/* * drivers/base/memory.c - basic Memory class support * * Written by Matt Tolentino * Dave Hansen * * This file provides the necessary infrastructure to represent * a SPARSEMEM-memory-model system's physical memory in /sysfs. * All arch-independent code that assumes MEMORY_HOTPLUG requires * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_MUTEX(mem_sysfs_mutex); #define MEMORY_CLASS_NAME "memory" static int sections_per_block; static inline int base_memory_block_id(int section_nr) { return section_nr / sections_per_block; } static struct sysdev_class memory_sysdev_class = { .name = MEMORY_CLASS_NAME, }; static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj) { return MEMORY_CLASS_NAME; } static int memory_uevent(struct kset *kset, struct kobject *obj, struct kobj_uevent_env *env) { int retval = 0; return retval; } static const struct kset_uevent_ops memory_uevent_ops = { .name = memory_uevent_name, .uevent = memory_uevent, }; static BLOCKING_NOTIFIER_HEAD(memory_chain); int register_memory_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&memory_chain, nb); } EXPORT_SYMBOL(register_memory_notifier); void unregister_memory_notifier(struct notifier_block *nb) { blocking_notifier_chain_unregister(&memory_chain, nb); } EXPORT_SYMBOL(unregister_memory_notifier); static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain); int register_memory_isolate_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&memory_isolate_chain, nb); } EXPORT_SYMBOL(register_memory_isolate_notifier); void unregister_memory_isolate_notifier(struct notifier_block *nb) { atomic_notifier_chain_unregister(&memory_isolate_chain, nb); } EXPORT_SYMBOL(unregister_memory_isolate_notifier); /* * register_memory - Setup a sysfs device for a memory block */ static int register_memory(struct memory_block *memory) { int error; memory->sysdev.cls = &memory_sysdev_class; memory->sysdev.id = memory->start_section_nr / sections_per_block; error = sysdev_register(&memory->sysdev); return error; } static void unregister_memory(struct memory_block *memory) { BUG_ON(memory->sysdev.cls != &memory_sysdev_class); /* drop the ref. we got in remove_memory_block() */ kobject_put(&memory->sysdev.kobj); sysdev_unregister(&memory->sysdev); } unsigned long __weak memory_block_size_bytes(void) { return MIN_MEMORY_BLOCK_SIZE; } static unsigned long get_memory_block_size(void) { unsigned long block_sz; block_sz = memory_block_size_bytes(); /* Validate blk_sz is a power of 2 and not less than section size */ if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) { WARN_ON(1); block_sz = MIN_MEMORY_BLOCK_SIZE; } return block_sz; } /* * use this as the physical section index that this memsection * uses. */ static ssize_t show_mem_start_phys_index(struct sys_device *dev, struct sysdev_attribute *attr, char *buf) { struct memory_block *mem = container_of(dev, struct memory_block, sysdev); unsigned long phys_index; phys_index = mem->start_section_nr / sections_per_block; return sprintf(buf, "%08lx\n", phys_index); } static ssize_t show_mem_end_phys_index(struct sys_device *dev, struct sysdev_attribute *attr, char *buf) { struct memory_block *mem = container_of(dev, struct memory_block, sysdev); unsigned long phys_index; phys_index = mem->end_section_nr / sections_per_block; return sprintf(buf, "%08lx\n", phys_index); } /* * Show whether the section of memory is likely to be hot-removable */ static ssize_t show_mem_removable(struct sys_device *dev, struct sysdev_attribute *attr, char *buf) { unsigned long i, pfn; int ret = 1; struct memory_block *mem = container_of(dev, struct memory_block, sysdev); for (i = 0; i < sections_per_block; i++) { pfn = section_nr_to_pfn(mem->start_section_nr + i); ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION); } return sprintf(buf, "%d\n", ret); } /* * online, offline, going offline, etc. */ static ssize_t show_mem_state(struct sys_device *dev, struct sysdev_attribute *attr, char *buf) { struct memory_block *mem = container_of(dev, struct memory_block, sysdev); ssize_t len = 0; /* * We can probably put these states in a nice little array * so that they're not open-coded */ switch (mem->state) { case MEM_ONLINE: len = sprintf(buf, "online\n"); break; case MEM_OFFLINE: len = sprintf(buf, "offline\n"); break; case MEM_GOING_OFFLINE: len = sprintf(buf, "going-offline\n"); break; default: len = sprintf(buf, "ERROR-UNKNOWN-%ld\n", mem->state); WARN_ON(1); break; } return len; } int memory_notify(unsigned long val, void *v) { return blocking_notifier_call_chain(&memory_chain, val, v); } int memory_isolate_notify(unsigned long val, void *v) { return atomic_notifier_call_chain(&memory_isolate_chain, val, v); } /* * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is * OK to have direct references to sparsemem variables in here. */ static int memory_block_action(unsigned long phys_index, unsigned long action) { int i; unsigned long start_pfn, start_paddr; unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; struct page *first_page; int ret; first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT); /* * The probe routines leave the pages reserved, just * as the bootmem code does. Make sure they're still * that way. */ if (action == MEM_ONLINE) { for (i = 0; i < nr_pages; i++) { if (PageReserved(first_page+i)) continue; printk(KERN_WARNING "section number %ld page number %d " "not reserved, was it already online?