/* * Copyright (C) 2011 Google, Inc. * Copyright (C) 2013-2014, NVIDIA Corporation. All rights reserved. * * Author: * Colin Cross * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include "tegra2_emc.h" #include "common.h" #define TEGRA_MRR_DIVLD (1<<20) #define TEGRA_EMC_STATUS 0x02b4 #define TEGRA_EMC_MRR 0x00ec static DEFINE_MUTEX(tegra_emc_mrr_lock); #ifdef CONFIG_TEGRA_EMC_SCALING_ENABLE static bool emc_enable = true; #else static bool emc_enable; #endif module_param(emc_enable, bool, 0644); static struct platform_device *emc_pdev; static void __iomem *emc_regbase; static const struct tegra_emc_table *tegra_emc_table; static int tegra_emc_table_size; static unsigned long tegra_emc_max_bus_rate; /* 2 * 1000 * maximum emc_clock rate */ static unsigned long tegra_emc_min_bus_rate; /* 2 * 1000 * minimum emc_clock rate */ static inline void emc_writel(u32 val, unsigned long addr) { writel(val, emc_regbase + addr); } static inline u32 emc_readl(unsigned long addr) { return readl(emc_regbase + addr); } /* read LPDDR2 memory modes */ static int tegra_emc_read_mrr(unsigned long addr) { u32 value; int count = 100; mutex_lock(&tegra_emc_mrr_lock); do { emc_readl(TEGRA_EMC_MRR); } while (--count && (emc_readl(TEGRA_EMC_STATUS) & TEGRA_MRR_DIVLD)); if (count == 0) { pr_err("%s: Failed to read memory type\n", __func__); BUG(); } value = (1 << 30) | (addr << 16); emc_writel(value, TEGRA_EMC_MRR); count = 100; while (--count && !(emc_readl(TEGRA_EMC_STATUS) & TEGRA_MRR_DIVLD)); if (count == 0) { pr_err("%s: Failed to read memory type\n", __func__); BUG(); } value = emc_readl(TEGRA_EMC_MRR) & 0xFFFF; mutex_unlock(&tegra_emc_mrr_lock); return value; } static const unsigned long emc_reg_addr[TEGRA_EMC_NUM_REGS] = { 0x2c, /* RC */ 0x30, /* RFC */ 0x34, /* RAS */ 0x38, /* RP */ 0x3c, /* R2W */ 0x40, /* W2R */ 0x44, /* R2P */ 0x48, /* W2P */ 0x4c, /* RD_RCD */ 0x50, /* WR_RCD */ 0x54, /* RRD */ 0x58, /* REXT */ 0x5c, /* WDV */ 0x60, /* QUSE */ 0x64, /* QRST */ 0x68, /* QSAFE */ 0x6c, /* RDV */ 0x70, /* REFRESH */ 0x74, /* BURST_REFRESH_NUM */ 0x78, /* PDEX2WR */ 0x7c, /* PDEX2RD */ 0x80, /* PCHG2PDEN */ 0x84, /* ACT2PDEN */ 0x88, /* AR2PDEN */ 0x8c, /* RW2PDEN */ 0x90, /* TXSR */ 0x94, /* TCKE */ 0x98, /* TFAW */ 0x9c, /* TRPAB */ 0xa0, /* TCLKSTABLE */ 0xa4, /* TCLKSTOP */ 0xa8, /* TREFBW */ 0xac, /* QUSE_EXTRA */ 0x114, /* FBIO_CFG6 */ 0xb0, /* ODT_WRITE */ 0xb4, /* ODT_READ */ 0x104, /* FBIO_CFG5 */ 0x2bc, /* CFG_DIG_DLL */ 0x2c0, /* DLL_XFORM_DQS */ 0x2c4, /* DLL_XFORM_QUSE */ 0x2e0, /* ZCAL_REF_CNT */ 0x2e4, /* ZCAL_WAIT_CNT */ 0x2a8, /* AUTO_CAL_INTERVAL */ 0x2d0, /* CFG_CLKTRIM_0 */ 0x2d4, /* CFG_CLKTRIM_1 */ 0x2d8, /* CFG_CLKTRIM_2 */ }; /* Select the closest EMC rate that is higher than the requested rate */ long tegra_emc_round_rate(unsigned long rate) { struct tegra_emc_pdata *pdata; int i; int best = -1; unsigned long distance = ULONG_MAX; if (!emc_pdev) return -EINVAL; pdata = emc_pdev->dev.platform_data; if (rate >= tegra_emc_max_bus_rate) { best = tegra_emc_table_size - 1; goto round_out; } else if (rate <= tegra_emc_min_bus_rate) { best = 0; goto round_out; } pr_debug("%s: %lu\n", __func__, rate); /* * The