/* * CAAM Secure Memory Storage Interface * Copyright (c) 2008, 2012 Freescale Semiconductor, Inc. * * Loosely based on the SHW Keystore API for SCC/SCC2 * Experimental implementation and NOT intended for upstream use. Expect * this interface to be amended significantly in the future once it becomes * integrated into live applications. * * Known issues: * * - Executes one instance of an secure memory "driver". This is tied to the * fact that job rings can't run as standalone instances in the present * configuration. * * - It does not expose a userspace interface. The value of a userspace * interface for access to secrets is a point for further architectural * discussion. * * - Partition/permission management is not part of this interface. It * depends on some level of "knowledge" agreed upon between bootloader, * provisioning applications, and OS-hosted software (which uses this * driver). * * - No means of identifying the location or purpose of secrets managed by * this interface exists; "slot location" and format of a given secret * needs to be agreed upon between bootloader, provisioner, and OS-hosted * application. */ #include "compat.h" #include "regs.h" #include "jr.h" #include "desc.h" #include "intern.h" #include "error.h" #include "sm.h" #ifdef SM_DEBUG_CONT void sm_show_page(struct device *dev, struct sm_page_descriptor *pgdesc) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); u32 i, *smdata; dev_info(dev, "physical page %d content at 0x%08x\n", pgdesc->phys_pagenum, pgdesc->pg_base); smdata = pgdesc->pg_base; for (i = 0; i < (smpriv->page_size / sizeof(u32)); i += 4) dev_info(dev, "[0x%08x] 0x%08x 0x%08x 0x%08x 0x%08x\n", (u32)&smdata[i], smdata[i], smdata[i+1], smdata[i+2], smdata[i+3]); } #endif /* * Construct a secure memory blob encapsulation job descriptor * * - desc pointer to hold new (to be allocated) pointer to the generated * descriptor for later use. Calling thread can kfree the * descriptor after execution. * - keymod Physical pointer to key modifier (contiguous piece). * - keymodsz Size of key modifier in bytes (should normally be 8). * - secretbuf Physical pointer (within an accessible secure memory page) * of the secret to be encapsulated. * - outbuf Physical pointer (within an accessible secure memory page) * of the encapsulated output. This will be larger than the * input secret because of the added encapsulation data. * - secretsz Size of input secret, in bytes. * - auth If nonzero, use AES-CCM for encapsulation, else use ECB * * Note: this uses 32-bit pointers at present */ #define INITIAL_DESCSZ 16 /* size of tmp buffer for descriptor const. */ static int blob_encap_desc(u32 **desc, dma_addr_t keymod, u16 keymodsz, dma_addr_t secretbuf, dma_addr_t outbuf, u16 secretsz, bool auth) { u32 *tdesc, tmpdesc[INITIAL_DESCSZ]; u16 dsize, idx; memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32)); idx = 1; /* Load key modifier */ tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_KEY | ((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK) | (keymodsz & LDST_LEN_MASK); tmpdesc[idx++] = (u32)keymod; /* Encapsulate to secure memory */ tmpdesc[idx++] = CMD_SEQ_IN_PTR | secretsz; tmpdesc[idx++] = (u32)secretbuf; /* Add space for BKEK and MAC tag */ tmpdesc[idx++] = CMD_SEQ_IN_PTR | (secretsz + (32 + 16)); tmpdesc[idx++] = (u32)outbuf; tmpdesc[idx] = CMD_OPERATION | OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB | OP_PCL_BLOB_PTXT_SECMEM; if (auth) tmpdesc[idx] |= OP_PCL_BLOB_EKT; idx++; tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK); dsize = idx * sizeof(u32); tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA); if (tdesc == NULL) return 0; memcpy(tdesc, tmpdesc, dsize); *desc = tdesc; return dsize; } /* * Construct a secure memory blob decapsulation job descriptor * * - desc pointer to hold new (to be allocated) pointer to the generated * descriptor for later use. Calling thread can kfree the * descriptor after execution. * - keymod Physical pointer to key modifier (contiguous piece). * - keymodsz Size of key modifier in bytes (should normally be 16). * - blobbuf Physical pointer (within an accessible secure memory page) * of the blob to be decapsulated. * - outbuf Physical pointer (within an accessible secure memory page) * of the decapsulated output. * - secretsz Size of input blob, in bytes. * - auth If nonzero, assume AES-CCM for decapsulation, else use ECB * * Note: this uses 32-bit pointers at present */ static int blob_decap_desc(u32 **desc, dma_addr_t keymod, u16 keymodsz, dma_addr_t blobbuf, dma_addr_t outbuf, u16 blobsz, bool auth) { u32 *tdesc, tmpdesc[INITIAL_DESCSZ]; u16 dsize, idx; memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32)); idx = 1; /* Load key modifier */ tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_KEY | ((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK) | (keymodsz & LDST_LEN_MASK); tmpdesc[idx++] = (u32)keymod; /* Compensate BKEK + MAC tag */ tmpdesc[idx++] = CMD_SEQ_IN_PTR | (blobsz + 32 + 16); tmpdesc[idx++] = (u32)blobbuf; tmpdesc[idx++] = CMD_SEQ_OUT_PTR | blobsz; tmpdesc[idx++] = (u32)outbuf; /* Decapsulate from secure memory partition to black blob */ tmpdesc[idx] = CMD_OPERATION | OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB | OP_PCL_BLOB_PTXT_SECMEM | OP_PCL_BLOB_BLACK; if (auth) tmpdesc[idx] |= OP_PCL_BLOB_EKT; idx++; tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK); dsize = idx * sizeof(u32); tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA); if (tdesc == NULL) return 0; memcpy(tdesc, tmpdesc, dsize); *desc = tdesc; return dsize; } /* * Pseudo-synchronous ring access functions for carrying out key * encapsulation and decapsulation */ struct sm_key_job_result { int error; struct completion completion; }; void sm_key_job_done(struct device *dev, u32 *desc, u32 err, void *context) { struct sm_key_job_result *res = context; res->error = err; /* save off the error for postprocessing */ complete(&res->completion); /* mark us complete */ } static int sm_key_job(struct device *ksdev, u32 *jobdesc) { struct sm_key_job_result testres; struct caam_drv_private_sm *kspriv; int rtn = 0; kspriv = dev_get_drvdata(ksdev); init_completion(&testres.completion); rtn = caam_jr_enqueue(kspriv->smringdev, jobdesc, sm_key_job_done, &testres); if (!rtn) { wait_for_completion_interruptible(&testres.completion); rtn = testres.error; } return rtn; } /* * Following section establishes the default methods for keystore access * They are NOT intended for use external to this module * * In the present version, these are the only means for the higher-level * interface to deal with the mechanics of accessing the phyiscal keystore */ int slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; u32 i; #ifdef SM_DEBUG dev_info(dev, "slot_alloc(): requesting slot for %d bytes\n", size); #endif if (size > smpriv->slot_size) return -EKEYREJECTED; for (i = 0; i < ksdata->slot_count; i++) { if (ksdata->slot[i].allocated == 0) { ksdata->slot[i].allocated = 1; (*slot) = i; #ifdef SM_DEBUG dev_info(dev, "slot_alloc(): new slot %d allocated\n", *slot); #endif return 0; } } return -ENOSPC; } int slot_dealloc(struct device *dev, u32 unit, u32 slot) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; u8 __iomem *slotdata; #ifdef SM_DEBUG dev_info(dev, "slot_dealloc(): releasing slot %d\n", slot); #endif if (slot >= ksdata->slot_count) return -EINVAL; slotdata = ksdata->base_address + slot * smpriv->slot_size; if (ksdata->slot[slot].allocated == 1) { /* Forcibly overwrite the data from the keystore */ memset(ksdata->base_address + slot * smpriv->slot_size, 