/* * Driver for the SWIM3 (Super Woz Integrated Machine 3) * floppy controller found on Power Macintoshes. * * Copyright (C) 1996 Paul Mackerras. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ /* * TODO: * handle 2 drives * handle GCR disks */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_MUTEX(swim3_mutex); static struct request_queue *swim3_queue; static struct gendisk *disks[2]; static struct request *fd_req; #define MAX_FLOPPIES 2 enum swim_state { idle, locating, seeking, settling, do_transfer, jogging, available, revalidating, ejecting }; #define REG(x) unsigned char x; char x ## _pad[15]; /* * The names for these registers mostly represent speculation on my part. * It will be interesting to see how close they are to the names Apple uses. */ struct swim3 { REG(data); REG(timer); /* counts down at 1MHz */ REG(error); REG(mode); REG(select); /* controls CA0, CA1, CA2 and LSTRB signals */ REG(setup); REG(control); /* writing bits clears them */ REG(status); /* writing bits sets them in control */ REG(intr); REG(nseek); /* # tracks to seek */ REG(ctrack); /* current track number */ REG(csect); /* current sector number */ REG(gap3); /* size of gap 3 in track format */ REG(sector); /* sector # to read or write */ REG(nsect); /* # sectors to read or write */ REG(intr_enable); }; #define control_bic control #define control_bis status /* Bits in select register */ #define CA_MASK 7 #define LSTRB 8 /* Bits in control register */ #define DO_SEEK 0x80 #define FORMAT 0x40 #define SELECT 0x20 #define WRITE_SECTORS 0x10 #define DO_ACTION 0x08 #define DRIVE2_ENABLE 0x04 #define DRIVE_ENABLE 0x02 #define INTR_ENABLE 0x01 /* Bits in status register */ #define FIFO_1BYTE 0x80 #define FIFO_2BYTE 0x40 #define ERROR 0x20 #define DATA 0x08 #define RDDATA 0x04 #define INTR_PENDING 0x02 #define MARK_BYTE 0x01 /* Bits in intr and intr_enable registers */ #define ERROR_INTR 0x20 #define DATA_CHANGED 0x10 #define TRANSFER_DONE 0x08 #define SEEN_SECTOR 0x04 #define SEEK_DONE 0x02 #define TIMER_DONE 0x01 /* Bits in error register */ #define ERR_DATA_CRC 0x80 #define ERR_ADDR_CRC 0x40 #define ERR_OVERRUN 0x04 #define ERR_UNDERRUN 0x01 /* Bits in setup register */ #define S_SW_RESET 0x80 #define S_GCR_WRITE 0x40 #define S_IBM_DRIVE 0x20 #define S_TEST_MODE 0x10 #define S_FCLK_DIV2 0x08 #define S_GCR 0x04 #define S_COPY_PROT 0x02 #define S_INV_WDATA 0x01 /* Select values for swim3_action */ #define SEEK_POSITIVE 0 #define SEEK_NEGATIVE 4 #define STEP 1 #define MOTOR_ON 2 #define MOTOR_OFF 6 #define INDEX 3 #define EJECT 7 #define SETMFM 9 #define SETGCR 13 /* Select values for swim3_select and swim3_readbit */ #define STEP_DIR 0 #define STEPPING 1 #define MOTOR_ON 2 #define RELAX 3 /* also eject in progress */ #define READ_DATA_0 4 #define TWOMEG_DRIVE 5 #define SINGLE_SIDED 6 /* drive or diskette is 4MB type? */ #define DRIVE_PRESENT 7 #define DISK_IN 8 #define WRITE_PROT 9 #define TRACK_ZERO 10 #define TACHO 11 #define READ_DATA_1 12 #define MFM_MODE 13 #define SEEK_COMPLETE 14 #define ONEMEG_MEDIA 15 /* Definitions of values used in writing and formatting */ #define DATA_ESCAPE 0x99 #define GCR_SYNC_EXC 0x3f #define GCR_SYNC_CONV 0x80 #define GCR_FIRST_MARK 0xd5 #define GCR_SECOND_MARK 0xaa #define GCR_ADDR_MARK "\xd5\xaa\x00" #define GCR_DATA_MARK "\xd5\xaa\x0b" #define GCR_SLIP_BYTE "\x27\xaa" #define GCR_SELF_SYNC "\x3f\xbf\x1e\x34\x3c\x3f" #define DATA_99 "\x99\x99" #define MFM_ADDR_MARK "\x99\xa1\x99\xa1\x99\xa1\x99\xfe" #define