/* * arch/arch/mach-tegra/timer.c * * Copyright (C) 2010 Google, Inc. * * Author: * Colin Cross * * Copyright (C) 2010-2013 NVIDIA Corporation. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "board.h" #include "clock.h" #include "timer.h" #include "fuse.h" extern int __init arch_timer_register(struct arch_timer *at); static void __iomem *timer_reg_base = IO_ADDRESS(TEGRA_TMR1_BASE); static void __iomem *rtc_base = IO_ADDRESS(TEGRA_RTC_BASE); static struct timespec persistent_ts; #ifdef CONFIG_ARM_ARCH_TIMER static u32 arch_timer_ns_mult, arch_timer_ns_shift; static u32 arch_timer_us_mult, arch_timer_us_shift; static u64 persistent_cycles, last_persistent_cycles; #else static u64 persistent_ms, last_persistent_ms; #endif static u32 usec_config; static u32 usec_offset; static bool usec_suspended; #ifdef CONFIG_ARCH_TEGRA_2x_SOC static u32 system_timer = (TEGRA_TMR3_BASE - TEGRA_TMR1_BASE); #else static u32 system_timer = 0; #endif #define timer_writel(value, reg) \ __raw_writel(value, timer_reg_base + (reg)) #define timer_readl(reg) \ __raw_readl(timer_reg_base + (reg)) static int tegra_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { u32 reg; reg = 0x80000000 | ((cycles > 1) ? (cycles-1) : 0); timer_writel(reg, system_timer + TIMER_PTV); return 0; } static void tegra_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { u32 reg; timer_writel(0, system_timer + TIMER_PTV); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: reg = 0xC0000000 | ((1000000/HZ)-1); timer_writel(reg, system_timer + TIMER_PTV); break; case CLOCK_EVT_MODE_ONESHOT: break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: break; } } static struct clock_event_device tegra_clockevent = { .name = "timer0", .rating = 300, .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .set_next_event = tegra_timer_set_next_event, .set_mode = tegra_timer_set_mode, }; static u32 notrace tegra_read_usec(void) { u32 cyc = usec_offset; if (!usec_suspended) cyc += timer_readl(TIMERUS_CNTR_1US); return cyc; } u32 notrace tegra_read_usec_raw(void) { return timer_readl(TIMERUS_CNTR_1US); } static u32 notrace tegra_read_sched_clock(void) { return tegra_read_usec(); } /* * tegra_rtc_read - Reads the Tegra RTC registers * Care must be taken that this funciton is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ u64 tegra_rtc_read_ms(void) { u32 ms = readl(rtc_base + RTC_MILLISECONDS); u32 s = readl(rtc_base + RTC_SHADOW_SECONDS); return (u64)s * MSEC_PER_SEC + ms; } #ifdef CONFIG_ARM_ARCH_TIMER /* * read_persistent_clock - Return time from a persistent clock. * * For systems with arch timer, TSC runs even during suspend */ void read_persistent_clock(struct timespec *ts) { u32 cvalh, cvall; u64 delta; struct timespec *tsp = &persistent_ts; asm volatile("mrrc p15, 1, %0, %1, c14" : "=r" (cvall), "=r" (cvalh)); last_persistent_cycles = persistent_cycles; persistent_cycles = ((u64)cvalh << 32) | cvall; delta = persistent_cycles - last_persistent_cycles; delta = (delta * arch_timer_ns_mult) >> arch_timer_ns_shift; timespec_add_ns(tsp, delta); *ts = *tsp; } #else /* * read_persistent_clock - Return time from a persistent clock. * * Reads the time from a source which isn't disabled during PM, the * 32k sync timer. Convert the cycles elapsed since last read into * nsecs and adds to a monotonically increasing