EMC clock rate is twice the bus rate, and the bus rate is * measured in kHz */ rate = rate / 2 / 1000; for (i = 0; i < pdata->num_tables; i++) { if (pdata->tables[i].rate >= rate && (pdata->tables[i].rate - rate) < distance) { distance = pdata->tables[i].rate - rate; best = i; } } if (best < 0) return -EINVAL; round_out: pr_debug("%s: using %lu\n", __func__, pdata->tables[best].rate); return pdata->tables[best].rate * 2 * 1000; } /* * The EMC registers have shadow registers. When the EMC clock is updated * in the clock controller, the shadow registers are copied to the active * registers, allowing glitchless memory bus frequency changes. * This function updates the shadow registers for a new clock frequency, * and relies on the clock lock on the emc clock to avoid races between * multiple frequency changes */ int tegra_emc_set_rate(unsigned long rate) { struct tegra_emc_pdata *pdata; int i; int j; if (!emc_pdev) return -EINVAL; pdata = emc_pdev->dev.platform_data; /* * The EMC clock rate is twice the bus rate, and the bus rate is * measured in kHz */ rate = rate / 2 / 1000; for (i = 0; i < pdata->num_tables; i++) if (pdata->tables[i].rate == rate) break; if (i >= pdata->num_tables) return -EINVAL; pr_debug("%s: setting to %lu\n", __func__, rate); for (j = 0; j < TEGRA_EMC_NUM_REGS; j++) emc_writel(pdata->tables[i].regs[j], emc_reg_addr[j]); emc_readl(pdata->tables[i].regs[TEGRA_EMC_NUM_REGS - 1]); return 0; } static void tegra_emc_match_chip_data(struct platform_device *pdev) { int i; int vid; int rev_id1; int rev_id2; int pid; struct tegra_emc_pdata *pchips = pdev->dev.platform_data; int chips_size = pchips->num_tables; vid = tegra_emc_read_mrr(5); rev_id1 = tegra_emc_read_mrr(6); rev_id2 = tegra_emc_read_mrr(7); pid = tegra_emc_read_mrr(8); for (i = 0; i < chips_size; i++) { if (pchips[i].mem_manufacturer_id >= 0) { if (pchips[i].mem_manufacturer_id != vid) continue; } if (pchips[i].mem_revision_id1 >= 0) { if (pchips[i].mem_revision_id1 != rev_id1) continue; } if (pchips[i].mem_revision_id2 >= 0) { if (pchips[i].mem_revision_id2 != rev_id2) continue; } if (pchips[i].mem_pid >= 0) { if (pchips[i].mem_pid != pid) continue; } pr_info("%s: %s memory found\n", __func__, pchips[i].description); tegra_emc_table = pchips[i].tables; tegra_emc_table_size = pchips[i].num_tables; tegra_emc_min_bus_rate = tegra_emc_table[0].rate * 2 * 1000; tegra_emc_max_bus_rate = tegra_emc_table[tegra_emc_table_size - 1].rate * 2 * 1000; goto out; } pr_err("%s: Memory not recognized, memory scaling disabled\n", __func__); out: pr_info("%s: Memory vid = 0x%04x", __func__, vid); pr_info("%s: Memory rev_id1 = 0x%04x", __func__, rev_id1); pr_info("%s: Memory rev_id2 = 0x%04x", __func__, rev_id2); pr_info("%s: Memory pid = 0x%04x", __func__, pid); } #ifdef CONFIG_OF static struct device_node *tegra_emc_ramcode_devnode(struct device_node *np) { struct device_node *iter; u32 reg; for_each_child_of_node(np, iter) { if (of_property_read_u32(np, "nvidia,ram-code", ®)) continue; if (reg == tegra_get_bct_strapping()) return of_node_get(iter); } return NULL; } static struct tegra_emc_pdata *tegra_emc_dt_parse_pdata( struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct device_node *tnp, *iter; struct tegra_emc_pdata *pdata; int ret, i, num_tables; u32 tegra_bct_strapping; if (!np) return NULL; tegra_bct_strapping = tegra_get_bct_strapping(); if (of_find_property(np, "nvidia,use-ram-code", NULL)) { tnp = tegra_emc_ramcode_devnode(np); if (!tnp) dev_warn(&pdev->dev, "can't find emc table for ram-code 0x%02x\n", tegra_bct_strapping); } else tnp = of_node_get(np); if (!tnp) return NULL; num_tables = 0; for_each_child_of_node(tnp, iter) if (of_device_is_compatible(iter, "nvidia,tegra20-emc-table")) num_tables++; if (!num_tables) { pdata = NULL; goto out; } pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); pdata->tables = devm_kzalloc(&pdev->dev, sizeof(*pdata->tables) * num_tables, GFP_KERNEL); i = 0; for_each_child_of_node(tnp, iter) { u32 prop; ret = of_property_read_u32(iter, "clock-frequency", &prop); if (ret) { dev_err(&pdev->dev, "no clock-frequency in %s\n", iter->full_name); continue; } pdata->tables[i].rate = prop; ret = of_property_read_u32_array(iter, "nvidia,emc-registers", pdata->tables[i].regs, TEGRA_EMC_NUM_REGS); if (ret) { dev_err(&pdev->dev, "malformed emc-registers property in %s\n", iter->full_name); continue; } i++; } pdata->num_tables = i; out: of_node_put(tnp); return pdata; } #else static struct tegra_emc_pdata *tegra_emc_dt_parse_pdata( struct platform_device *pdev) { return NULL; } #endif static struct tegra_emc_pdata *tegra_emc_fill_pdata(struct platform_device *pdev) { struct clk *c = clk_get_sys(NULL, "emc"); struct tegra_emc_pdata *pdata; unsigned long khz; int i; WARN_ON(pdev->dev.platform_data); BUG_ON(IS_ERR(c)); pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); pdata->tables = devm_kzalloc(&pdev->dev, sizeof(*pdata->tables), GFP_KERNEL); pdata->tables[0].rate = clk_get_rate(c) / 2 / 1000; for (i = 0; i < TEGRA_EMC_NUM_REGS; i++) pdata->tables[0].regs[i] = emc_readl(emc_reg_addr[i]); pdata->num_tables = 1; khz = pdata->tables[0].rate; dev_info(&pdev->dev, "no tables provided, using %ld kHz emc, " "%ld kHz mem\n", khz * 2, khz); return pdata; } static int tegra_emc_probe(struct platform_device *pdev) { struct tegra_emc_pdata *pdata; struct resource *res; if (!emc_enable) { dev_err(&pdev->dev, "disabled per module parameter\n"); return -ENODEV; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "missing register base\n"); return -ENOMEM; } emc_regbase = devm_request_and_ioremap(&pdev->dev, res); if (!emc_regbase) { dev_err(&pdev->dev, "failed to remap registers\n"); return -ENOMEM; } pdata = pdev->dev.platform_data; if (pdata) tegra_emc_match_chip_data(pdev); if (!pdata) pdata = tegra_emc_dt_parse_pdata(pdev); if (!pdata) pdata = tegra_emc_fill_pdata(pdev); pdev->dev.platform_data = pdata; emc_pdev = pdev; return 0; } static struct of_device_id tegra_emc_of_match[] = { { .compatible = "nvidia,tegra20-emc", }, { }, }; static struct platform_driver tegra_emc_driver = { .driver = { .name = "tegra-emc", .owner = THIS_MODULE, .of_match_table = tegra_emc_of_match, }, .probe = tegra_emc_probe, }; int __init tegra_emc_init(void) { return platform_driver_register(&tegra_emc_driver); }