) { pr_err("%s: cannot scale %s rail\n", __func__, rail->disabled ? "disabled" : "suspended"); ret = -EPERM; if (!override_mv) { mutex_unlock(&dvfs_lock); goto out; } } else { rail->override_millivolts = override_mv; ret = dvfs_rail_update(rail); if (ret) { pr_err("%s: failed to set override level %d\n", __func__, override_mv); rail->override_millivolts = 0; dvfs_rail_update(rail); } } mutex_unlock(&dvfs_lock); if (!override_mv || ret) tegra_dvfs_core_cap_level_apply(0); out: mutex_unlock(&rail_override_lock); return ret; } #else int tegra_dvfs_override_core_voltage(int override_mv) { return -ENOSYS; } #endif EXPORT_SYMBOL(tegra_dvfs_override_core_voltage); /* May only be called during clock init, does not take any locks on clock c. */ int __init tegra_enable_dvfs_on_clk(struct clk *c, struct dvfs *d) { int i; if (c->dvfs) { pr_err("Error when enabling dvfs on %s for clock %s:\n", d->dvfs_rail->reg_id, c->name); pr_err("DVFS already enabled for %s\n", c->dvfs->dvfs_rail->reg_id); return -EINVAL; } for (i = 0; i < MAX_DVFS_FREQS; i++) { if (d->millivolts[i] == 0) break; d->freqs[i] *= d->freqs_mult; /* If final frequencies are 0, pad with previous frequency */ if (d->freqs[i] == 0 && i > 1) d->freqs[i] = d->freqs[i - 1]; } d->num_freqs = i; if (d->auto_dvfs) { c->auto_dvfs = true; clk_set_cansleep(c); } c->dvfs = d; /* * Minimum core override level is determined as maximum voltage required * for clocks outside shared buses (shared bus rates can be capped to * safe levels when override limit is set) */ if (i && c->ops && !c->ops->shared_bus_update && !(c->flags & PERIPH_ON_CBUS)) { int mv = tegra_dvfs_predict_millivolts(c, d->freqs[i-1]); if (d->dvfs_rail->min_override_millivolts < mv) d->dvfs_rail->min_override_millivolts = mv; } mutex_lock(&dvfs_lock); list_add_tail(&d->reg_node, &d->dvfs_rail->dvfs); mutex_unlock(&dvfs_lock); return 0; } static bool tegra_dvfs_all_rails_suspended(void) { struct dvfs_rail *rail; bool all_suspended = true; list_for_each_entry(rail, &dvfs_rail_list, node) if (!rail->suspended && !rail->disabled) all_suspended = false; return all_suspended; } static bool tegra_dvfs_from_rails_suspended_or_solved(struct dvfs_rail *to) { struct dvfs_relationship *rel; bool all_suspended = true; list_for_each_entry(rel, &to->relationships_from, from_node) if (!rel->from->suspended && !rel->from->disabled && !rel->solved_at_nominal) all_suspended = false; return all_suspended; } static int tegra_dvfs_suspend_one(void) { struct dvfs_rail *rail; int ret; list_for_each_entry(rail, &dvfs_rail_list, node) { if (!rail->suspended && !rail->disabled && tegra_dvfs_from_rails_suspended_or_solved(rail)) { /* apply suspend limit only if it is above current mv */ int mv = tegra_dvfs_rail_get_suspend_level(rail); mv = dvfs_rail_apply_limits(rail, mv); ret = -EPERM; if (mv >= rail->millivolts) ret = dvfs_rail_set_voltage(rail, mv); if (ret) { pr_err("tegra_dvfs: failed %s suspend at %d\n", rail->reg_id, rail->millivolts); return ret; } rail->suspended = true; return 0; } } return -EINVAL; } static void tegra_dvfs_resume(void) { struct dvfs_rail *rail; mutex_lock(&dvfs_lock); list_for_each_entry(rail, &dvfs_rail_list, node) rail->suspended = false; list_for_each_entry(rail, &dvfs_rail_list, node) dvfs_rail_update(rail); mutex_unlock(&dvfs_lock); } static int tegra_dvfs_suspend(void) { int ret = 0; mutex_lock(&dvfs_lock); while (!tegra_dvfs_all_rails_suspended()) { ret = tegra_dvfs_suspend_one(); if (ret) break; } mutex_unlock(&dvfs_lock); if (ret) tegra_dvfs_resume(); return ret; } static int tegra_dvfs_pm_suspend(struct notifier_block *nb, unsigned long event, void *data) { if (event == PM_SUSPEND_PREPARE) { if (tegra_dvfs_suspend()) return NOTIFY_STOP; pr_info("tegra_dvfs: suspended\n"); } return NOTIFY_OK; }; static int tegra_dvfs_pm_resume(struct notifier_block *nb, unsigned long event, void *data) { if (event == PM_POST_SUSPEND) { tegra_dvfs_resume(); pr_info("tegra_dvfs: resumed\n"); } return NOTIFY_OK; }; static struct notifier_block tegra_dvfs_suspend_nb = { .notifier_call = tegra_dvfs_pm_suspend, .priority = -1, }; static struct notifier_block tegra_dvfs_resume_nb = { .notifier_call = tegra_dvfs_pm_resume, .priority = 1, }; static int tegra_dvfs_reboot_notify(struct notifier_block *nb, unsigned long event, void *data) { switch (event) { case SYS_RESTART: case SYS_HALT: case SYS_POWER_OFF: tegra_dvfs_suspend(); return NOTIFY_OK; } return NOTIFY_DONE; } static struct notifier_block tegra_dvfs_reboot_nb = { .notifier_call = tegra_dvfs_reboot_notify, }; /* must be called with dvfs lock held */ static void __tegra_dvfs_rail_disable(struct dvfs_rail *rail) { int ret = -EPERM; int mv; /* don't set voltage in DFLL mode - won't work, but break stats */ if (rail->dfll_mode) { rail->disabled = true; return; } /* apply detach mode limit provided it is above current volatge */ mv = tegra_dvfs_rail_get_disable_level(rail); mv = dvfs_rail_apply_limits(rail, mv); if (mv >= rail->millivolts) ret = dvfs_rail_set_voltage(rail, mv); if (ret) { pr_err("tegra_dvfs: failed to disable %s at %d\n", rail->reg_id, rail->millivolts); return; } rail->disabled = true; } /* must be called with dvfs lock held */ static void __tegra_dvfs_rail_enable(struct dvfs_rail *rail) { rail->disabled = false; dvfs_rail_update(rail); } void tegra_dvfs_rail_enable(struct dvfs_rail *rail) { if (!rail) return; mutex_lock(&rail_disable_lock); if (rail->disabled) { mutex_lock(&dvfs_lock); __tegra_dvfs_rail_enable(rail); mutex_unlock(&dvfs_lock); tegra_dvfs_rail_post_enable(rail); } mutex_unlock(&rail_disable_lock); } void tegra_dvfs_rail_disable(struct dvfs_rail *rail) { if (!rail) return; mutex_lock(&rail_disable_lock); if (rail->disabled) goto out; /* rail disable will set it to nominal voltage underneath clock framework - need to re-configure clock rates that are not safe at nominal (yes, unsafe at nominal is ugly, but possible). Rate change must be done outside of dvfs lock. */ if (tegra_dvfs_rail_disable_prepare(rail)) { pr_info("dvfs: failed to prepare regulator %s to disable\n", rail->reg_id); goto out; } mutex_lock(&dvfs_lock); __tegra_dvfs_rail_disable(rail); mutex_unlock(&dvfs_lock); out: mutex_unlock(&rail_disable_lock); } int tegra_dvfs_rail_disable_by_name(const char *reg_id) { struct dvfs_rail *rail = tegra_dvfs_get_rail_by_name(reg_id); if (!rail) return -EINVAL; tegra_dvfs_rail_disable(rail); return 0; } struct dvfs_rail *tegra_dvfs_get_rail_by_name(const char *reg_id) { struct dvfs_rail *rail; mutex_lock(&dvfs_lock); list_for_each_entry(rail, &dvfs_rail_list, node) { if (!strcmp(reg_id, rail->reg_id)) { mutex_unlock(&dvfs_lock); return rail; } } mutex_unlock(&dvfs_lock); return NULL; } bool tegra_dvfs_rail_updating(struct clk *clk) { return (!clk ? false : (!clk->dvfs ? false : (!clk->dvfs->dvfs_rail ? false : (clk->dvfs->dvfs_rail->updating || clk->dvfs->dvfs_rail->dfll_mode_updating)))); } #ifdef