MFM_INDEX_MARK "\x99\xc2\x99\xc2\x99\xc2\x99\xfc" #define MFM_GAP_LEN 12 struct floppy_state { enum swim_state state; spinlock_t lock; struct swim3 __iomem *swim3; /* hardware registers */ struct dbdma_regs __iomem *dma; /* DMA controller registers */ int swim3_intr; /* interrupt number for SWIM3 */ int dma_intr; /* interrupt number for DMA channel */ int cur_cyl; /* cylinder head is on, or -1 */ int cur_sector; /* last sector we saw go past */ int req_cyl; /* the cylinder for the current r/w request */ int head; /* head number ditto */ int req_sector; /* sector number ditto */ int scount; /* # sectors we're transferring at present */ int retries; int settle_time; int secpercyl; /* disk geometry information */ int secpertrack; int total_secs; int write_prot; /* 1 if write-protected, 0 if not, -1 dunno */ struct dbdma_cmd *dma_cmd; int ref_count; int expect_cyl; struct timer_list timeout; int timeout_pending; int ejected; wait_queue_head_t wait; int wanted; struct macio_dev *mdev; char dbdma_cmd_space[5 * sizeof(struct dbdma_cmd)]; }; static struct floppy_state floppy_states[MAX_FLOPPIES]; static int floppy_count = 0; static DEFINE_SPINLOCK(swim3_lock); static unsigned short write_preamble[] = { 0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, /* gap field */ 0, 0, 0, 0, 0, 0, /* sync field */ 0x99a1, 0x99a1, 0x99a1, 0x99fb, /* data address mark */ 0x990f /* no escape for 512 bytes */ }; static unsigned short write_postamble[] = { 0x9904, /* insert CRC */ 0x4e4e, 0x4e4e, 0x9908, /* stop writing */ 0, 0, 0, 0, 0, 0 }; static void swim3_select(struct floppy_state *fs, int sel); static void swim3_action(struct floppy_state *fs, int action); static int swim3_readbit(struct floppy_state *fs, int bit); static void do_fd_request(struct request_queue * q); static void start_request(struct floppy_state *fs); static void set_timeout(struct floppy_state *fs, int nticks, void (*proc)(unsigned long)); static void scan_track(struct floppy_state *fs); static void seek_track(struct floppy_state *fs, int n); static void init_dma(struct dbdma_cmd *cp, int cmd, void *buf, int count); static void setup_transfer(struct floppy_state *fs); static void act(struct floppy_state *fs); static void scan_timeout(unsigned long data); static void seek_timeout(unsigned long data); static void settle_timeout(unsigned long data); static void xfer_timeout(unsigned long data); static irqreturn_t swim3_interrupt(int irq, void *dev_id); /*static void fd_dma_interrupt(int irq, void *dev_id);*/ static int grab_drive(struct floppy_state *fs, enum swim_state state, int interruptible); static void release_drive(struct floppy_state *fs); static int fd_eject(struct floppy_state *fs); static int floppy_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long param); static int floppy_open(struct block_device *bdev, fmode_t mode); static int floppy_release(struct gendisk *disk, fmode_t mode); static unsigned int floppy_check_events(struct gendisk *disk, unsigned int clearing); static int floppy_revalidate(struct gendisk *disk); static bool swim3_end_request(int err, unsigned int nr_bytes) { if (__blk_end_request(fd_req, err, nr_bytes)) return true; fd_req = NULL; return false; } static bool swim3_end_request_cur(int err) { return swim3_end_request(err, blk_rq_cur_bytes(fd_req)); } static void swim3_select(struct floppy_state *fs, int sel) { struct swim3 __iomem *sw = fs->swim3; out_8(&sw->select, RELAX); if (sel & 8) out_8(&sw->control_bis, SELECT); else