0, smpriv->slot_size); ksdata->slot[slot].allocated = 0; #ifdef SM_DEBUG dev_info(dev, "slot_dealloc(): slot %d released\n", slot); #endif return 0; } return -EINVAL; } void *slot_get_address(struct device *dev, u32 unit, u32 slot) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; if (slot >= ksdata->slot_count) return NULL; #ifdef SM_DEBUG dev_info(dev, "slot_get_address(): slot %d is 0x%08x\n", slot, (u32)ksdata->base_address + slot * smpriv->slot_size); #endif return ksdata->base_address + slot * smpriv->slot_size; } u32 slot_get_base(struct device *dev, u32 unit, u32 slot) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; /* * There could potentially be more than one secure partition object * associated with this keystore. For now, there is just one. */ (void)slot; #ifdef SM_DEBUG dev_info(dev, "slot_get_base(): slot %d = 0x%08x\n", slot, (u32)ksdata->base_address); #endif return (u32)(ksdata->base_address); } u32 slot_get_offset(struct device *dev, u32 unit, u32 slot) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; if (slot >= ksdata->slot_count) return -EINVAL; #ifdef SM_DEBUG dev_info(dev, "slot_get_offset(): slot %d = %d\n", slot, slot * smpriv->slot_size); #endif return slot * smpriv->slot_size; } u32 slot_get_slot_size(struct device *dev, u32 unit, u32 slot) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); #ifdef SM_DEBUG dev_info(dev, "slot_get_slot_size(): slot %d = %d\n", slot, smpriv->slot_size); #endif /* All slots are the same size in the default implementation */ return smpriv->slot_size; } int kso_init_data(struct device *dev, u32 unit) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); int retval = -EINVAL; struct keystore_data *keystore_data = NULL; u32 slot_count; u32 keystore_data_size; /* * Calculate the required size of the keystore data structure, based * on the number of keys that can fit in the partition. */ slot_count = smpriv->page_size / smpriv->slot_size; #ifdef SM_DEBUG dev_info(dev, "kso_init_data: %d slots initializing\n", slot_count); #endif keystore_data_size = sizeof(struct keystore_data) + slot_count * sizeof(struct keystore_data_slot_info); keystore_data = kzalloc(keystore_data_size, GFP_KERNEL); if (keystore_data == NULL) { retval = -ENOSPC; goto out; } #ifdef SM_DEBUG dev_info(dev, "kso_init_data: keystore data size = %d\n", keystore_data_size); #endif /* * Place the slot information structure directly after the keystore data * structure. */ keystore_data->slot = (struct keystore_data_slot_info *) (keystore_data + 1); keystore_data->slot_count = slot_count; smpriv->pagedesc[unit].ksdata = keystore_data; smpriv->pagedesc[unit].ksdata->base_address = smpriv->pagedesc[unit].pg_base; retval = 0; out: if (retval != 0) if (keystore_data != NULL) kfree(keystore_data); return retval; } void kso_cleanup_data(struct device *dev, u32 unit) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); struct keystore_data *keystore_data = NULL; if (smpriv->pagedesc[unit].ksdata != NULL) keystore_data = smpriv->pagedesc[unit].ksdata; /* Release the allocated keystore management data */ kfree(smpriv->pagedesc[unit].ksdata); return; } /* * Keystore management section */ void sm_init_keystore(struct device *dev) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); smpriv->data_init = kso_init_data; smpriv->data_cleanup = kso_cleanup_data; smpriv->slot_alloc = slot_alloc; smpriv->slot_dealloc = slot_dealloc; smpriv->slot_get_address = slot_get_address; smpriv->slot_get_base = slot_get_base; smpriv->slot_get_offset = slot_get_offset; smpriv->slot_get_slot_size = slot_get_slot_size; #ifdef SM_DEBUG dev_info(dev, "sm_init_keystore(): handlers installed\n"); #endif } EXPORT_SYMBOL(sm_init_keystore); /* Return available pages/units */ u32 sm_detect_keystore_units(struct device *dev) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); return smpriv->localpages; } EXPORT_SYMBOL(sm_detect_keystore_units); /* * Do any keystore specific initializations */ int sm_establish_keystore(struct device *dev, u32 unit) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); #ifdef SM_DEBUG dev_info(dev, "sm_establish_keystore(): unit %d initializing\n", unit); #endif if (smpriv->data_init == NULL) return -EINVAL; /* Call the data_init function for any user setup */ return smpriv->data_init(dev, unit); } EXPORT_SYMBOL(sm_establish_keystore); void sm_release_keystore(struct device *dev, u32 unit) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); #ifdef SM_DEBUG dev_info(dev, "sm_establish_keystore(): unit %d releasing\n", unit); #endif if ((smpriv != NULL) && (smpriv->data_cleanup != NULL)) smpriv->data_cleanup(dev, unit); return; } EXPORT_SYMBOL(sm_release_keystore); /* * Subsequent interfacce (sm_keystore_*) forms the accessor interfacce to * the keystore */ int sm_keystore_slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); int retval = -EINVAL; spin_lock(&smpriv->kslock); if ((smpriv->slot_alloc == NULL) || (smpriv->pagedesc[unit].ksdata == NULL)) goto out; retval = smpriv->slot_alloc(dev, unit, size, slot); out: spin_unlock(&smpriv->kslock); return retval; } EXPORT_SYMBOL(sm_keystore_slot_alloc); int sm_keystore_slot_dealloc(struct device *dev, u32 unit, u32 slot) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); int retval = -EINVAL; spin_lock(&smpriv->kslock); if ((smpriv->slot_alloc == NULL) || (smpriv->pagedesc[unit].ksdata == NULL)) goto out; retval = smpriv->slot_dealloc(dev, unit, slot); out: spin_unlock(&smpriv->kslock); return retval; } EXPORT_SYMBOL(sm_keystore_slot_dealloc); int sm_keystore_slot_load(struct device *dev, u32 unit, u32 slot, const u8 *key_data, u32 key_length) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); int retval = -EINVAL; u32 slot_size; u32 i; u8 __iomem *slot_location; spin_lock(&smpriv->kslock); slot_size = smpriv->slot_get_slot_size(dev, unit, slot); if (key_length > slot_size) { retval = -EFBIG; goto out; } slot_location = smpriv->slot_get_address(dev, unit, slot); for (i = 0; i < key_length; i++) slot_location[i] = key_data[i]; retval = 0; out: spin_unlock(&smpriv->kslock); return retval; } EXPORT_SYMBOL(sm_keystore_slot_load); int sm_keystore_slot_read(struct device *dev, u32 unit, u32 slot, u32 key_length, u8 *key_data) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); int retval = -EINVAL; u8 __iomem *slot_addr; u32 slot_size; spin_lock(&smpriv->kslock); slot_addr = smpriv->slot_get_address(dev, unit, slot); slot_size = smpriv->slot_get_slot_size(dev, unit, slot); if (key_length > slot_size) { retval = -EKEYREJECTED; goto out; } memcpy(key_data, slot_addr, key_length); retval = 0; out: spin_unlock(&smpriv->kslock); return retval; } EXPORT_SYMBOL(sm_keystore_slot_read); int sm_keystore_slot_encapsulate(struct device *dev, u32 unit, u32 inslot, u32 outslot, u16 secretlen, u8 *keymod, u16 keymodlen) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); int retval = 0; u32 slot_length, dsize, jstat; u32 __iomem *encapdesc = NULL; u8 __iomem *lkeymod, *inpslotaddr, *outslotaddr; dma_addr_t keymod_dma; /* Ensure that the full blob will fit in the key slot */ slot_length = smpriv->slot_get_slot_size(dev, unit, outslot); if ((secretlen + 48) > slot_length) goto out; /* Get the base addresses of both keystore slots */ inpslotaddr = (u8 *)smpriv->slot_get_address(dev, unit, inslot); outslotaddr = (u8 *)smpriv->slot_get_address(dev, unit, outslot); /* Build the key modifier */ lkeymod = kmalloc(keymodlen, GFP_KERNEL | GFP_DMA); memcpy(lkeymod, keymod, keymodlen); keymod_dma = dma_map_single(dev, lkeymod, keymodlen, DMA_TO_DEVICE); dma_sync_single_for_device(dev, keymod_dma, keymodlen, DMA_TO_DEVICE); /* Build