CONFIG_OF int __init of_tegra_dvfs_init(const struct of_device_id *matches) { int ret; struct device_node *np; for_each_matching_node(np, matches) { const struct of_device_id *match = of_match_node(matches, np); of_tegra_dvfs_init_cb_t dvfs_init_cb = match->data; ret = dvfs_init_cb(np); if (ret) { pr_err("dt: Failed to read %s tables from DT\n", match->compatible); return ret; } } return 0; } #endif int tegra_dvfs_dfll_mode_set(struct dvfs *d, unsigned long rate) { mutex_lock(&dvfs_lock); if (!d->dvfs_rail->dfll_mode) { d->dvfs_rail->dfll_mode = true; __tegra_dvfs_set_rate(d, rate); } mutex_unlock(&dvfs_lock); return 0; } int tegra_dvfs_dfll_mode_clear(struct dvfs *d, unsigned long rate) { int ret = 0; mutex_lock(&dvfs_lock); if (d->dvfs_rail->dfll_mode) { d->dvfs_rail->dfll_mode = false; /* avoid false detection of matching target (voltage in dfll mode is fluctuating, and recorded level is just estimate) */ d->dvfs_rail->millivolts--; if (d->dvfs_rail->disabled) { d->dvfs_rail->disabled = false; __tegra_dvfs_rail_disable(d->dvfs_rail); } ret = __tegra_dvfs_set_rate(d, rate); } mutex_unlock(&dvfs_lock); return ret; } struct tegra_cooling_device *tegra_dvfs_get_cpu_dfll_cdev(void) { if (tegra_cpu_rail) return tegra_cpu_rail->dfll_mode_cdev; return NULL; } struct tegra_cooling_device *tegra_dvfs_get_cpu_pll_cdev(void) { if (tegra_cpu_rail) return tegra_cpu_rail->pll_mode_cdev; return NULL; } struct tegra_cooling_device *tegra_dvfs_get_core_cdev(void) { if (tegra_core_rail) return tegra_core_rail->pll_mode_cdev; return NULL; } #ifdef CONFIG_THERMAL /* Cooling device limits minimum rail voltage at cold temperature in pll mode */ static int tegra_dvfs_rail_get_cdev_max_state( struct thermal_cooling_device *cdev, unsigned long *max_state) { struct dvfs_rail *rail = (struct dvfs_rail *)cdev->devdata; *max_state = rail->pll_mode_cdev->trip_temperatures_num; return 0; } static int tegra_dvfs_rail_get_cdev_cur_state( struct thermal_cooling_device *cdev, unsigned long *cur_state) { struct dvfs_rail *rail = (struct dvfs_rail *)cdev->devdata; *cur_state = rail->thermal_idx; return 0; } static int tegra_dvfs_rail_set_cdev_state( struct thermal_cooling_device *cdev, unsigned long cur_state) { struct dvfs_rail *rail = (struct dvfs_rail *)cdev->devdata; mutex_lock(&dvfs_lock); if (rail->thermal_idx != cur_state) { rail->thermal_idx = cur_state; dvfs_rail_update(rail); } mutex_unlock(&dvfs_lock); return 0; } static struct thermal_cooling_device_ops tegra_dvfs_rail_cooling_ops = { .get_max_state = tegra_dvfs_rail_get_cdev_max_state, .get_cur_state = tegra_dvfs_rail_get_cdev_cur_state, .set_cur_state = tegra_dvfs_rail_set_cdev_state, }; static void tegra_dvfs_rail_register_pll_mode_cdev(struct dvfs_rail *rail) { if (!rail->pll_mode_cdev) return; /* just report error - initialized for cold temperature, anyway */ if (IS_ERR_OR_NULL(thermal_cooling_device_register( rail->pll_mode_cdev->cdev_type, (void *)rail, &tegra_dvfs_rail_cooling_ops))) pr_err("tegra cooling device %s failed to register\n", rail->pll_mode_cdev->cdev_type); } #else #define tegra_dvfs_rail_register_pll_mode_cdev(rail) #endif /* Directly set cold temperature limit in dfll mode */ int tegra_dvfs_rail_dfll_mode_set_cold(struct dvfs_rail *rail) { int ret = 0; #ifdef CONFIG_THERMAL if (!rail || !rail->dfll_mode_cdev || !rail->min_millivolts_cold) return ret; mutex_lock(&dvfs_lock); if (rail->dfll_mode) ret = dvfs_rail_set_voltage_reg( rail, rail->min_millivolts_cold); mutex_unlock(&dvfs_lock); #endif return ret; } /* * Iterate through all the dvfs regulators, finding the regulator exported * by the regulator api for each one. Must be called in late init, after * all the regulator api's regulators are initialized. */ int __init tegra_dvfs_late_init(void) { bool connected = true; struct dvfs_rail *rail; int cur_linear_age = tegra_get_linear_age(); mutex_lock(&dvfs_lock); if (cur_linear_age >= 0) tegra_dvfs_age_cpu(cur_linear_age); list_for_each_entry(rail, &dvfs_rail_list, node) if (dvfs_rail_connect_to_regulator(rail)) connected = false; list_for_each_entry(rail, &dvfs_rail_list, node) if (connected) dvfs_rail_update(rail); else __tegra_dvfs_rail_disable(rail); mutex_unlock(&dvfs_lock); #ifdef CONFIG_TEGRA_SILICON_PLATFORM if (!connected) { pr_warn("tegra_dvfs: DVFS regulators connection failed\n" " !!!! voltage scaling is disabled !!!!\n"); return -ENODEV; } #endif register_pm_notifier(&tegra_dvfs_suspend_nb); register_pm_notifier(&tegra_dvfs_resume_nb); register_reboot_notifier(&tegra_dvfs_reboot_nb); list_for_each_entry(rail, &dvfs_rail_list, node) tegra_dvfs_rail_register_pll_mode_cdev(rail); return 0; } static int rail_stats_save_to_buf(char *buf, int len) { int i; struct dvfs_rail *rail; char *str = buf; char *end = buf + len; str += scnprintf(str, end - str, "%-12s %-10s\n", "millivolts", "time"); mutex_lock(&dvfs_lock); list_for_each_entry(rail, &dvfs_rail_list, node) { str += scnprintf(str, end - str, "%s (bin: %d.%dmV)\n", rail->reg_id, rail->stats.bin_uV / 1000, (rail->stats.bin_uV / 10) % 100); dvfs_rail_stats_update(rail, -1, ktime_get()); str += scnprintf(str, end - str, "%-12d %-10llu\n", 0, cputime64_to_clock_t(msecs_to_jiffies( ktime_to_ms(rail->stats.time_at_mv[0])))); for (i = 1; i <= DVFS_RAIL_STATS_TOP_BIN; i++) { ktime_t ktime_zero = ktime_set(0, 0); if (ktime_equal(rail->stats.time_at_mv[i], ktime_zero)) continue; str += scnprintf(str, end - str, "%-12d %-10llu\n", rail->min_millivolts + (i - 1) * rail->stats.bin_uV / 1000, cputime64_to_clock_t(msecs_to_jiffies( ktime_to_ms(rail->stats.time_at_mv[i]))) ); } } mutex_unlock(&dvfs_lock); return str - buf; } #ifdef CONFIG_DEBUG_FS static int dvfs_tree_sort_cmp(void *p, struct list_head *a, struct list_head *b) { struct dvfs *da = list_entry(a, struct dvfs, reg_node); struct dvfs *db = list_entry(b, struct dvfs, reg_node); int ret; ret = strcmp(da->dvfs_rail->reg_id, db->dvfs_rail->reg_id); if (ret != 0) return ret; if (da->cur_millivolts < db->cur_millivolts) return 1; if (da->cur_millivolts > db->cur_millivolts) return -1; return strcmp(da->clk_name, db->clk_name); } static int dvfs_tree_show(struct seq_file *s, void *data) { struct dvfs *d; struct dvfs_rail *rail; struct dvfs_relationship *rel; seq_printf(s, " clock rate mV\n"); seq_printf(s, "--------------------------------\n"); mutex_lock(&dvfs_lock); list_for_each_entry(rail, &dvfs_rail_list, node) { seq_printf(s, "%s %d mV%s:\n", rail->reg_id, rail->millivolts, rail->dfll_mode ? " dfll mode" : rail->disabled ? " disabled" : ""); list_for_each_entry(rel, &rail->relationships_from, from_node) { seq_printf(s, " %-10s %-7d mV %-4d mV\n", rel->from->reg_id, rel->from->millivolts, dvfs_solve_relationship(rel)); } seq_printf(s, " offset %-7d mV\n", rail->offs_millivolts); if (rail == tegra_core_rail) { seq_printf(s, " override %-7d mV [%-4d...