/* * drivers/crypto/tegra-aes.c * * aes driver for NVIDIA tegra aes hardware * * Copyright (c) 2010-2011, NVIDIA Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../video/tegra/nvmap/nvmap.h" #include #include #include #include "tegra-aes.h" #define FLAGS_MODE_MASK 0x00ff #define FLAGS_ENCRYPT BIT(0) #define FLAGS_CBC BIT(1) #define FLAGS_GIV BIT(2) #define FLAGS_RNG BIT(3) #define FLAGS_OFB BIT(4) #define FLAGS_INIT BIT(5) #define FLAGS_BUSY 1 /* * Defines AES engine Max process bytes size in one go, which takes 1 msec. * AES engine spends about 176 cycles/16-bytes or 11 cycles/byte * The duration CPU can use the BSE to 1 msec, then the number of available * cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB * Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB. */ #define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000 /* * The key table length is 64 bytes * (This includes first upto 32 bytes key + 16 bytes original initial vector * and 16 bytes updated initial vector) */ #define AES_HW_KEY_TABLE_LENGTH_BYTES 64 #define AES_HW_IV_SIZE 16 #define AES_HW_KEYSCHEDULE_LEN 256 #define ARB_SEMA_TIMEOUT 500 /* * The memory being used is divides as follows: * 1. Key - 32 bytes * 2. Original IV - 16 bytes * 3. Updated IV - 16 bytes * 4. Key schedule - 256 bytes * * 1+2+3 constitute the hw key table. */ #define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN) #define DEFAULT_RNG_BLK_SZ 16 /* As of now only 5 commands are USED for AES encryption/Decryption */ #define AES_HW_MAX_ICQ_LENGTH 4 #define ICQBITSHIFT_BLKCNT 0 /* memdma_vd command */ #define MEMDMA_DIR_DTOVRAM 0 #define MEMDMA_DIR_VTODRAM 1 #define MEMDMABITSHIFT_DIR 25 #define MEMDMABITSHIFT_NUM_WORDS 12 /* Define AES Interactive command Queue commands Bit positions */ enum { ICQBITSHIFT_KEYTABLEADDR = 0, ICQBITSHIFT_KEYTABLEID = 17, ICQBITSHIFT_VRAMSEL = 23, ICQBITSHIFT_TABLESEL = 24, ICQBITSHIFT_OPCODE = 26, }; /* Define Ucq opcodes required for AES operation */ enum { UCQOPCODE_BLKSTARTENGINE = 0x0E, UCQOPCODE_DMASETUP = 0x10, UCQOPCODE_DMACOMPLETE = 0x11, UCQOPCODE_SETTABLE = 0x15, UCQOPCODE_MEMDMAVD = 0x22, }; /* Define Aes command values */ enum { UCQCMD_VRAM_SEL = 0x1, UCQCMD_CRYPTO_TABLESEL = 0x3, UCQCMD_KEYSCHEDTABLESEL = 0x4, UCQCMD_KEYTABLESEL = 0x8, }; #define UCQCMD_KEYTABLEADDRMASK 0x1FFFF #define AES_NR_KEYSLOTS 8 #define SSK_SLOT_NUM 4 struct tegra_aes_slot { struct list_head node; int slot_num; bool available; }; struct tegra_aes_reqctx { unsigned long mode; }; #define TEGRA_AES_QUEUE_LENGTH 500 struct tegra_aes_engine { struct tegra_aes_dev *dd; struct tegra_aes_ctx *ctx; struct clk *iclk; struct clk *pclk; struct ablkcipher_request *req; struct scatterlist *in_sg; struct completion op_complete; struct scatterlist *out_sg; void __iomem *io_base; void __iomem *ivkey_base; unsigned long phys_base; unsigned long iram_phys; void *iram_virt; dma_addr_t ivkey_phys_base; dma_addr_t dma_buf_in; dma_addr_t dma_buf_out; size_t total; size_t in_offset; size_t