the encapsulation job descriptor */ dsize = blob_encap_desc(&encapdesc, keymod_dma, keymodlen, __pa(inpslotaddr), __pa(outslotaddr), secretlen, 0); if (!dsize) { dev_err(dev, "can't alloc an encap descriptor\n"); retval = -ENOMEM; goto out; } jstat = sm_key_job(dev, encapdesc); dma_unmap_single(dev, keymod_dma, keymodlen, DMA_TO_DEVICE); kfree(encapdesc); out: return retval; } EXPORT_SYMBOL(sm_keystore_slot_encapsulate); int sm_keystore_slot_decapsulate(struct device *dev, u32 unit, u32 inslot, u32 outslot, u16 secretlen, u8 *keymod, u16 keymodlen) { struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); int retval = 0; u32 slot_length, dsize, jstat; u32 __iomem *decapdesc = NULL; u8 __iomem *lkeymod, *inpslotaddr, *outslotaddr; dma_addr_t keymod_dma; /* Ensure that the decap data will fit in the key slot */ slot_length = smpriv->slot_get_slot_size(dev, unit, outslot); if (secretlen > slot_length) goto out; /* Get the base addresses of both keystore slots */ inpslotaddr = (u8 *)smpriv->slot_get_address(dev, unit, inslot); outslotaddr = (u8 *)smpriv->slot_get_address(dev, unit, outslot); /* Build the key modifier */ lkeymod = kmalloc(keymodlen, GFP_KERNEL | GFP_DMA); memcpy(lkeymod, keymod, keymodlen); keymod_dma = dma_map_single(dev, lkeymod, keymodlen, DMA_TO_DEVICE); dma_sync_single_for_device(dev, keymod_dma, keymodlen, DMA_TO_DEVICE); /* Build the decapsulation job descriptor */ dsize = blob_decap_desc(&decapdesc, keymod_dma, keymodlen, __pa(inpslotaddr), __pa(outslotaddr), secretlen, 0); if (!dsize) { dev_err(dev, "can't alloc a decap descriptor\n"); retval = -ENOMEM; goto out; } jstat = sm_key_job(dev, decapdesc); dma_unmap_single(dev, keymod_dma, keymodlen, DMA_TO_DEVICE); kfree(decapdesc); out: return retval; } EXPORT_SYMBOL(sm_keystore_slot_decapsulate); /* * Initialization/shutdown subsystem * Assumes statically-invoked startup/shutdown from the controller driver * for the present time, to be reworked when a device tree becomes * available. This code will not modularize in present form. * * Also, simply uses ring 0 for execution at the present */ int caam_sm_startup(struct platform_device *pdev) { struct device *ctrldev, *smdev; struct caam_drv_private *ctrlpriv; struct caam_drv_private_sm *smpriv; struct caam_drv_private_jr *jrpriv; /* need this for reg page */ struct platform_device *sm_pdev; struct sm_page_descriptor *lpagedesc; u32 page, pgstat, lpagect, detectedpage; ctrldev = &pdev->dev; ctrlpriv = dev_get_drvdata(ctrldev); /* * Set up the private block for secure memory * Only one instance is possible */ smpriv = kzalloc(sizeof(struct caam_drv_private_sm), GFP_KERNEL); if (smpriv == NULL) { dev_err(ctrldev, "can't alloc private mem for secure memory\n"); return -ENOMEM; } smpriv->parentdev = ctrldev; /* copy of parent dev is handy */ /* Create the dev */ #ifdef CONFIG_OF sm_pdev = of_platform_device_create(np, NULL, ctrldev); #else sm_pdev = platform_device_register_data(ctrldev, "caam_sm", 0, smpriv, sizeof(struct caam_drv_private_sm)); #endif if (sm_pdev == NULL) { kfree(smpriv); return -EINVAL; } smdev = &sm_pdev->dev; dev_set_drvdata(smdev, smpriv); ctrlpriv->smdev = smdev; /* * Collect configuration limit data for reference * This batch comes from the partition data/vid registers in perfmon */ smpriv->max_pages = ((rd_reg32(&ctrlpriv->ctrl->perfmon.smpart) & SMPART_MAX_NUMPG_MASK) >> SMPART_MAX_NUMPG_SHIFT) + 1; smpriv->top_partition = ((rd_reg32(&ctrlpriv->ctrl->perfmon.smpart) & SMPART_MAX_PNUM_MASK) >> SMPART_MAX_PNUM_SHIFT) + 1; smpriv->top_page = ((rd_reg32(&ctrlpriv->ctrl->perfmon.smpart) & SMPART_MAX_PG_MASK) >> SMPART_MAX_PG_SHIFT) + 1; smpriv->page_size = 1024 << ((rd_reg32(&ctrlpriv->ctrl->perfmon.smvid) & SMVID_PG_SIZE_MASK) >> SMVID_PG_SIZE_SHIFT); smpriv->slot_size = 1 << CONFIG_CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE; #ifdef SM_DEBUG dev_info(smdev, "max pages = %d, top partition = %d\n", smpriv->max_pages, smpriv->top_partition); dev_info(smdev, "top page = %d, page size = %d (total = %d)\n", smpriv->top_page, smpriv->page_size, smpriv->top_page * smpriv->page_size); dev_info(smdev, "selected slot size = %d\n", smpriv->slot_size); #endif /* * Now probe for partitions/pages to which we have access. Note that * these have likely been set up by a bootloader or platform * provisioning application, so we have to assume that we "inherit" * a configuration and work within the constraints of what it might be. * * Assume use of the zeroth ring in the present iteration (until * we can divorce the controller and ring drivers, and then assign * an SM instance to any ring instance). */ smpriv->smringdev = ctrlpriv->jrdev[0]; jrpriv = dev_get_drvdata(smpriv->smringdev); lpagect = 0; lpagedesc = kzalloc(sizeof(struct sm_page_descriptor) * smpriv->max_pages, GFP_KERNEL); if (lpagedesc == NULL) { kfree(smpriv); return -ENOMEM; } for (page = 0; page < smpriv->max_pages; page++) { wr_reg32(&jrpriv->rregs->sm_cmd, ((page << SMC_PAGE_SHIFT) & SMC_PAGE_MASK) | (SMC_CMD_PAGE_INQUIRY & SMC_CMD_MASK)); pgstat = rd_reg32(&jrpriv->rregs->sm_status); if (((pgstat & SMCS_PGWON_MASK) >> SMCS_PGOWN_SHIFT) == SMCS_PGOWN_OWNED) { /* our page? */ lpagedesc[page].phys_pagenum = (pgstat & SMCS_PAGE_MASK) >> SMCS_PAGE_SHIFT; lpagedesc[page].own_part = (pgstat & SMCS_PART_SHIFT) >> SMCS_PART_MASK; lpagedesc[page].pg_base = ctrlpriv->sm_base + ((smpriv->page_size * page) / sizeof(u32)); lpagect++; #ifdef SM_DEBUG dev_info(smdev, "physical page %d, owning partition = %d\n", lpagedesc[page].phys_pagenum, lpagedesc[page].own_part); #endif } } smpriv->pagedesc = kmalloc(sizeof(struct sm_page_descriptor) * lpagect, GFP_KERNEL); if (smpriv->pagedesc == NULL) { kfree(lpagedesc); kfree(smpriv); return -ENOMEM; } smpriv->localpages = lpagect; detectedpage = 0; for (page = 0; page < smpriv->max_pages; page++) { if (lpagedesc[page].pg_base != NULL) { /* e.g. live entry */ memcpy(&smpriv->pagedesc[detectedpage], &lpagedesc[page], sizeof(struct sm_page_descriptor)); #ifdef SM_DEBUG_CONT sm_show_page(smdev, &smpriv->pagedesc[detectedpage]); #endif detectedpage++; } } kfree(lpagedesc); sm_init_keystore(smdev); return 0; } void caam_sm_shutdown(struct platform_device *pdev) { struct device *ctrldev, *smdev; struct caam_drv_private *priv; struct caam_drv_private_sm *smpriv; ctrldev = &pdev->dev; priv = dev_get_drvdata(ctrldev); smdev = priv->smdev; smpriv = dev_get_drvdata(smdev); kfree(smpriv->pagedesc); kfree(smpriv); } #ifdef CONFIG_OF static void __exit caam_sm_exit(void) { struct device_node *dev_node; struct platform_device *pdev; dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); if (!dev_node) { dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); if (!dev_node) return -ENODEV; } pdev = of_find_device_by_node(dev_node); if (!pdev) return -ENODEV; of_node_put(dev_node); caam_sm_shutdown(pdev); } static int __init caam_sm_init(void) { struct device_node *dev_node; struct platform_device *pdev; /* * Do of_find_compatible_node() then of_find_device_by_node() * once a functional device tree is available */ dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); if (!dev_node) { dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); if (!dev_node) return -ENODEV; } pdev = of_find_device_by_node(dev_node); if (!pdev) return -ENODEV; of_node_put(dev_node); return caam_sm_startup(pdev); } module_init(caam_sm_init); module_exit(caam_sm_exit); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("FSL CAAM Secure Memory / Keystore"); MODULE_AUTHOR("Freescale Semiconductor - NMSG/MAD"); #endif