out_8(&sw->control_bic, SELECT); out_8(&sw->select, sel & CA_MASK); } static void swim3_action(struct floppy_state *fs, int action) { struct swim3 __iomem *sw = fs->swim3; swim3_select(fs, action); udelay(1); out_8(&sw->select, sw->select | LSTRB); udelay(2); out_8(&sw->select, sw->select & ~LSTRB); udelay(1); } static int swim3_readbit(struct floppy_state *fs, int bit) { struct swim3 __iomem *sw = fs->swim3; int stat; swim3_select(fs, bit); udelay(1); stat = in_8(&sw->status); return (stat & DATA) == 0; } static void do_fd_request(struct request_queue * q) { int i; for(i=0; imdev->media_bay && check_media_bay(fs->mdev->media_bay) != MB_FD) continue; start_request(fs); } } static void start_request(struct floppy_state *fs) { struct request *req; unsigned long x; if (fs->state == idle && fs->wanted) { fs->state = available; wake_up(&fs->wait); return; } while (fs->state == idle) { if (!fd_req) { fd_req = blk_fetch_request(swim3_queue); if (!fd_req) break; } req = fd_req; #if 0 printk("do_fd_req: dev=%s cmd=%d sec=%ld nr_sec=%u buf=%p\n", req->rq_disk->disk_name, req->cmd, (long)blk_rq_pos(req), blk_rq_sectors(req), req->buffer); printk(" errors=%d current_nr_sectors=%u\n", req->errors, blk_rq_cur_sectors(req)); #endif if (blk_rq_pos(req) >= fs->total_secs) { swim3_end_request_cur(-EIO); continue; } if (fs->ejected) { swim3_end_request_cur(-EIO); continue; } if (rq_data_dir(req) == WRITE) { if (fs->write_prot < 0) fs->write_prot = swim3_readbit(fs, WRITE_PROT); if (fs->write_prot) { swim3_end_request_cur(-EIO); continue; } } /* Do not remove the cast. blk_rq_pos(req) is now a * sector_t and can be 64 bits, but it will never go * past 32 bits for this driver anyway, so we can * safely cast it down and not have to do a 64/32 * division */ fs->req_cyl = ((long)blk_rq_pos(req)) / fs->secpercyl; x = ((long)blk_rq_pos(req)) % fs->secpercyl; fs->head = x / fs->secpertrack; fs->req_sector = x % fs->secpertrack + 1; fd_req = req; fs->state = do_transfer; fs->retries = 0; act(fs); } } static void set_timeout(struct floppy_state *fs, int nticks, void (*proc)(unsigned long)) { unsigned long flags; spin_lock_irqsave(&fs->lock, flags); if (fs->timeout_pending) del_timer(&fs->timeout); fs->timeout.expires = jiffies + nticks; fs->timeout.function = proc; fs->timeout.data = (unsigned long) fs; add_timer(&fs->timeout); fs->timeout_pending = 1; spin_unlock_irqrestore(&fs->lock, flags); } static inline void scan_track(struct floppy_state *fs) { struct swim3 __iomem *sw = fs->swim3; swim3_select(fs, READ_DATA_0); in_8(&sw->intr); /* clear SEEN_SECTOR bit */ in_8(&sw->error); out_8(&sw->intr_enable, SEEN_SECTOR); out_8(&sw->control_bis, DO_ACTION); /* enable intr when track found */ set_timeout(fs, HZ, scan_timeout); /* enable timeout */ } static inline void seek_track(struct floppy_state *fs, int n) { struct swim3 __iomem *sw = fs->swim3; if (n >= 0) { swim3_action(fs, SEEK_POSITIVE); sw->nseek = n; } else { swim3_action(fs, SEEK_NEGATIVE); sw->nseek = -n; } fs->expect_cyl = (fs->cur_cyl >= 0)? fs->cur_cyl + n: -1; swim3_select(fs, STEP); in_8(&sw->error); /* enable intr when seek finished */ out_8(&sw->intr_enable, SEEK_DONE); out_8(&sw->control_bis, DO_SEEK); set_timeout(fs, 3*HZ, seek_timeout); /* enable timeout */ fs->settle_time = 0; } static inline void init_dma(struct dbdma_cmd *cp, int cmd, void *buf, int count) { st_le16(&cp->req_count, count); st_le16(&cp->command, cmd); st_le32(&cp->phy_addr, virt_to_bus(buf)); cp->xfer_status = 0; } static inline void setup_transfer(struct floppy_state *fs) { int n; struct swim3 __iomem *sw = fs->swim3; struct dbdma_cmd *cp = fs->dma_cmd; struct dbdma_regs __iomem *dr = fs->dma; if (blk_rq_cur_sectors(fd_req) <= 0) { printk(KERN_ERR "swim3: transfer 0 sectors?