/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. * * This code maintains the "home" for each page in the system. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "migrate.h" #if CHIP_HAS_COHERENT_LOCAL_CACHE() /* * The noallocl2 option suppresses all use of the L2 cache to cache * locally from a remote home. There's no point in using it if we * don't have coherent local caching, though. */ static int __write_once noallocl2; static int __init set_noallocl2(char *str) { noallocl2 = 1; return 0; } early_param("noallocl2", set_noallocl2); #else #define noallocl2 0 #endif /* Provide no-op versions of these routines to keep flush_remote() cleaner. */ #define mark_caches_evicted_start() 0 #define mark_caches_evicted_finish(mask, timestamp) do {} while (0) /* * Update the irq_stat for cpus that we are going to interrupt * with TLB or cache flushes. Also handle removing dataplane cpus * from the TLB flush set, and setting dataplane_tlb_state instead. */ static void hv_flush_update(const struct cpumask *cache_cpumask, struct cpumask *tlb_cpumask, unsigned long tlb_va, unsigned long tlb_length, HV_Remote_ASID *asids, int asidcount) { struct cpumask mask; int i, cpu; cpumask_clear(&mask); if (cache_cpumask) cpumask_or(&mask, &mask, cache_cpumask); if (tlb_cpumask && tlb_length) { cpumask_or(&mask, &mask, tlb_cpumask); } for (i = 0; i < asidcount; ++i) cpumask_set_cpu(asids[i].y * smp_width + asids[i].x, &mask); /* * Don't bother to update atomically; losing a count * here is not that critical. */ for_each_cpu(cpu, &mask) ++per_cpu(irq_stat, cpu).irq_hv_flush_count; } /* * This wrapper function around hv_flush_remote() does several things: * * - Provides a return value error-checking panic path, since * there's never any good reason for hv_flush_remote() to fail. * - Accepts a 32-bit PFN rather than a 64-bit PA, which generally * is the type that Linux wants to pass around anyway. * - Centralizes the mark_caches_evicted() handling. * - Canonicalizes that lengths of zero make cpumasks NULL. * - Handles deferring TLB flushes for dataplane tiles. * - Tracks remote interrupts in the per-cpu irq_cpustat_t. * * Note that we have to wait until the cache flush completes before * updating the per-cpu last_cache_flush word, since otherwise another * concurrent flush can race, conclude the flush has already * completed, and start to use the page while it's still dirty * remotely (running concurrently with the actual evict, presumably). */ void flush_remote(unsigned long cache_pfn, unsigned long cache_control, const struct cpumask *cache_cpumask_orig, HV_VirtAddr tlb_va, unsigned long tlb_length, unsigned long tlb_pgsize, const struct cpumask *tlb_cpumask_orig, HV_Remote_ASID *asids, int asidcount) { int rc; int timestamp = 0; /* happy compiler */ struct cpumask cache_cpumask_copy, tlb_cpumask_copy; struct cpumask *cache_cpumask, *tlb_cpumask; HV_PhysAddr cache_pa; char cache_buf[NR_CPUS*5], tlb_buf[NR_CPUS*5]; mb(); /* provided just to simplify "magic hypervisor" mode */ /* * Canonicalize and copy the cpumasks. */ if (cache_cpumask_orig && cache_control) { cpumask_copy(&cache_cpumask_copy, cache_cpumask_orig); cache_cpumask = &cache_cpumask_copy; } else { cpumask_clear(&cache_cpumask_copy); cache_cpumask = NULL; } if (cache_cpumask == NULL) cache_control = 0; if (tlb_cpumask_orig && tlb_length) { cpumask_copy(&tlb_cpumask_copy, tlb_cpumask_orig); tlb_cpumask = &tlb_cpumask_copy; } else { cpumask_clear(&tlb_cpumask_copy); tlb_cpumask = NULL; } hv_flush_update(cache_cpumask, tlb_cpumask, tlb_va, tlb_length, asids, asidcount); cache_pa = (HV_PhysAddr)cache_pfn << PAGE_SHIFT; if (cache_control & HV_FLUSH_EVICT_L2) timestamp = mark_caches_evicted_start(); rc = hv_flush_remote(cache_pa, cache_control, cpumask_bits(cache_cpumask), tlb_va, tlb_length, tlb_pgsize, cpumask_bits(tlb_cpumask), asids, asidcount); if (cache_control & HV_FLUSH_EVICT_L2) mark_caches_evicted_finish(cache_cpumask, timestamp); if (rc == 0) return; cpumask_scnprintf(cache_buf, sizeof(cache_buf), &cache_cpumask_copy); cpumask_scnprintf(tlb_buf, sizeof(tlb_buf), &tlb_cpumask_copy); pr_err("hv_flush_remote(%#llx, %#lx, %p [%s]," " %#lx, %#lx, %#lx, %p [%s], %p, %d) = %d\n", cache_pa, cache_control, cache_cpumask, cache_buf, (unsigned long)tlb_va, tlb_length, tlb_pgsize, tlb_cpumask, tlb_buf, asids, asidcount, rc); panic("Unsafe to continue."); } void flush_remote_page(struct page *page, int order) { int i, pages = (1 << order); for (i = 0; i < pages; ++i, ++page) { void *p = kmap_atomic(page); int hfh = 0; int home = page_home(page); #if CHIP_HAS_CBOX_HOME_MAP() if (home == PAGE_HOME_HASH) hfh = 1; else #endif BUG_ON(home < 0 || home >= NR_CPUS); finv_buffer_remote(p, PAGE_SIZE, hfh); kunmap_atomic(p); } } void homecache_evict(const struct cpumask *mask) { flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0); } /* * Return a mask of the cpus whose caches currently own these pages. * The return value is whether the pages are all coherently cached * (i.e. none are immutable, incoherent, or uncached). */ static int homecache_mask(struct page *page, int pages, struct cpumask *home_mask) { int i; int cached_coherently = 1; cpumask_clear(home_mask); for (i = 0; i < pages; ++i) { int home = page_home(&page[i]); if (home == PAGE_HOME_IMMUTABLE || home == PAGE_HOME_INCOHERENT) { cpumask_copy(home_mask, cpu_possible_mask); return 0; } #if CHIP_HAS_CBOX_HOME_MAP() if (home == PAGE_HOME_HASH) { cpumask_or(home_mask, home_mask, &hash_for_home_map); continue; } #endif if (home == PAGE_HOME_UNCACHED) { cached_coherently = 0; continue; } BUG_ON(home < 0 || home >= NR_CPUS); cpumask_set_cpu(home, home_mask); } return cached_coherently; } /* * Return the passed length, or zero if it's long enough that we * believe we should evict the whole L2 cache. */ static unsigned long cache_flush_length(unsigned long length) { return (length >= CHIP_L2_CACHE_SIZE()) ? HV_FLUSH_EVICT_L2 : length; } /* Flush a page out of whatever cache(s) it is in. */ void homecache_flush_cache(struct page *page, int order) { int pages = 1 << order; int length = cache_flush_length(pages * PAGE_SIZE); unsigned long pfn = page_to_pfn(page); struct cpumask home_mask; homecache_mask(page, pages, &home_mask); flush_remote(pfn, length, &home_mask, 0, 0, 0, NULL, NULL, 0); sim_validate_lines_evicted(PFN_PHYS(pfn), pages * PAGE_SIZE); } /* Report the home corresponding to a given PTE. */ static int pte_to_home(pte_t pte) { if (hv_pte_get_nc(pte)) return PAGE_HOME_IMMUTABLE; switch (hv_pte_get_mode(pte)) { case HV_PTE_MODE_CACHE_TILE_L3: return get_remote_cache_cpu(pte); case HV_PTE_MODE_CACHE_NO_L3: return PAGE_HOME_INCOHERENT; case HV_PTE_MODE_UNCACHED: return PAGE_HOME_UNCACHED; #if CHIP_HAS_CBOX_HOME_MAP() case HV_PTE_MODE_CACHE_HASH_L3: return PAGE_HOME_HASH; #endif } panic("Bad PTE %#llx\n", pte.val); } /* Update the home of a PTE if necessary (can also be used for a pgprot_t). */ pte_t pte_set_home(pte_t pte, int home) { /* Check for non-linear file mapping "PTEs" and pass them through. */ if (pte_file(pte)) return pte; #if CHIP_HAS_MMIO() /* Check for MMIO mappings and pass them through. */ if (hv_pte_get_mode(pte) == HV_PTE_MODE_MMIO) return pte; #endif /* * Only immutable pages get NC mappings. If we have a * non-coherent PTE, but the underlying page is not * immutable, it's likely the result of a forced * caching setting running up against ptrace setting * the page to be writable underneath. In this case, * just keep the PTE coherent. */ if (hv_pte_get_nc(pte) && home != PAGE_HOME_IMMUTABLE) { pte = hv_pte_clear_nc(pte); pr_err("non-immutable page incoherently