/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_HARDWALL #include #endif #include #include /* * Use the (x86) "idle=poll" option to prefer low latency when leaving the * idle loop over low power while in the idle loop, e.g. if we have * one thread per core and we want to get threads out of futex waits fast. */ static int no_idle_nap; static int __init idle_setup(char *str) { if (!str) return -EINVAL; if (!strcmp(str, "poll")) { pr_info("using polling idle threads.\n"); no_idle_nap = 1; } else if (!strcmp(str, "halt")) no_idle_nap = 0; else return -1; return 0; } early_param("idle", idle_setup); /* * The idle thread. There's no useful work to be * done, so just try to conserve power and have a * low exit latency (ie sit in a loop waiting for * somebody to say that they'd like to reschedule) */ void cpu_idle(void) { int cpu = smp_processor_id(); current_thread_info()->status |= TS_POLLING; if (no_idle_nap) { while (1) { while (!need_resched()) cpu_relax(); schedule(); } } /* endless idle loop with no priority at all */ while (1) { tick_nohz_stop_sched_tick(1); while (!need_resched()) { if (cpu_is_offline(cpu)) BUG(); /* no HOTPLUG_CPU */ local_irq_disable(); __get_cpu_var(irq_stat).idle_timestamp = jiffies; current_thread_info()->status &= ~TS_POLLING; /* * TS_POLLING-cleared state must be visible before we * test NEED_RESCHED: */ smp_mb(); if (!need_resched()) _cpu_idle(); else local_irq_enable(); current_thread_info()->status |= TS_POLLING; } tick_nohz_restart_sched_tick(); preempt_enable_no_resched(); schedule(); preempt_disable(); } } struct thread_info *alloc_thread_info_node(struct task_struct *task, int node) { struct page *page; gfp_t flags = GFP_KERNEL; #ifdef CONFIG_DEBUG_STACK_USAGE flags |= __GFP_ZERO; #endif page = alloc_pages_node(node, flags, THREAD_SIZE_ORDER); if (!page) return NULL; return (struct thread_info *)page_address(page); } /* * Free a thread_info node, and all of its derivative * data structures. */ void free_thread_info(struct thread_info *info) { struct single_step_state *step_state = info->step_state; #ifdef CONFIG_HARDWALL /* * We free a thread_info from the context of the task that has * been scheduled next, so the original task is already dead. * Calling deactivate here just frees up the data structures. * If the task we're freeing held the last reference to a * hardwall fd, it would have been released prior to this point * anyway via exit_files(), and "hardwall" would be NULL by now. */ if (info->task->thread.hardwall) hardwall_deactivate(info->task); #endif if (step_state) { /* * FIXME: we don't munmap step_state->buffer * because the mm_struct for this process (info->task->mm) * has already been zeroed in exit_mm(). Keeping a * reference to it here seems like a bad move, so this * means we can't munmap() the buffer, and therefore if we * ptrace multiple threads in a process, we will slowly * leak user memory. (Note that as soon as the last * thread in a process dies, we will reclaim all user * memory including single-step buffers in the usual way.) * We should either assign a kernel VA to this buffer * somehow, or we should associate the buffer(s) with the * mm itself so we can clean them up that way. */ kfree(step_state); } free_pages((unsigned long)info, THREAD_SIZE_ORDER); } static void save_arch_state(struct thread_struct *t); int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long stack_size, struct task_struct *p, struct pt_regs *regs) { struct pt_regs *childregs; unsigned long ksp; /* * When creating a new kernel thread we pass sp as zero. * Assign it to a reasonable value now that we have the stack. */ if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0)) sp = KSTK_TOP(p); /* * Do not clone step state from the parent; each thread * must make its own lazily. */ task_thread_info(p)->step_state = NULL; /* * Start new thread in ret_from_fork so it schedules properly * and then return from interrupt like the parent. */ p->thread.pc = (unsigned long) ret_from_fork; /* Save user stack top pointer so we can ID the stack vm area later. */ p->thread.usp0 = sp; /* Record the pid of the process that created this one. */ p->thread.creator_pid = current->pid; /* * Copy the registers onto the kernel stack so the * return-from-interrupt code will reload it into registers. */ childregs = task_pt_regs(p); *childregs = *regs; childregs->regs[0] = 0; /* return value is zero */ childregs->sp = sp; /* override with new user stack pointer */ /* * If CLONE_SETTLS is set, set "tp" in the new task to "r4", * which is passed in as arg #5 to sys_clone(). */ if (clone_flags & CLONE_SETTLS) childregs->tp = regs->regs[4]; /* * Copy the callee-saved registers from the passed pt_regs struct * into the context-switch callee-saved registers area. * This way when we start the interrupt-return sequence, the * callee-save registers will be correctly in registers, which * is how we assume the compiler leaves them as we start