\n"); return; } if (rq_data_dir(fd_req) == WRITE) n = 1; else { n = fs->secpertrack - fs->req_sector + 1; if (n > blk_rq_cur_sectors(fd_req)) n = blk_rq_cur_sectors(fd_req); } fs->scount = n; swim3_select(fs, fs->head? READ_DATA_1: READ_DATA_0); out_8(&sw->sector, fs->req_sector); out_8(&sw->nsect, n); out_8(&sw->gap3, 0); out_le32(&dr->cmdptr, virt_to_bus(cp)); if (rq_data_dir(fd_req) == WRITE) { /* Set up 3 dma commands: write preamble, data, postamble */ init_dma(cp, OUTPUT_MORE, write_preamble, sizeof(write_preamble)); ++cp; init_dma(cp, OUTPUT_MORE, fd_req->buffer, 512); ++cp; init_dma(cp, OUTPUT_LAST, write_postamble, sizeof(write_postamble)); } else { init_dma(cp, INPUT_LAST, fd_req->buffer, n * 512); } ++cp; out_le16(&cp->command, DBDMA_STOP); out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS); in_8(&sw->error); out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS); if (rq_data_dir(fd_req) == WRITE) out_8(&sw->control_bis, WRITE_SECTORS); in_8(&sw->intr); out_le32(&dr->control, (RUN << 16) | RUN); /* enable intr when transfer complete */ out_8(&sw->intr_enable, TRANSFER_DONE); out_8(&sw->control_bis, DO_ACTION); set_timeout(fs, 2*HZ, xfer_timeout); /* enable timeout */ } static void act(struct floppy_state *fs) { for (;;) { switch (fs->state) { case idle: return; /* XXX shouldn't get here */ case locating: if (swim3_readbit(fs, TRACK_ZERO)) { fs->cur_cyl = 0; if (fs->req_cyl == 0) fs->state = do_transfer; else fs->state = seeking; break; } scan_track(fs); return; case seeking: if (fs->cur_cyl < 0) { fs->expect_cyl = -1; fs->state = locating; break; } if (fs->req_cyl == fs->cur_cyl) { printk("whoops, seeking 0\n"); fs->state = do_transfer; break; } seek_track(fs, fs->req_cyl - fs->cur_cyl); return; case settling: /* check for SEEK_COMPLETE after 30ms */ fs->settle_time = (HZ + 32) / 33; set_timeout(fs, fs->settle_time, settle_timeout); return; case do_transfer: if (fs->cur_cyl != fs->req_cyl) { if (fs->retries > 5) { swim3_end_request_cur(-EIO); fs->state = idle; return; } fs->state = seeking; break; } setup_transfer(fs); return; case jogging: seek_track(fs, -5); return; default: printk(KERN_ERR"swim3: unknown state %d\n", fs->state); return; } } } static void scan_timeout(unsigned long data) { struct floppy_state *fs = (struct floppy_state *) data; struct swim3 __iomem *sw = fs->swim3; fs->timeout_pending = 0; out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS); out_8(&sw->select, RELAX); out_8(&sw->intr_enable, 0); fs->cur_cyl = -1; if (fs->retries > 5) { swim3_end_request_cur(-EIO); fs->state = idle; start_request(fs); } else { fs->state = jogging; act(fs); } } static void seek_timeout(unsigned long data) { struct floppy_state *fs = (struct floppy_state *) data; struct swim3 __iomem *sw = fs->swim3; fs->timeout_pending = 0; out_8(&sw->control_bic, DO_SEEK); out_8(&sw->select, RELAX); out_8(&sw->intr_enable, 0); printk(KERN_ERR "swim3: seek timeout\n"); swim3_end_request_cur(-EIO); fs->state = idle; start_request(fs); } static void settle_timeout(unsigned long data) { struct floppy_state *fs = (struct floppy_state *) data; struct swim3 __iomem *sw = fs->swim3; fs->timeout_pending = 0; if (swim3_readbit(fs, SEEK_COMPLETE)) { out_8(&sw->select, RELAX); fs->state = locating; act(fs); return; } out_8(&sw->select, RELAX); if (fs->settle_time < 2*HZ) { ++fs->settle_time; set_timeout(fs, 1, settle_timeout); return; } printk(KERN_ERR "swim3: seek settle timeout\n"); swim3_end_request_cur(-EIO); fs->state = idle; start_request(fs); } static void xfer_timeout(unsigned long data) { struct floppy_state *fs = (struct floppy_state *) data; struct swim3 __iomem *sw = fs->swim3; struct dbdma_regs __iomem *dr = fs->dma; int n; fs->timeout_pending = 0; out_le32(&dr->control, RUN << 16); /* We must wait a bit for dbdma to stop */ for (n = 0; (in_le32(&dr->status) & ACTIVE) && n < 1000; n++) udelay(1); out_8(&sw->intr_enable, 0); out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION); out_8(&sw->select, RELAX); printk(KERN_ERR "swim3: timeout %sing sector %ld\n", (rq_data_dir(fd_req)==WRITE? "writ": "read"), (long)blk_rq_pos(fd_req)); swim3_end_request_cur(-EIO); fs->state = idle; start_request(fs); } static irqreturn_t swim3_interrupt(int irq, void *dev_id) { struct floppy_state *fs = (struct floppy_state *) dev_id; struct swim3 __iomem *sw = fs->swim3; int intr, err, n; int stat, resid; struct dbdma_regs __iomem *dr; struct dbdma_cmd *cp; intr = in_8(&sw->intr); err = (intr & ERROR_INTR)? in_8(&sw->error): 0; if ((intr & ERROR_INTR) && fs->state != do_transfer) printk(KERN_ERR "swim3_interrupt, state=%d, dir=%x, intr=%x, err=%x\n", fs->state, rq_data_dir(fd_req), intr, err); switch (fs->state) { case locating: if (intr & SEEN_SECTOR) { out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS); out_8(&sw->select, RELAX); out_8(&sw->intr_enable, 0); del_timer(&fs->timeout); fs->timeout_pending = 0; if (sw->ctrack == 0xff) { printk(KERN_ERR "swim3: seen sector but cyl=ff?\n"); fs->cur_cyl = -1; if (fs->retries > 5) { swim3_end_request_cur(-EIO); fs->state = idle; start_request(fs); } else { fs->state = jogging; act(fs); } break; } fs->cur_cyl = sw->ctrack; fs->cur_sector = sw->csect; if (fs->expect_cyl != -1 && fs->expect_cyl != fs->cur_cyl) printk(KERN_ERR "swim3: expected cyl %d, got %d\n", fs->expect_cyl, fs->cur_cyl); fs->state = do_transfer; act(fs); } break; case seeking: case jogging: if (sw->nseek == 0) { out_8(&sw->control_bic, DO_SEEK); out_8(&sw->select, RELAX); out_8(&sw->intr_enable, 0); del_timer(&fs->timeout); fs->timeout_pending = 0; if (fs->state == seeking) ++fs->retries; fs->state = settling; act(fs); } break; case settling: out_8(&sw->intr_enable, 0); del_timer(&fs->timeout); fs->timeout_pending = 0; act(fs); break; case do_transfer: if ((intr & (ERROR_INTR | TRANSFER_DONE)) == 0) break; out_8(&sw->intr_enable, 0); out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION); out_8(&sw->select, RELAX); del_timer(&fs->timeout); fs->timeout_pending = 0; dr = fs->dma; cp = fs->dma_cmd; if (rq_data_dir(fd_req) == WRITE) ++cp; /* * Check that the main data transfer has finished. * On writing, the swim3 sometimes doesn't use * up all the bytes of the postamble, so we can still * see DMA active here. That doesn't matter as long * as all the sector data has been transferred. */ if ((intr & ERROR_INTR) == 0 && cp->xfer_status == 0) { /* wait a little while for DMA to complete */ for (n = 0; n < 100; ++n) { if (cp->xfer_status != 0) break; udelay(1); barrier(); } } /* turn off DMA */ out_le32(&dr->control, (RUN | PAUSE) << 16); stat = ld_le16(&cp->xfer_status); resid = ld_le16(&cp->res_count); if (intr & ERROR_INTR) { n = fs->scount - 1 - resid / 512; if (n > 0) { blk_update_request(fd_req, 0, n << 9); fs->req_sector += n; } if (fs->retries < 5) { ++fs->retries; act(fs); } else { printk("swim3: error %sing block %ld (err=%x)\n", rq_data_dir(fd_req) == WRITE? "writ": "read", (long)blk_rq_pos(fd_req), err); swim3_end_request_cur(-EIO); fs->state = idle; } } else { if ((stat & ACTIVE) == 0 || resid != 0) { /* musta been an error */ printk(KERN_ERR "swim3: fd dma: stat=%x resid=%d\n", stat, resid); printk(KERN_ERR " state=%d, dir=%x, intr=%x, err=%x\n", fs->state, rq_data_dir(fd_req), intr, err); swim3_end_request_cur(-EIO); fs->state = idle; start_request(fs); break; } if (swim3_end_request(0, fs->scount << 9)) { fs->req_sector += fs->scount; if (fs->req_sector > fs->secpertrack) { fs->req_sector -= fs->secpertrack; if (++fs->head > 1) { fs->head = 0; ++fs->req_cyl; } } act(fs); } else fs->state = idle; } if (fs->state == idle) start_request(fs); break; default: printk(KERN_ERR "swim3: don't know what to do in state %d\n", fs->state); } return IRQ_HANDLED; } /* static void fd_dma_interrupt(int irq, void *dev_id) { } */ static int grab_drive(struct floppy_state *fs, enum swim_state state, int interruptible) { unsigned long flags; spin_lock_irqsave(&fs->lock, flags); if (fs->state != idle) { ++fs->wanted; while (fs->state != available) { if (interruptible && signal_pending(current)) { --fs->wanted; spin_unlock_irqrestore(&fs->lock, flags); return -EINTR; } interruptible_sleep_on(&fs->wait); } --fs->wanted; } fs->state = state; spin_unlock_irqrestore(&fs->lock, flags); return 0; } static void release_drive(struct floppy_state *fs) { unsigned long flags; spin_lock_irqsave(&fs->lock, flags); fs->state = idle; start_request(fs); spin_unlock_irqrestore(&fs->lock, flags); } static int fd_eject(struct floppy_state *fs) { int err, n; err = grab_drive(fs, ejecting, 1); if (err) return err; swim3_action(fs, EJECT); for (n = 20; n > 0; --n) { if (signal_pending(current)) { err = -EINTR; break; } swim3_select(fs, RELAX); schedule_timeout_interruptible(1); if (swim3_readbit(fs, DISK_IN) == 0) break; } swim3_select(fs, RELAX); udelay(150); fs->ejected = 1; release_drive(fs); return err; } static struct floppy_struct floppy_type = { 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,NULL }; /* 7 1.44MB 3.5" */ static int floppy_locked_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long param) { struct floppy_state *fs = bdev->bd_disk->private_data; int err; if ((cmd & 0x80) && !capable(CAP_SYS_ADMIN)) return -EPERM; if (fs->mdev->media_bay && check_media_bay(fs->mdev->media_bay) != MB_FD) return -ENXIO; switch (cmd) { case FDEJECT: if (fs->ref_count != 1) return -EBUSY; err = fd_eject(fs); return err; case FDGETPRM: if (copy_to_user((void __user *) param, &floppy_type, sizeof(struct floppy_struct))) return -EFAULT; return 0; } return -ENOTTY; } static int floppy_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long param) { int ret; mutex_lock(&swim3_mutex); ret = floppy_locked_ioctl(bdev, mode, cmd, param); mutex_unlock(&swim3_mutex); return ret; } static int floppy_open(struct block_device *bdev, fmode_t mode) { struct floppy_state *fs = bdev->bd_disk->private_data; struct swim3 __iomem *sw = fs->swim3; int n, err = 0; if (fs->ref_count == 0) { if (fs->mdev->media_bay && check_media_bay(fs->mdev->media_bay) != MB_FD) return -ENXIO; out_8(&sw->setup, S_IBM_DRIVE | S_FCLK_DIV2); out_8(&sw->control_bic, 0xff); out_8(&sw->mode, 0x95); udelay(10); out_8(&sw->intr_enable, 