%-4d]\n", rail->override_millivolts, rail->min_override_millivolts, rail->nominal_millivolts); } list_sort(NULL, &rail->dvfs, dvfs_tree_sort_cmp); list_for_each_entry(d, &rail->dvfs, reg_node) { seq_printf(s, " %-10s %-10lu %-4d mV\n", d->clk_name, d->cur_rate, d->cur_millivolts); } } mutex_unlock(&dvfs_lock); return 0; } static int dvfs_tree_open(struct inode *inode, struct file *file) { return single_open(file, dvfs_tree_show, inode->i_private); } static const struct file_operations dvfs_tree_fops = { .open = dvfs_tree_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int rail_stats_show(struct seq_file *s, void *data) { char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL); int size = 0; if (!buf) return -ENOMEM; size = rail_stats_save_to_buf(buf, PAGE_SIZE); seq_write(s, buf, size); kfree(buf); return 0; } static int rail_stats_open(struct inode *inode, struct file *file) { return single_open(file, rail_stats_show, inode->i_private); } static const struct file_operations rail_stats_fops = { .open = rail_stats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int cpu_offs_get(void *data, u64 *val) { if (tegra_cpu_rail) { *val = (u64)tegra_cpu_rail->offs_millivolts; return 0; } *val = 0; return -ENOENT; } static int cpu_offs_set(void *data, u64 val) { if (tegra_cpu_rail) { mutex_lock(&dvfs_lock); tegra_cpu_rail->offs_millivolts = (int)val; dvfs_rail_update(tegra_cpu_rail); mutex_unlock(&dvfs_lock); return 0; } return -ENOENT; } DEFINE_SIMPLE_ATTRIBUTE(cpu_offs_fops, cpu_offs_get, cpu_offs_set, "%lld\n"); static int core_offs_get(void *data, u64 *val) { if (tegra_core_rail) { *val = (u64)tegra_core_rail->offs_millivolts; return 0; } *val = 0; return -ENOENT; } static int core_offs_set(void *data, u64 val) { if (tegra_core_rail) { mutex_lock(&dvfs_lock); tegra_core_rail->offs_millivolts = (int)val; dvfs_rail_update(tegra_core_rail); mutex_unlock(&dvfs_lock); return 0; } return -ENOENT; } DEFINE_SIMPLE_ATTRIBUTE(core_offs_fops, core_offs_get, core_offs_set, "%lld\n"); static int core_override_get(void *data, u64 *val) { if (tegra_core_rail) { *val = (u64)tegra_core_rail->override_millivolts; return 0; } *val = 0; return -ENOENT; } static int core_override_set(void *data, u64 val) { return tegra_dvfs_override_core_voltage((int)val); } DEFINE_SIMPLE_ATTRIBUTE(core_override_fops, core_override_get, core_override_set, "%llu\n"); int __init dvfs_debugfs_init(struct dentry *clk_debugfs_root) { struct dentry *d; d = debugfs_create_file("dvfs", S_IRUGO, clk_debugfs_root, NULL, &dvfs_tree_fops); if (!d) return -ENOMEM; d = debugfs_create_file("rails", S_IRUGO, clk_debugfs_root, NULL, &rail_stats_fops); if (!d) return -ENOMEM; d = debugfs_create_file("vdd_cpu_offs", S_IRUGO | S_IWUSR, clk_debugfs_root, NULL, &cpu_offs_fops); if (!d) return -ENOMEM; d = debugfs_create_file("vdd_core_offs", S_IRUGO | S_IWUSR, clk_debugfs_root, NULL, &core_offs_fops); if (!d) return -ENOMEM; d = debugfs_create_file("vdd_core_override", S_IRUGO | S_IWUSR, clk_debugfs_root, NULL, &core_override_fops); if (!d) return -ENOMEM; return 0; } #endif #ifdef CONFIG_PM static ssize_t tegra_rail_stats_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return rail_stats_save_to_buf(buf, PAGE_SIZE); } static struct kobj_attribute rail_stats_attr = __ATTR_RO(tegra_rail_stats); static int __init tegra_dvfs_sysfs_stats_init(void) { int error; error = sysfs_create_file(power_kobj, &rail_stats_attr.attr); return 0; } late_initcall(tegra_dvfs_sysfs_stats_init); #endif