referenced: %#llx\n", pte.val); } switch (home) { case PAGE_HOME_UNCACHED: pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED); break; case PAGE_HOME_INCOHERENT: pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3); break; case PAGE_HOME_IMMUTABLE: /* * We could home this page anywhere, since it's immutable, * but by default just home it to follow "hash_default". */ BUG_ON(hv_pte_get_writable(pte)); if (pte_get_forcecache(pte)) { /* Upgrade "force any cpu" to "No L3" for immutable. */ if (hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_TILE_L3 && pte_get_anyhome(pte)) { pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3); } } else #if CHIP_HAS_CBOX_HOME_MAP() if (hash_default) pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3); else #endif pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3); pte = hv_pte_set_nc(pte); break; #if CHIP_HAS_CBOX_HOME_MAP() case PAGE_HOME_HASH: pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3); break; #endif default: BUG_ON(home < 0 || home >= NR_CPUS || !cpu_is_valid_lotar(home)); pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3); pte = set_remote_cache_cpu(pte, home); break; } #if CHIP_HAS_NC_AND_NOALLOC_BITS() if (noallocl2) pte = hv_pte_set_no_alloc_l2(pte); /* Simplify "no local and no l3" to "uncached" */ if (hv_pte_get_no_alloc_l2(pte) && hv_pte_get_no_alloc_l1(pte) && hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_NO_L3) { pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED); } #endif /* Checking this case here gives a better panic than from the hv. */ BUG_ON(hv_pte_get_mode(pte) == 0); return pte; } EXPORT_SYMBOL(pte_set_home); /* * The routines in this section are the "static" versions of the normal * dynamic homecaching routines; they just set the home cache * of a kernel page once, and require a full-chip cache/TLB flush, * so they're not suitable for anything but infrequent use. */ #if CHIP_HAS_CBOX_HOME_MAP() static inline int initial_page_home(void) { return PAGE_HOME_HASH; } #else static inline int initial_page_home(void) { return 0; } #endif int page_home(struct page *page) { if (PageHighMem(page)) { return initial_page_home(); } else { unsigned long kva = (unsigned long)page_address(page); return pte_to_home(*virt_to_pte(NULL, kva)); } } void homecache_change_page_home(struct page *page, int order, int home) { int i, pages = (1 << order); unsigned long kva; BUG_ON(PageHighMem(page)); BUG_ON(page_count(page) > 1); BUG_ON(page_mapcount(page) != 0); kva = (unsigned long) page_address(page); flush_remote(0, HV_FLUSH_EVICT_L2, &cpu_cacheable_map, kva, pages * PAGE_SIZE, PAGE_SIZE, cpu_online_mask, NULL, 0); for (i = 0; i < pages; ++i, kva += PAGE_SIZE) { pte_t *ptep = virt_to_pte(NULL, kva); pte_t pteval = *ptep; BUG_ON(!pte_present(pteval) || pte_huge(pteval)); __set_pte(ptep, pte_set_home(pteval, home)); } } struct page *homecache_alloc_pages(gfp_t gfp_mask, unsigned int order, int home) { struct page *page; BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */ page = alloc_pages(gfp_mask, order); if (page) homecache_change_page_home(page, order, home); return page; } EXPORT_SYMBOL(homecache_alloc_pages); struct page *homecache_alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order, int home) { struct page *page; BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */ page = alloc_pages_node(nid, gfp_mask, order); if (page) homecache_change_page_home(page, order, home); return page; } void homecache_free_pages(unsigned long addr, unsigned int order) { struct page *page; if (addr == 0) return; VM_BUG_ON(!virt_addr_valid((void *)addr)); page = virt_to_page((void *)addr); if (put_page_testzero(page)) { int pages = (1 << order); homecache_change_page_home(page, order, initial_page_home()); while (pages--) __free_page(page++); } }