timespec. * Care must be taken that this funciton is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ void read_persistent_clock(struct timespec *ts) { u64 delta; struct timespec *tsp = &persistent_ts; last_persistent_ms = persistent_ms; persistent_ms = tegra_rtc_read_ms(); delta = persistent_ms - last_persistent_ms; timespec_add_ns(tsp, delta * NSEC_PER_MSEC); *ts = *tsp; } #endif static irqreturn_t tegra_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = (struct clock_event_device *)dev_id; timer_writel(1<<30, system_timer + TIMER_PCR); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction tegra_timer_irq = { .name = "timer0", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_TRIGGER_HIGH, .handler = tegra_timer_interrupt, .dev_id = &tegra_clockevent, #ifdef CONFIG_ARCH_TEGRA_2x_SOC .irq = INT_TMR3, #else .irq = INT_TMR1, #endif }; static int tegra_timer_suspend(void) { usec_config = timer_readl(TIMERUS_USEC_CFG); usec_offset += timer_readl(TIMERUS_CNTR_1US); usec_suspended = true; return 0; } static void tegra_timer_resume(void) { timer_writel(usec_config, TIMERUS_USEC_CFG); usec_offset -= timer_readl(TIMERUS_CNTR_1US); usec_suspended = false; } static struct syscore_ops tegra_timer_syscore_ops = { .suspend = tegra_timer_suspend, .resume = tegra_timer_resume, }; #ifdef CONFIG_HAVE_ARM_TWD static DEFINE_TWD_LOCAL_TIMER(twd_local_timer, TEGRA_ARM_PERIF_BASE + 0x600, IRQ_LOCALTIMER); static void __iomem *tegra_twd_base = IO_ADDRESS(TEGRA_ARM_PERIF_BASE + 0x600); void __init tegra_cpu_timer_init(void) { struct clk *cpu, *twd_clk; int err; /* The twd clock is a detached child of the CPU complex clock. Force an update of the twd clock after DVFS has updated the CPU clock rate. */ twd_clk = tegra_get_clock_by_name("twd"); BUG_ON(!twd_clk); cpu = tegra_get_clock_by_name("cpu"); err = clk_set_rate(twd_clk, clk_get_rate(cpu)); if (err) pr_err("Failed to set twd clock rate: %d\n", err); else pr_debug("TWD clock rate: %ld\n", clk_get_rate(twd_clk)); } int tegra_twd_get_state(struct tegra_twd_context *context) { context->twd_ctrl = readl(tegra_twd_base + TWD_TIMER_CONTROL); context->twd_load = readl(tegra_twd_base + TWD_TIMER_LOAD); context->twd_cnt = readl(tegra_twd_base + TWD_TIMER_COUNTER); return 0; } void tegra_twd_suspend(struct tegra_twd_context *context) { context->twd_ctrl = readl(tegra_twd_base + TWD_TIMER_CONTROL); context->twd_load = readl(tegra_twd_base + TWD_TIMER_LOAD); if ((context->twd_load == 0) && (context->twd_ctrl & TWD_TIMER_CONTROL_PERIODIC) && (context->twd_ctrl & (TWD_TIMER_CONTROL_ENABLE | TWD_TIMER_CONTROL_IT_ENABLE))) { WARN("%s: TWD enabled but counter was 0\n", __func__); context->twd_load = 1; } __raw_writel(0, tegra_twd_base + TWD_TIMER_CONTROL); } void tegra_twd_resume(struct tegra_twd_context *context) { BUG_ON((context->twd_load == 0) && (context->twd_ctrl & TWD_TIMER_CONTROL_PERIODIC) && (context->twd_ctrl & (TWD_TIMER_CONTROL_ENABLE | TWD_TIMER_CONTROL_IT_ENABLE))); writel(context->twd_load, tegra_twd_base + TWD_TIMER_LOAD); writel(context->twd_ctrl, tegra_twd_base + TWD_TIMER_CONTROL); } static void __init tegra_init_late_timer(void) { int err = twd_local_timer_register(&twd_local_timer); if (err) pr_err("twd_timer_register failed %d\n", err); } #else #define tegra_twd_get_state do {} while(0) #define tegra_twd_suspend do {} while(0) #define