doing * the normal return-from-interrupt path after calling C code. * Zero out the C ABI save area to mark the top of the stack. */ ksp = (unsigned long) childregs; ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */ ((long *)ksp)[0] = ((long *)ksp)[1] = 0; ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long); memcpy((void *)ksp, ®s->regs[CALLEE_SAVED_FIRST_REG], CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long)); ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */ ((long *)ksp)[0] = ((long *)ksp)[1] = 0; p->thread.ksp = ksp; #if CHIP_HAS_TILE_DMA() /* * No DMA in the new thread. We model this on the fact that * fork() clears the pending signals, alarms, and aio for the child. */ memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state)); memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb)); #endif #if CHIP_HAS_SN_PROC() /* Likewise, the new thread is not running static processor code. */ p->thread.sn_proc_running = 0; memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb)); #endif #if CHIP_HAS_PROC_STATUS_SPR() /* New thread has its miscellaneous processor state bits clear. */ p->thread.proc_status = 0; #endif #ifdef CONFIG_HARDWALL /* New thread does not own any networks. */ p->thread.hardwall = NULL; #endif /* * Start the new thread with the current architecture state * (user interrupt masks, etc.). */ save_arch_state(&p->thread); return 0; } /* * Return "current" if it looks plausible, or else a pointer to a dummy. * This can be helpful if we are just trying to emit a clean panic. */ struct task_struct *validate_current(void) { static struct task_struct corrupt = { .comm = "" }; struct task_struct *tsk = current; if (unlikely((unsigned long)tsk < PAGE_OFFSET || (void *)tsk > high_memory || ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) { pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer); tsk = &corrupt; } return tsk; } /* Take and return the pointer to the previous task, for schedule_tail(). */ struct task_struct *sim_notify_fork(struct task_struct *prev) { struct task_struct *tsk = current; __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT | (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS)); __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK | (tsk->pid << _SIM_CONTROL_OPERATOR_BITS)); return prev; } int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs) { struct pt_regs *ptregs = task_pt_regs(tsk); elf_core_copy_regs(regs, ptregs); return 1; } #if CHIP_HAS_TILE_DMA() /* Allow user processes to access the DMA SPRs */ void grant_dma_mpls(void) { #if CONFIG_KERNEL_PL == 2 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1); __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1); #else __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1); __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1); #endif } /* Forbid user processes from accessing the DMA SPRs */ void restrict_dma_mpls(void) { #if CONFIG_KERNEL_PL == 2 __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1); __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1); #else __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1); __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1); #endif } /* Pause the DMA engine, then save off its state registers. */ static void save_tile_dma_state(struct tile_dma_state *dma) { unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS); unsigned long post_suspend_state; /* If we're running, suspend the engine. */ if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK); /* * Wait for the engine to idle, then save regs. Note that we * want to record the "running" bit from before suspension, * and the "done" bit from after, so that we can properly * distinguish a case where the user suspended the engine from * the case where the kernel suspended as part of the context * swap. */ do { post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS); } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK); dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR); dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR); dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR); dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR); dma->strides = __insn_mfspr(SPR_DMA_STRIDE); dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE); dma->byte = __insn_mfspr(SPR_DMA_BYTE); dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) | (post_suspend_state & SPR_DMA_STATUS__DONE_MASK); } /* Restart a DMA that was running before we were context-switched out. */ static void restore_tile_dma_state(struct thread_struct *t) { const struct tile_dma_state *dma = &t->tile_dma_state; /* * The only way to restore the done bit is to run a zero * length transaction. */ if ((dma->status & SPR_DMA_STATUS__DONE_MASK) && !