0); out_8(&sw->control_bis, DRIVE_ENABLE | INTR_ENABLE); swim3_action(fs, MOTOR_ON); fs->write_prot = -1; fs->cur_cyl = -1; for (n = 0; n < 2 * HZ; ++n) { if (n >= HZ/30 && swim3_readbit(fs, SEEK_COMPLETE)) break; if (signal_pending(current)) { err = -EINTR; break; } swim3_select(fs, RELAX); schedule_timeout_interruptible(1); } if (err == 0 && (swim3_readbit(fs, SEEK_COMPLETE) == 0 || swim3_readbit(fs, DISK_IN) == 0)) err = -ENXIO; swim3_action(fs, SETMFM); swim3_select(fs, RELAX); } else if (fs->ref_count == -1 || mode & FMODE_EXCL) return -EBUSY; if (err == 0 && (mode & FMODE_NDELAY) == 0 && (mode & (FMODE_READ|FMODE_WRITE))) { check_disk_change(bdev); if (fs->ejected) err = -ENXIO; } if (err == 0 && (mode & FMODE_WRITE)) { if (fs->write_prot < 0) fs->write_prot = swim3_readbit(fs, WRITE_PROT); if (fs->write_prot) err = -EROFS; } if (err) { if (fs->ref_count == 0) { swim3_action(fs, MOTOR_OFF); out_8(&sw->control_bic, DRIVE_ENABLE | INTR_ENABLE); swim3_select(fs, RELAX); } return err; } if (mode & FMODE_EXCL) fs->ref_count = -1; else ++fs->ref_count; return 0; } static int floppy_unlocked_open(struct block_device *bdev, fmode_t mode) { int ret; mutex_lock(&swim3_mutex); ret = floppy_open(bdev, mode); mutex_unlock(&swim3_mutex); return ret; } static int floppy_release(struct gendisk *disk, fmode_t mode) { struct floppy_state *fs = disk->private_data; struct swim3 __iomem *sw = fs->swim3; mutex_lock(&swim3_mutex); if (fs->ref_count > 0 && --fs->ref_count == 0) { swim3_action(fs, MOTOR_OFF); out_8(&sw->control_bic, 0xff); swim3_select(fs, RELAX); } mutex_unlock(&swim3_mutex); return 0; } static unsigned int floppy_check_events(struct gendisk *disk, unsigned int clearing) { struct floppy_state *fs = disk->private_data; return fs->ejected ? DISK_EVENT_MEDIA_CHANGE : 0; } static int floppy_revalidate(struct gendisk *disk) { struct floppy_state *fs = disk->private_data; struct swim3 __iomem *sw; int ret, n; if (fs->mdev->media_bay && check_media_bay(fs->mdev->media_bay) != MB_FD) return -ENXIO; sw = fs->swim3; grab_drive(fs, revalidating, 0); out_8(&sw->intr_enable, 0); out_8(&sw->control_bis, DRIVE_ENABLE); swim3_action(fs, MOTOR_ON); /* necessary? */ fs->write_prot = -1; fs->cur_cyl = -1; mdelay(1); for (n = HZ; n > 0; --n) { if (swim3_readbit(fs, SEEK_COMPLETE)) break; if (signal_pending(current)) break; swim3_select(fs, RELAX); schedule_timeout_interruptible(1); } ret = swim3_readbit(fs, SEEK_COMPLETE) == 0 || swim3_readbit(fs, DISK_IN) == 0; if (ret) swim3_action(fs, MOTOR_OFF); else { fs->ejected = 0; swim3_action(fs, SETMFM); } swim3_select(fs, RELAX); release_drive(fs); return ret; } static const struct block_device_operations floppy_fops = { .open = floppy_unlocked_open, .release = floppy_release, .ioctl = floppy_ioctl, .check_events = floppy_check_events, .revalidate_disk= floppy_revalidate, }; static int swim3_add_device(struct macio_dev *mdev, int index) { struct device_node *swim = mdev->ofdev.dev.of_node; struct floppy_state *fs = &floppy_states[index]; int rc = -EBUSY; /* Check & Request resources */ if (macio_resource_count(mdev) < 2) { printk(KERN_WARNING "ifd%d: no address for %s\n", index, swim->full_name); return -ENXIO; } if (macio_irq_count(mdev) < 2) { printk(KERN_WARNING "fd%d: no intrs for device %s\n", index, swim->full_name); } if (macio_request_resource(mdev, 0, "swim3 (mmio)")) { printk(KERN_ERR "fd%d: can't request mmio resource for %s\n", index, swim->full_name); return -EBUSY; } if (macio_request_resource(mdev, 1, "swim3 (dma)")) { printk(KERN_ERR "fd%d: can't request dma resource for %s\n", index, swim->full_name); macio_release_resource(mdev, 0); return -EBUSY; } dev_set_drvdata(&mdev->ofdev.dev, fs); if (mdev->media_bay == NULL) pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 1); memset(fs, 0, sizeof(*fs)); spin_lock_init(&fs->lock); fs->state = idle; fs->swim3 = (struct swim3 __iomem *) ioremap(macio_resource_start(mdev, 0), 0x200); if (fs->swim3 == NULL) { printk("fd%d: couldn't map registers for %s\n", index, swim->full_name); rc = -ENOMEM; goto out_release; } fs->dma = (struct dbdma_regs __iomem *) ioremap(macio_resource_start(mdev, 1), 0x200); if (fs->dma == NULL) { printk("fd%d: couldn't map DMA for %s\n", index, swim->full_name); iounmap(fs->swim3); rc = -ENOMEM; goto out_release; } fs->swim3_intr = macio_irq(mdev, 0); fs->dma_intr = macio_irq(mdev, 1); fs->cur_cyl = -1; fs->cur_sector = -1; fs->secpercyl = 36; fs->secpertrack = 18; fs->total_secs = 2880; fs->mdev = mdev; init_waitqueue_head(&fs->wait); fs->dma_cmd = (struct dbdma_cmd *) DBDMA_ALIGN(fs->dbdma_cmd_space); memset(fs->dma_cmd, 0, 2 * sizeof(struct dbdma_cmd)); st_le16(&fs->dma_cmd[1].command, DBDMA_STOP); if (request_irq(fs->swim3_intr, swim3_interrupt, 0, "SWIM3", fs)) { printk(KERN_ERR "fd%d: couldn't request irq %d for %s\n", index, fs->swim3_intr, swim->full_name); pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 0); goto out_unmap; return -EBUSY; } /* if (request_irq(fs->dma_intr, fd_dma_interrupt, 0, "SWIM3-dma", fs)) { printk(KERN_ERR "Couldn't get irq %d for SWIM3 DMA", fs->dma_intr); return -EBUSY; } */ init_timer(&fs->timeout); printk(KERN_INFO "fd%d: SWIM3 floppy controller %s\n", floppy_count, mdev->media_bay ? "in media bay" : ""); return 0; out_unmap: iounmap(fs->dma); iounmap(fs->swim3); out_release: macio_release_resource(mdev, 0); macio_release_resource(mdev, 1); return rc; } static int __devinit swim3_attach(struct macio_dev *mdev, const struct of_device_id *match) { int i, rc; struct gendisk *disk; /* Add the drive */ rc = swim3_add_device(mdev, floppy_count); if (rc) return rc; /* Now create the queue if not there yet */ if (swim3_queue == NULL) { /* If we failed, there isn't much we can do as the driver is still * too dumb to remove the device, just bail out */ if (register_blkdev(FLOPPY_MAJOR, "fd")) return 0; swim3_queue = blk_init_queue(do_fd_request, &swim3_lock); if (swim3_queue == NULL) { unregister_blkdev(FLOPPY_MAJOR, "fd"); return 0; } } /* Now register that disk. Same comment about failure handling */ i = floppy_count++; disk = disks[i] = alloc_disk(1); if (disk == NULL) return 0; disk->major = FLOPPY_MAJOR; disk->first_minor = i; disk->fops = &floppy_fops; disk->private_data = &floppy_states[i]; disk->queue = swim3_queue; disk->flags |= GENHD_FL_REMOVABLE; sprintf(disk->disk_name, "fd%d", i); set_capacity(disk, 2880); add_disk(disk); return 0; } static struct of_device_id swim3_match[] = { { .name = "swim3", }, { .compatible = "ohare-swim3" }, { .compatible = "swim3" }, { /* end of list */ } }; static struct macio_driver swim3_driver = { .driver = { .name = "swim3", .of_match_table = swim3_match, }, .probe = swim3_attach, #if 0 .suspend = swim3_suspend, .resume = swim3_resume, #endif }; int swim3_init(void) { macio_register_driver(&swim3_driver); return 0; } module_init(swim3_init) MODULE_LICENSE("GPL"); MODULE_AUTHOR("Paul Mackerras"); MODULE_ALIAS_BLOCKDEV_MAJOR(FLOPPY_MAJOR);