\n", phys_index, i); return -EBUSY; } } switch (action) { case MEM_ONLINE: start_pfn = page_to_pfn(first_page); ret = online_pages(start_pfn, nr_pages); break; case MEM_OFFLINE: start_paddr = page_to_pfn(first_page) << PAGE_SHIFT; ret = remove_memory(start_paddr, nr_pages << PAGE_SHIFT); break; default: WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " "%ld\n", __func__, phys_index, action, action); ret = -EINVAL; } return ret; } static int memory_block_change_state(struct memory_block *mem, unsigned long to_state, unsigned long from_state_req) { int ret = 0; mutex_lock(&mem->state_mutex); if (mem->state != from_state_req) { ret = -EINVAL; goto out; } if (to_state == MEM_OFFLINE) mem->state = MEM_GOING_OFFLINE; ret = memory_block_action(mem->start_section_nr, to_state); if (ret) mem->state = from_state_req; else mem->state = to_state; out: mutex_unlock(&mem->state_mutex); return ret; } static ssize_t store_mem_state(struct sys_device *dev, struct sysdev_attribute *attr, const char *buf, size_t count) { struct memory_block *mem; int ret = -EINVAL; mem = container_of(dev, struct memory_block, sysdev); if (!strncmp(buf, "online", min((int)count, 6))) ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); else if(!strncmp(buf, "offline", min((int)count, 7))) ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE); if (ret) return ret; return count; } /* * phys_device is a bad name for this. What I really want * is a way to differentiate between memory ranges that * are part of physical devices that constitute * a complete removable unit or fru. * i.e. do these ranges belong to the same physical device, * s.t. if I offline all of these sections I can then * remove the physical device? */ static ssize_t show_phys_device(struct sys_device *dev, struct sysdev_attribute *attr, char *buf) { struct memory_block *mem = container_of(dev, struct memory_block, sysdev); return sprintf(buf, "%d\n", mem->phys_device); } static SYSDEV_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL); static SYSDEV_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL); static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state); static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL); static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL); #define mem_create_simple_file(mem, attr_name) \ sysdev_create_file(&mem->sysdev, &attr_##attr_name) #define mem_remove_simple_file(mem, attr_name) \ sysdev_remove_file(&mem->sysdev, &attr_##attr_name) /* * Block size attribute stuff */ static ssize_t print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr, char *buf) { return sprintf(buf, "%lx\n", get_memory_block_size()); } static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL); static int block_size_init(void) { return sysfs_create_file(&memory_sysdev_class.kset.kobj, &attr_block_size_bytes.attr); } /* * Some architectures will have custom drivers to do this, and * will not need to do it from userspace. The fake hot-add code * as well as ppc64 will do all of their discovery in userspace * and will require this interface. */ #ifdef CONFIG_ARCH_MEMORY_PROBE static ssize_t memory_probe_store(struct class *class, struct class_attribute *attr, const char *buf, size_t count) { u64 phys_addr; int nid; int i, ret; phys_addr = simple_strtoull(buf, NULL, 0); for (i = 0; i < sections_per_block; i++) { nid = memory_add_physaddr_to_nid(phys_addr); ret = add_memory(nid, phys_addr, PAGES_PER_SECTION << PAGE_SHIFT); if (ret) goto out; phys_addr += MIN_MEMORY_BLOCK_SIZE; } ret = count; out: return ret; } static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store); static int memory_probe_init(void) { return sysfs_create_file(&memory_sysdev_class.kset.kobj, &class_attr_probe.attr); } #else static inline int memory_probe_init(void) { return 0; } #endif #ifdef CONFIG_MEMORY_FAILURE /* * Support for offlining pages of memory */ /* Soft offline a page */ static ssize_t store_soft_offline_page(struct class *class, struct class_attribute *attr, const char *buf, size_t count) { int ret; u64 pfn; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (strict_strtoull(buf, 0, &pfn) < 0) return -EINVAL; pfn >>= PAGE_SHIFT; if (!pfn_valid(pfn)) return -ENXIO; ret = soft_offline_page(pfn_to_page(pfn), 0); return ret == 0 ? count : ret; } /* Forcibly offline a page, including killing processes. */ static ssize_t store_hard_offline_page(struct class *class, struct class_attribute *attr, const char *buf, size_t count) { int ret; u64 pfn; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (strict_strtoull(buf, 0, &pfn) < 0) return -EINVAL; pfn >>= PAGE_SHIFT; ret = __memory_failure(pfn, 0, 0); return ret ? ret : count; } static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page); static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page); static __init int memory_fail_init(void) { int err; err = sysfs_create_file(&memory_sysdev_class.kset.kobj, &class_attr_soft_offline_page.attr); if (!err) err = sysfs_create_file(&memory_sysdev_class.kset.kobj, &class_attr_hard_offline_page.attr); return err; } #else static inline int memory_fail_init(void) { return 0; } #endif /* * Note that phys_device is optional. It is here to allow for * differentiation between which *physical* devices each * section belongs to... */ int __weak arch_get_memory_phys_device(unsigned long start_pfn) { return 0; } struct memory_block *find_memory_block_hinted(struct mem_section *section, struct memory_block *hint) { struct kobject *kobj; struct sys_device *sysdev; struct memory_block *mem; char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1]; int block_id = base_memory_block_id(__section_nr(section)); kobj = hint ? &hint->sysdev.kobj : NULL; /* * This only works because we know that section == sysdev->id * slightly redundant with sysdev_register() */ sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, block_id); kobj = kset_find_obj_hinted(&memory_sysdev_class.kset, name, kobj); if (!kobj) return NULL; sysdev = container_of(kobj, struct sys_device, kobj); mem = container_of(sysdev, struct memory_block, sysdev); return mem; } /* * For now, we have a linear search to go find the appropriate * memory_block corresponding to a particular phys_index. If * this gets to be a real problem, we can always use a radix * tree or something here. * * This could be made generic for all sysdev classes. */ struct memory_block *find_memory_block(struct mem_section *section) { return find_memory_block_hinted(section, NULL); } static int init_memory_block(struct memory_block **memory, struct mem_section *section, unsigned long state) { struct memory_block *mem; unsigned long start_pfn; int scn_nr; int ret = 0; mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) return -ENOMEM; scn_nr = __section_nr(section); mem->start_section_nr = base_memory_block_id(scn_nr) * sections_per_block; mem->end_section_nr = mem->start_section_nr + sections_per_block - 1; mem->state = state; mem->section_count++; mutex_init(&mem->state_mutex); start_pfn = section_nr_to_pfn(mem->start_section_nr); mem->phys_device = arch_get_memory_phys_device(start_pfn); ret = register_memory(mem); if (!ret) ret = mem_create_simple_file(mem, phys_index); if (!ret) ret = mem_create_simple_file(mem, end_phys_index); if (!ret) ret = mem_create_simple_file(mem, state); if (!ret) ret = mem_create_simple_file(mem, phys_device); if (!ret) ret = mem_create_simple_file(mem, removable); *memory = mem; return ret; } static int add_memory_section(int nid, struct mem_section *section, unsigned long state, enum mem_add_context context) { struct memory_block *mem; int ret = 0; mutex_lock(&mem_sysfs_mutex); mem = find_memory_block(section); if (mem) { mem->section_count++; kobject_put(&mem->sysdev.kobj); } else ret = init_memory_block(&mem, section, state); if (!ret) { if (context == HOTPLUG && mem->section_count == sections_per_block) ret = register_mem_sect_under_node(mem, nid); } mutex_unlock(&mem_sysfs_mutex); return ret; } int remove_memory_block(unsigned long node_id, struct mem_section *section, int phys_device) { struct memory_block *mem; mutex_lock(&mem_sysfs_mutex); mem = find_memory_block(section); unregister_mem_sect_under_nodes(mem, __section_nr(section)); mem->section_count--; if (mem->section_count == 0) { mem_remove_simple_file(mem, phys_index); mem_remove_simple_file(mem, end_phys_index); mem_remove_simple_file(mem, state); mem_remove_simple_file(mem, phys_device); mem_remove_simple_file(mem, removable); unregister_memory(mem); kfree(mem); } else kobject_put(&mem->sysdev.kobj); mutex_unlock(&mem_sysfs_mutex); return 0; } /* * need an interface for the VM to add new memory regions, * but without onlining it. */ int register_new_memory(int nid, struct mem_section *section) { return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG); } int unregister_memory_section(struct mem_section *section) { if (!present_section(section)) return -EINVAL; return remove_memory_block(0, section, 0); } /* * Initialize the sysfs support for memory devices... */ int __init memory_dev_init(void) { unsigned int i; int ret; int err; unsigned long block_sz; memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops; ret = sysdev_class_register(&memory_sysdev_class); if (ret) goto out; block_sz = get_memory_block_size(); sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; /* * Create entries for memory sections that were found * during boot and have been initialized */ for (i = 0; i < NR_MEM_SECTIONS; i++) { if (!present_section_nr(i)) continue; err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE, BOOT); if (!ret) ret = err; } err = memory_probe_init(); if (!ret) ret = err; err = memory_fail_init(); if (!ret) ret = err; err = block_size_init(); if (!ret) ret = err; out: if (ret) printk(KERN_ERR "%s() failed: %d\n", __func__, ret); return ret; }