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) { __insn_mtspr(SPR_DMA_BYTE, 0); __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); while (__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__BUSY_MASK) ; } __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src); __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk); __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest); __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk); __insn_mtspr(SPR_DMA_STRIDE, dma->strides); __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size); __insn_mtspr(SPR_DMA_BYTE, dma->byte); /* * Restart the engine if we were running and not done. * Clear a pending async DMA fault that we were waiting on return * to user space to execute, since we expect the DMA engine * to regenerate those faults for us now. Note that we don't * try to clear the TIF_ASYNC_TLB flag, since it's relatively * harmless if set, and it covers both DMA and the SN processor. */ if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) { t->dma_async_tlb.fault_num = 0; __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); } } #endif static void save_arch_state(struct thread_struct *t) { #if CHIP_HAS_SPLIT_INTR_MASK() t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) | ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32); #else t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0); #endif t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0); t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1); t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0); t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1); t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2); t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3); t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS); #if CHIP_HAS_PROC_STATUS_SPR() t->proc_status = __insn_mfspr(SPR_PROC_STATUS); #endif #if !CHIP_HAS_FIXED_INTVEC_BASE() t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0); #endif #if CHIP_HAS_TILE_RTF_HWM() t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM); #endif #if CHIP_HAS_DSTREAM_PF() t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF); #endif } static void restore_arch_state(const struct thread_struct *t) { #if CHIP_HAS_SPLIT_INTR_MASK() __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask); __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32); #else __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask); #endif __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]); __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]); __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]); __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]); __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]); __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]); __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0); #if CHIP_HAS_PROC_STATUS_SPR() __insn_mtspr(SPR_PROC_STATUS, t->proc_status); #endif #if !CHIP_HAS_FIXED_INTVEC_BASE() __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base); #endif #if CHIP_HAS_TILE_RTF_HWM() __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm); #endif #if CHIP_HAS_DSTREAM_PF() __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf); #endif } void _prepare_arch_switch(struct task_struct *next) { #if CHIP_HAS_SN_PROC() int snctl; #endif #if CHIP_HAS_TILE_DMA() struct tile_dma_state *dma = ¤t->thread.tile_dma_state; if (dma->enabled) save_tile_dma_state(dma); #endif #if CHIP_HAS_SN_PROC() /* * Suspend the static network processor if it was running. * We do not suspend the fabric itself, just like we don't * try to suspend the UDN. */ snctl = __insn_mfspr(SPR_SNCTL); current->thread.sn_proc_running = (snctl & SPR_SNCTL__FRZPROC_MASK) == 0; if (current->thread.sn_proc_running) __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK); #endif } struct task_struct *__sched _switch_to(struct task_struct *prev, struct task_struct *next) { /* DMA state is already saved; save off other arch state. */ save_arch_state(&prev->thread); #if CHIP_HAS_TILE_DMA() /* * Restore DMA in new task if desired. * Note that it is only safe to restart here since interrupts * are disabled, so we can't take any DMATLB miss or access * interrupts before we have finished switching stacks. */ if (next->thread.tile_dma_state.enabled) { restore_tile_dma_state(&next->thread); grant_dma_mpls(); } else { restrict_dma_mpls(); } #endif /* Restore other arch state. */ restore_arch_state(&next->thread); #if CHIP_HAS_SN_PROC() /* * Restart static network processor in the new process * if it was running before. */ if (next->thread.sn_proc_running) { int snctl = __insn_mfspr(SPR_SNCTL); __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK); } #endif #ifdef CONFIG_HARDWALL /* Enable or disable access to the network registers appropriately. */ if (prev->thread.hardwall != NULL) { if (next->thread.hardwall == NULL) restrict_network_mpls(); } else if (next->thread.hardwall != NULL) { grant_network_mpls(); } #endif /* * Switch kernel SP, PC, and callee-saved registers. * In