out_offset; u32 engine_offset; u32 *buf_in; u32 *buf_out; int res_id; unsigned long busy; u8 irq; u32 status; }; struct tegra_aes_dev { struct device *dev; struct tegra_aes_slot *slots; struct tegra_aes_engine bsev; struct tegra_aes_engine bsea; struct nvmap_client *client; struct nvmap_handle_ref *h_ref; struct crypto_queue queue; spinlock_t lock; u64 ctr; unsigned long flags; u8 dt[DEFAULT_RNG_BLK_SZ]; }; static struct tegra_aes_dev *aes_dev; struct tegra_aes_ctx { struct tegra_aes_dev *dd; struct tegra_aes_engine *eng; struct tegra_aes_slot *slot; int key[AES_MAX_KEY_SIZE]; int keylen; bool use_ssk; u8 dt[DEFAULT_RNG_BLK_SZ]; }; static struct tegra_aes_ctx rng_ctx; /* keep registered devices data here */ static LIST_HEAD(slot_list); static DEFINE_SPINLOCK(list_lock); /* Engine specific work queues */ static void bsev_workqueue_handler(struct work_struct *work); static void bsea_workqueue_handler(struct work_struct *work); static DECLARE_WORK(bsev_work, bsev_workqueue_handler); static DECLARE_WORK(bsea_work, bsea_workqueue_handler); static struct workqueue_struct *bsev_wq; static struct workqueue_struct *bsea_wq; extern unsigned long long tegra_chip_uid(void); static inline u32 aes_readl(struct tegra_aes_engine *engine, u32 offset) { return readl(engine->io_base + offset); } static inline void aes_writel(struct tegra_aes_engine *engine, u32 val, u32 offset) { writel(val, engine->io_base + offset); } static int alloc_iram(struct tegra_aes_dev *dd) { size_t size; int err; dd->h_ref = NULL; /* [key+iv+u-iv=64B] * 8 = 512Bytes */ size = AES_MAX_KEY_SIZE; dd->client = nvmap_create_client(nvmap_dev, "aes_bsea"); if (IS_ERR(dd->client)) { dev_err(dd->dev, "nvmap_create_client failed\n"); goto out; } dd->h_ref = nvmap_create_handle(dd->client, size); if (IS_ERR(dd->h_ref)) { dev_err(dd->dev, "nvmap_create_handle failed\n"); goto out; } /* Allocate memory in the iram */ err = nvmap_alloc_handle_id(dd->client, nvmap_ref_to_id(dd->h_ref), NVMAP_HEAP_CARVEOUT_IRAM, size, 0); if (err) { dev_err(dd->dev, "nvmap_alloc_handle_id failed\n"); nvmap_free_handle_id(dd->client, nvmap_ref_to_id(dd->h_ref)); goto out; } dd->bsea.iram_phys = nvmap_handle_address(dd->client, nvmap_ref_to_id(dd->h_ref)); dd->bsea.iram_virt = nvmap_mmap(dd->h_ref); /* get virtual address */ if (!dd->bsea.iram_virt) { dev_err(dd->dev, "%s: no mem, BSEA IRAM alloc failure\n", __func__); goto out; } memset(dd->bsea.iram_virt, 0, size); return 0; out: if (dd->bsea.iram_virt) nvmap_munmap(dd->h_ref, dd->bsea.iram_virt); if (dd->client) { nvmap_free_handle_id(dd->client, nvmap_ref_to_id(dd->h_ref)); nvmap_client_put(dd->client); } return -ENOMEM; } static void free_iram(struct tegra_aes_dev *dd) { if (dd->bsea.iram_virt) nvmap_munmap(dd->h_ref, dd->bsea.iram_virt); if (dd->client) { nvmap_free_handle_id(dd->client, nvmap_ref_to_id(dd->h_ref)); nvmap_client_put(dd->client); } } static int aes_hw_init(struct tegra_aes_engine *engine) { struct tegra_aes_dev *dd = aes_dev; int ret = 0; if (engine->pclk) { ret = clk_enable(engine->pclk); if (ret < 0) { dev_err(dd->dev, "%s: pclock enable fail(%d)\n", __func__, ret); return ret; } } if (engine->iclk) { ret = clk_enable(engine->iclk); if (ret < 0) { dev_err(dd->dev, "%s: iclock enable fail(%d)\n", __func__, ret); if (engine->pclk) clk_disable(engine->pclk); return ret; } } return ret; } static void aes_hw_deinit(struct tegra_aes_engine *engine) { if (engine->pclk) clk_disable(engine->pclk); if (engine->iclk) clk_disable(engine->iclk); } #define MIN_RETRIES 3 static int aes_start_crypt(struct tegra_aes_engine *eng, u32 in_addr, u32 out_addr, int nblocks, int mode, bool upd_iv) { u32 cmdq[AES_HW_MAX_ICQ_LENGTH]; int qlen = 0, i, eng_busy, icq_empty, ret; u32 value; int retries = MIN_RETRIES; start: do { value = aes_readl(eng, INTR_STATUS); eng_busy = value & BIT(0); icq_empty = value & BIT(3); } while (eng_busy || (!icq_empty)); aes_writel(eng, 0xFFFFFFFF, INTR_STATUS); /* error, dma xfer complete */ aes_writel(eng, 0x33, INT_ENB); enable_irq(eng->irq); cmdq[qlen++] = UCQOPCODE_DMASETUP << ICQBITSHIFT_OPCODE; cmdq[qlen++] = in_addr; cmdq[qlen++] = UCQOPCODE_BLKSTARTENGINE << ICQBITSHIFT_OPCODE | (nblocks-1) << ICQBITSHIFT_BLKCNT; cmdq[qlen++] = UCQOPCODE_DMACOMPLETE << ICQBITSHIFT_OPCODE; value = aes_readl(eng, CMDQUE_CONTROL); /* access SDRAM through AHB */ value &= (~CMDQ_CTRL_SRC_STM_SEL_FIELD & ~CMDQ_CTRL_DST_STM_SEL_FIELD); value |= (CMDQ_CTRL_SRC_STM_SEL_FIELD | CMDQ_CTRL_DST_STM_SEL_FIELD | CMDQ_CTRL_ICMDQEN_FIELD | CMDQ_CTRL_ERROR_FLUSH_ENB); aes_writel(eng, value, CMDQUE_CONTROL); value = 0; if (mode & FLAGS_CBC) { value = ((0x1 << SECURE_INPUT_ALG_SEL_SHIFT) | ((eng->ctx->keylen * 8) << SECURE_INPUT_KEY_LEN_SHIFT) | ((u32)upd_iv << SECURE_IV_SELECT_SHIFT) | (((mode & FLAGS_ENCRYPT) ? 2 : 3) << SECURE_XOR_POS_SHIFT) | (0 << SECURE_INPUT_SEL_SHIFT) | (((mode & FLAGS_ENCRYPT) ? 2 : 3) << SECURE_VCTRAM_SEL_SHIFT) | ((mode & FLAGS_ENCRYPT) ? 1 : 0) << SECURE_CORE_SEL_SHIFT | (0 << SECURE_RNG_ENB_SHIFT) | (0 << SECURE_HASH_ENB_SHIFT)); } else if (mode & FLAGS_OFB) { value = ((0x1 << SECURE_INPUT_ALG_SEL_SHIFT) | ((eng->ctx->keylen * 8) << SECURE_INPUT_KEY_LEN_SHIFT) | ((u32)upd_iv << SECURE_IV_SELECT_SHIFT) | ((u32)0 << SECURE_IV_SELECT_SHIFT) | (SECURE_XOR_POS_FIELD) | (2 << SECURE_INPUT_SEL_SHIFT) | (0 << SECURE_VCTRAM_SEL_SHIFT) | (SECURE_CORE_SEL_FIELD) | (0 << SECURE_RNG_ENB_SHIFT) | (0 << SECURE_HASH_ENB_SHIFT)); } else if (mode & FLAGS_RNG){ value = ((0x1 << SECURE_INPUT_ALG_SEL_SHIFT) | ((eng->ctx->keylen * 8) << SECURE_INPUT_KEY_LEN_SHIFT) | ((u32)upd_iv << SECURE_IV_SELECT_SHIFT) | (0 << SECURE_XOR_POS_SHIFT) | (0 << SECURE_INPUT_SEL_SHIFT) | ((mode & FLAGS_ENCRYPT) ? 1 : 0) << SECURE_CORE_SEL_SHIFT | (1 << SECURE_RNG_ENB_SHIFT) | (0 << SECURE_HASH_ENB_SHIFT)); } else { value = ((0x1 << SECURE_INPUT_ALG_SEL_SHIFT) | ((eng->ctx->keylen * 8) << SECURE_INPUT_KEY_LEN_SHIFT) | ((u32)upd_iv << SECURE_IV_SELECT_SHIFT) | (0 << SECURE_XOR_POS_SHIFT) | (0 << SECURE_INPUT_SEL_SHIFT) | (((mode & FLAGS_ENCRYPT) ? 