tegra_twd_resume do {} while(0) #endif #ifdef CONFIG_ARM_ARCH_TIMER #ifndef CONFIG_TRUSTED_FOUNDATIONS /* Time Stamp Counter (TSC) base address */ static void __iomem *tsc = IO_ADDRESS(TEGRA_TSC_BASE); #endif static bool arch_timer_initialized; #define TSC_CNTCR 0 /* TSC control registers */ #define TSC_CNTCR_ENABLE (1 << 0) /* Enable*/ #define TSC_CNTCR_HDBG (1 << 1) /* Halt on debug */ #define TSC_CNTCV0 0x8 /* TSC counter (LSW) */ #define TSC_CNTCV1 0xC /* TSC counter (MSW) */ #define TSC_CNTFID0 0x20 /* TSC freq id 0 */ #define tsc_writel(value, reg) \ __raw_writel(value, (u32)tsc + (reg)) #define tsc_readl(reg) \ __raw_readl((u32)tsc + (reg)) /* Is the optional system timer available? */ static int local_timer_is_architected(void) { return (cpu_architecture() >= CPU_ARCH_ARMv7) && ((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1; } void __init tegra_cpu_timer_init(void) { u64 sec; u32 tsc_ref_freq; #ifdef CONFIG_TRUSTED_FOUNDATIONS tsc_ref_freq = tegra_clk_measure_input_freq(); #else u32 reg; if (!local_timer_is_architected()) return; tsc_ref_freq = tegra_clk_measure_input_freq(); if (tsc_ref_freq == 115200 || tsc_ref_freq == 230400) { /* * OSC detection function will bug out if revision is not QT and * the detected frequency is one of these two. */ tsc_ref_freq = 13000000; pr_info("fake tsc_ref_req=%d in QT\n", tsc_ref_freq); } /* Set the Timer System Counter (TSC) reference frequency NOTE: this is a write once register */ tsc_writel(tsc_ref_freq, TSC_CNTFID0); /* Program CNTFRQ to the same value. NOTE: this is a write once (per CPU reset) register. */ __asm__("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (tsc_ref_freq)); /* CNTFRQ must agree with the TSC reference frequency. */ __asm__("mrc p15, 0, %0, c14, c0, 0\n" : "=r" (reg)); BUG_ON(reg != tsc_ref_freq); /* Enable the TSC. */ reg = tsc_readl(TSC_CNTCR); reg |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG; tsc_writel(reg, TSC_CNTCR); #endif sec = CLOCKSOURCE_MASK(56); do_div(sec, tsc_ref_freq); clocks_calc_mult_shift(&arch_timer_ns_mult, &arch_timer_ns_shift, tsc_ref_freq, NSEC_PER_SEC, sec); clocks_calc_mult_shift(&arch_timer_us_mult, &arch_timer_us_shift, tsc_ref_freq, USEC_PER_SEC, sec); return; } static void tegra_arch_timer_per_cpu_init(void) { #ifdef CONFIG_TRUSTED_FOUNDATIONS return; #else if (arch_timer_initialized) { u32 tsc_ref_freq = tegra_clk_measure_input_freq(); /* * OSC detection function will bug out if revision is not QT and * the detected frequency is one of these two. */ if (tsc_ref_freq == 115200 || tsc_ref_freq == 230400) tsc_ref_freq = 13000000; /* Program CNTFRQ to the input frequency. NOTE: this is a write once (per CPU reset) register. */ __asm__("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (tsc_ref_freq)); } #endif } static int arch_timer_cpu_notify(struct notifier_block *self, unsigned long action, void *data) { switch (action) { case CPU_STARTING: case CPU_STARTING_FROZEN: tegra_arch_timer_per_cpu_init(); break; default: break; } return NOTIFY_OK; } static struct notifier_block arch_timer_cpu_nb = { .notifier_call = arch_timer_cpu_notify, }; static int arch_timer_cpu_pm_notify(struct notifier_block *self, unsigned long action, void *data) { switch (action) { case CPU_PM_EXIT: tegra_arch_timer_per_cpu_init(); break; } return NOTIFY_OK; } static