the context of the new task, return the old task pointer * (i.e. the task that actually called __switch_to). * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp. */ return __switch_to(prev, next, next_current_ksp0(next)); } /* * This routine is called on return from interrupt if any of the * TIF_WORK_MASK flags are set in thread_info->flags. It is * entered with interrupts disabled so we don't miss an event * that modified the thread_info flags. If any flag is set, we * handle it and return, and the calling assembly code will * re-disable interrupts, reload the thread flags, and call back * if more flags need to be handled. * * We return whether we need to check the thread_info flags again * or not. Note that we don't clear TIF_SINGLESTEP here, so it's * important that it be tested last, and then claim that we don't * need to recheck the flags. */ int do_work_pending(struct pt_regs *regs, u32 thread_info_flags) { if (thread_info_flags & _TIF_NEED_RESCHED) { schedule(); return 1; } #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() if (thread_info_flags & _TIF_ASYNC_TLB) { do_async_page_fault(regs); return 1; } #endif if (thread_info_flags & _TIF_SIGPENDING) { do_signal(regs); return 1; } if (thread_info_flags & _TIF_NOTIFY_RESUME) { clear_thread_flag(TIF_NOTIFY_RESUME); tracehook_notify_resume(regs); if (current->replacement_session_keyring) key_replace_session_keyring(); return 1; } if (thread_info_flags & _TIF_SINGLESTEP) { if ((regs->ex1 & SPR_EX_CONTEXT_1_1__PL_MASK) == 0) single_step_once(regs); return 0; } panic("work_pending: bad flags %#x\n", thread_info_flags); } /* Note there is an implicit fifth argument if (clone_flags & CLONE_SETTLS). */ SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, void __user *, parent_tidptr, void __user *, child_tidptr, struct pt_regs *, regs) { if (!newsp) newsp = regs->sp; return do_fork(clone_flags, newsp, regs, 0, parent_tidptr, child_tidptr); } /* * sys_execve() executes a new program. */ SYSCALL_DEFINE4(execve, const char __user *, path, const char __user *const __user *, argv, const char __user *const __user *, envp, struct pt_regs *, regs) { long error; char *filename; filename = getname(path); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, argv, envp, regs); putname(filename); if (error == 0) single_step_execve(); out: return error; } #ifdef CONFIG_COMPAT long compat_sys_execve(const char __user *path, compat_uptr_t __user *argv, compat_uptr_t __user *envp, struct pt_regs *regs) { long error; char *filename; filename = getname(path); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = compat_do_execve(filename, argv, envp, regs); putname(filename); if (error == 0) single_step_execve(); out: return error; } #endif unsigned long get_wchan(struct task_struct *p) { struct KBacktraceIterator kbt; if (!p || p == current || p->state == TASK_RUNNING) return 0; for (KBacktraceIterator_init(&kbt, p, NULL); !KBacktraceIterator_end(&kbt); KBacktraceIterator_next(&kbt)) { if (!in_sched_functions(kbt.it.pc)) return kbt.it.pc; } return 0; } /* * We pass in lr as zero (cleared in kernel_thread) and the caller * part of the backtrace ABI on the stack also zeroed (in copy_thread) * so that backtraces will stop with this function. * Note that we don't use r0, since copy_thread() clears it. */ static void start_kernel_thread(int dummy, int (*fn)(int), int arg) { do_exit(fn(arg)); } /* * Create a kernel thread */ int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */ regs.pc = (long) start_kernel_thread; regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */ regs.regs[1] = (long) fn; /* function pointer */ regs.regs[2] = (long) arg; /* parameter register */ /* Ok, create the new process.. */ return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); } EXPORT_SYMBOL(kernel_thread); /* Flush thread state. */ void flush_thread(void) { /* Nothing */ } /* * Free current thread data structures etc.. */ void exit_thread(void) { /* Nothing */ } void show_regs(struct pt_regs *regs) { struct task_struct *tsk = validate_current(); int i; pr_err("\n"); pr_err(" Pid: %d, comm: %20s, CPU: %d\n", tsk->pid, tsk->comm, smp_processor_id()); #ifdef __tilegx__ for (i = 0; i < 51; i += 3) pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n", i, regs->regs[i], i+1, regs->regs[i+1], i+2, regs->regs[i+2]); pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n", regs->regs[51], regs->regs[52], regs->tp); pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr); #else for (i = 0; i < 52; i += 4) pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT " r%-2d: "REGFMT" r%-2d: "REGFMT"\n", i, regs->regs[i], i+1, regs->regs[i+1], i+2, regs->regs[i+2], i+3, regs->regs[i+3]); pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n", regs->regs[52], regs->tp, regs->sp, regs->lr); #endif pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n", regs->pc, regs->ex1, regs->faultnum); dump_stack_regs(regs); }