struct notifier_block arch_timer_cpu_pm_nb = { .notifier_call = arch_timer_cpu_pm_notify, }; static int __init tegra_init_arch_timer(void) { int err; if (!local_timer_is_architected()) return -ENODEV; err = arch_timer_sched_clock_init(); if (err) { pr_err("%s: Unable to initialize arch timer sched_clock: %d\n", __func__, err); return err; } register_cpu_notifier(&arch_timer_cpu_nb); cpu_pm_register_notifier(&arch_timer_cpu_pm_nb); arch_timer_initialized = true; return 0; } static struct arch_timer tegra_arch_timer = { .res[0] = { .start = 29, .end = 29, .flags = IORESOURCE_IRQ, }, .res[1] = { .start = 30, .end = 30, .flags = IORESOURCE_IRQ, }, }; static void __init tegra_init_late_timer(void) { int err = -ENODEV; if (arch_timer_initialized) { err = arch_timer_register(&tegra_arch_timer); if (err) pr_err("%s: Unable to register arch timer: %d\n", __func__, err); } } #ifdef CONFIG_PM_SLEEP static void __iomem *pmc = IO_ADDRESS(TEGRA_PMC_BASE); static u32 tsc_suspend_start; static u32 tsc_resume_start; #define pmc_writel(value, reg) \ writel(value, (u32)pmc + (reg)) #define pmc_readl(reg) \ readl((u32)pmc + (reg)) #define PMC_DPD_ENABLE 0x24 #define PMC_DPD_ENABLE_TSC_MULT_ENABLE (1 << 1) #define PMC_TSC_MULT 0x2b4 #define PMC_TSC_MULT_FREQ_STS (1 << 16) #define TSC_TIMEOUT_US 32 void tegra_tsc_suspend(void) { if (arch_timer_initialized) { u32 reg = pmc_readl(PMC_DPD_ENABLE); BUG_ON(reg & PMC_DPD_ENABLE_TSC_MULT_ENABLE); reg |= PMC_DPD_ENABLE_TSC_MULT_ENABLE; pmc_writel(reg, PMC_DPD_ENABLE); tsc_suspend_start = timer_readl(TIMERUS_CNTR_1US); } } void tegra_tsc_resume(void) { if (arch_timer_initialized) { u32 reg = pmc_readl(PMC_DPD_ENABLE); BUG_ON(!(reg & PMC_DPD_ENABLE_TSC_MULT_ENABLE)); reg &= ~PMC_DPD_ENABLE_TSC_MULT_ENABLE; pmc_writel(reg, PMC_DPD_ENABLE); tsc_resume_start = timer_readl(TIMERUS_CNTR_1US); } } void tegra_tsc_wait_for_suspend(void) { if (arch_timer_initialized) { while ((timer_readl(TIMERUS_CNTR_1US) - tsc_suspend_start) < TSC_TIMEOUT_US) { if (pmc_readl(PMC_TSC_MULT) & PMC_TSC_MULT_FREQ_STS) break; cpu_relax(); } } } void tegra_tsc_wait_for_resume(void) { if (arch_timer_initialized) { while ((timer_readl(TIMERUS_CNTR_1US) - tsc_resume_start) < TSC_TIMEOUT_US) { if (!(pmc_readl(PMC_TSC_MULT) & PMC_TSC_MULT_FREQ_STS)) break; cpu_relax(); } } } int tegra_cpu_timer_get_remain(s64 *time) { s32 cntp_tval; int ret = 0; asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (cntp_tval)); if (cntp_tval <= 0) ret = -ETIME; else *time = (s64)((s64)cntp_tval * arch_timer_us_mult) >> arch_timer_us_shift; return ret; } #endif #else static inline int tegra_init_arch_timer(void) { return -ENODEV; } static inline int tegra_init_late_arch_timer(void) { return -ENODEV; } #endif #ifdef CONFIG_RTC_CLASS /** * has_readtime - check rtc device has readtime ability * @dev: current device * @name_ptr: name to be returned * * This helper function checks to see if the rtc device can be * used for reading time */ static int has_readtime(struct device *dev, void *name_ptr) { struct rtc_device *candidate = to_rtc_device(dev); if (!candidate->ops->read_time) return 0; return 1; } /** * tegra_get_linear_age - helper function to return linear age * from Jan 2012. * * @return * 1 - Jan 2012, * 2 - Feb 2012, * ..... * 13 - Jan 2013 */ int tegra_get_linear_age(void) { struct rtc_time tm; int year, month, linear_age; struct rtc_device *rtc_dev = NULL; const char *name = NULL; int ret; struct device *dev = NULL; linear_age = -1; year = month = 0; dev = class_find_device(rtc_class, NULL, &name, has_readtime); if (!dev) { pr_err("DVFS: No device with readtime capability\n"); goto done; } name = dev_name(dev); pr_info("DVFS: Got RTC device name:%s\n", name); if (name) rtc_dev = rtc_class_open((char *)name); if (!rtc_dev) { pr_err("DVFS: No RTC device\n"); goto error_dev; } ret = rtc_read_time(rtc_dev, &tm); if (ret < 0) { pr_err("DVFS: Can't read RTC time\n"); goto error_rtc; } year = tm.tm_year; /*Normalize it to 2012*/ year -= 112; month = tm.tm_mon + 1; if (year >= 0) linear_age = year * 12 + month; error_rtc: rtc_class_close(rtc_dev); error_dev: put_device(dev); done: return linear_age; } #else int tegra_get_linear_age() { return -1; } #endif void __init tegra_init_timer(void) { struct clk *clk; int ret; unsigned long rate; clk = clk_get_sys("timer", NULL); if (IS_ERR(clk)) { pr_warn("Unable to get timer clock." " Assuming 12Mhz input clock.\n"); rate = 12000000; } else { tegra_clk_prepare_enable(clk); rate = clk_get_rate(clk); } /* * rtc registers are used by read_persistent_clock, keep the rtc clock * enabled */ clk = clk_get_sys("rtc-tegra", NULL); if (IS_ERR(clk)) pr_warn("Unable to get rtc-tegra clock\n"); else tegra_clk_prepare_enable(clk); switch (rate) { case 12000000: timer_writel(0x000b, TIMERUS_USEC_CFG); break; case 13000000: timer_writel(0x000c, TIMERUS_USEC_CFG); break; case 19200000: timer_writel(0x045f, TIMERUS_USEC_CFG); break; case 26000000: timer_writel(0x0019, TIMERUS_USEC_CFG); break; #ifndef CONFIG_ARCH_TEGRA_2x_SOC case 16800000: timer_writel(0x0453, TIMERUS_USEC_CFG); break; case 38400000: timer_writel(0x04BF, TIMERUS_USEC_CFG); break; case 48000000: timer_writel(0x002F, TIMERUS_USEC_CFG); break; #endif default: if (tegra_revision == TEGRA_REVISION_QT) { timer_writel(0x000c, TIMERUS_USEC_CFG); break; } WARN(1, "Unknown clock rate"); } #ifdef CONFIG_ARCH_TEGRA_2x_SOC tegra20_init_timer(); #else tegra30_init_timer(); #endif /* Architectural timers take precedence over broadcast timers. Only register a broadcast clockevent device if architectural timers do not exist or cannot be initialized. */ if (tegra_init_arch_timer()) /* Architectural timers do not exist or cannot be initialzied. Fall back to using the broadcast timer as the sched clock. */ setup_sched_clock(tegra_read_sched_clock, 32, 1000000); ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US, "timer_us", 1000000, 300, 32, clocksource_mmio_readl_up); if (ret) { pr_err("%s: Failed to register clocksource: %d\n", __func__, ret); BUG(); } ret = setup_irq(tegra_timer_irq.irq, &tegra_timer_irq); if (ret) { pr_err("%s: Failed to register timer IRQ: %d\n", __func__, ret); BUG(); } clockevents_calc_mult_shift(&tegra_clockevent, 1000000, 5); tegra_clockevent.max_delta_ns = clockevent_delta2ns(0x1fffffff, &tegra_clockevent); tegra_clockevent.min_delta_ns = clockevent_delta2ns(0x1, &tegra_clockevent); tegra_clockevent.cpumask = cpu_all_mask; tegra_clockevent.irq = tegra_timer_irq.irq; clockevents_register_device(&tegra_clockevent); register_syscore_ops(&tegra_timer_syscore_ops); late_time_init = tegra_init_late_timer; } struct sys_timer tegra_timer = { .init = tegra_init_timer, };