1 : 0) << SECURE_CORE_SEL_SHIFT) | (0 << SECURE_RNG_ENB_SHIFT) | (0 << SECURE_HASH_ENB_SHIFT)); } aes_writel(eng, value, SECURE_INPUT_SELECT); aes_writel(eng, out_addr, SECURE_DEST_ADDR); INIT_COMPLETION(eng->op_complete); for (i = 0; i < qlen - 1; i++) { do { value = aes_readl(eng, INTR_STATUS); eng_busy = value & BIT(0); icq_empty = value & BIT(3); } while (eng_busy || (!icq_empty)); aes_writel(eng, cmdq[i], ICMDQUE_WR); } ret = wait_for_completion_timeout(&eng->op_complete, msecs_to_jiffies(150)); if (ret == 0) { dev_err(aes_dev->dev, "engine%d timed out (0x%x)\n", eng->res_id, aes_readl(eng, INTR_STATUS)); disable_irq(eng->irq); return -ETIMEDOUT; } disable_irq(eng->irq); aes_writel(eng, cmdq[qlen - 1], ICMDQUE_WR); if ((eng->status != 0) && (retries-- > 0)) { qlen = 0; goto start; } return 0; } static void aes_release_key_slot(struct tegra_aes_ctx *ctx) { spin_lock(&list_lock); ctx->slot->available = true; ctx->slot = NULL; spin_unlock(&list_lock); } static struct tegra_aes_slot *aes_find_key_slot(struct tegra_aes_dev *dd) { struct tegra_aes_slot *slot = NULL; bool found = 0; spin_lock(&list_lock); list_for_each_entry(slot, &slot_list, node) { dev_dbg(dd->dev, "empty:%d, num:%d\n", slot->available, slot->slot_num); if (slot->available) { slot->available = false; found = 1; break; } } spin_unlock(&list_lock); return found ? slot : NULL; } static int aes_set_key(struct tegra_aes_engine *eng, int slot_num) { struct tegra_aes_dev *dd = aes_dev; u32 value, cmdq[2]; int i, eng_busy, icq_empty, dma_busy; if (!eng) { dev_err(dd->dev, "%s: context invalid\n", __func__); return -EINVAL; } /* enable key schedule generation in hardware */ value = aes_readl(eng, SECURE_CONFIG_EXT); value &= ~SECURE_KEY_SCH_DIS_FIELD; aes_writel(eng, value, SECURE_CONFIG_EXT); /* select the key slot */ value = aes_readl(eng, SECURE_CONFIG); value &= ~SECURE_KEY_INDEX_FIELD; value |= (slot_num << SECURE_KEY_INDEX_SHIFT); aes_writel(eng, value, SECURE_CONFIG); if (slot_num == SSK_SLOT_NUM) goto out; if (eng->res_id == TEGRA_ARB_BSEV) { memset(dd->bsev.ivkey_base, 0, AES_HW_KEY_TABLE_LENGTH_BYTES); memcpy(dd->bsev.ivkey_base, eng->ctx->key, eng->ctx->keylen); /* sync the buffer for device */ dma_sync_single_for_device(dd->dev, dd->bsev.ivkey_phys_base, eng->ctx->keylen, DMA_TO_DEVICE); /* copy the key table from sdram to vram */ cmdq[0] = 0; cmdq[0] = UCQOPCODE_MEMDMAVD << ICQBITSHIFT_OPCODE | (MEMDMA_DIR_DTOVRAM << MEMDMABITSHIFT_DIR) | (AES_HW_KEY_TABLE_LENGTH_BYTES/sizeof(u32)) << MEMDMABITSHIFT_NUM_WORDS; cmdq[1] = (u32)eng->ivkey_phys_base; for (i = 0; i < ARRAY_SIZE(cmdq); i++) aes_writel(eng, cmdq[i], ICMDQUE_WR); do { value = aes_readl(eng, INTR_STATUS); eng_busy = value & BIT(0); icq_empty = value & BIT(3); dma_busy = value & BIT(23); } while (eng_busy & (!icq_empty) & dma_busy); /* settable command to get key into internal registers */ value = 0; value = UCQOPCODE_SETTABLE << ICQBITSHIFT_OPCODE | UCQCMD_CRYPTO_TABLESEL << ICQBITSHIFT_TABLESEL | UCQCMD_VRAM_SEL << ICQBITSHIFT_VRAMSEL | (UCQCMD_KEYTABLESEL | slot_num) << ICQBITSHIFT_KEYTABLEID; aes_writel(eng, value, ICMDQUE_WR); do { value = aes_readl(eng, INTR_STATUS); eng_busy = value & BIT(0); icq_empty = value & BIT(3); } while (eng_busy & (!icq_empty)); } else { memset(dd->bsea.iram_virt, 0, AES_HW_KEY_TABLE_LENGTH_BYTES); memcpy(dd->bsea.iram_virt, eng->ctx->key, eng->ctx->keylen); /* set iram access cfg bit 0 if address >128K */ if (dd->bsea.iram_phys > 0x00020000) aes_writel(eng, BIT(0), IRAM_ACCESS_CFG); else aes_writel(eng, 0, IRAM_ACCESS_CFG); /* settable command to get key into internal registers */ value = 0; value = UCQOPCODE_SETTABLE << ICQBITSHIFT_OPCODE | UCQCMD_CRYPTO_TABLESEL << ICQBITSHIFT_TABLESEL | (UCQCMD_KEYTABLESEL | slot_num) << ICQBITSHIFT_KEYTABLEID | dd->bsea.iram_phys >> 2; aes_writel(eng, value, ICMDQUE_WR); do { value = aes_readl(eng, INTR_STATUS); eng_busy = value & BIT(0); icq_empty = value & BIT(3); } while (eng_busy & (!icq_empty)); } out: return 0; } static int tegra_aes_handle_req(struct tegra_aes_engine *eng) { struct tegra_aes_dev *dd = aes_dev; struct tegra_aes_ctx *ctx; struct crypto_async_request *async_req, *backlog; struct tegra_aes_reqctx *rctx; struct ablkcipher_request *req; unsigned long irq_flags; int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES; int nblocks, total, ret = 0, count = 0; dma_addr_t addr_in, addr_out; struct scatterlist *in_sg, *out_sg; spin_lock_irqsave(&dd->lock, irq_flags); backlog = crypto_get_backlog(&dd->queue); async_req = crypto_dequeue_request(&dd->queue); if (!async_req) clear_bit(FLAGS_BUSY, &eng->busy); spin_unlock_irqrestore(&dd->lock, irq_flags); if (!async_req) return -ENODATA; if (backlog) backlog->complete(backlog, -EINPROGRESS); req = ablkcipher_request_cast(async_req); dev_dbg(dd->dev, "%s: get new req (engine #%d)\n", __func__, eng->res_id); if (!req->src || !req->dst) return -EINVAL; /* take the hardware semaphore */ if (tegra_arb_mutex_lock_timeout(eng->res_id, ARB_SEMA_TIMEOUT) < 0) { dev_err(dd->dev, "aes hardware (%d) not available\n", eng->res_id); return -EBUSY; } /* assign new request to device */ eng->req = req; eng->total = req->nbytes; eng->in_offset = 0; eng->in_sg = req->src; eng->out_offset = 0; eng->out_sg = req->dst; in_sg = eng->in_sg; out_sg = eng->out_sg; total = eng->total; rctx = ablkcipher_request_ctx(req); ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); rctx->mode &= FLAGS_MODE_MASK; dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode; eng->ctx = ctx; if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && req->info) { /* set iv to the aes hw slot * Hw generates updated iv only after iv is set in slot. * So key and iv is passed asynchronously. */ memcpy(eng->buf_in, (u8 *)req->info, AES_BLOCK_SIZE); /* sync the buffer for device */ dma_sync_single_for_device(dd->dev, eng->dma_buf_in, AES_HW_DMA_BUFFER_SIZE_BYTES, DMA_TO_DEVICE); ret = aes_start_crypt(eng, (u32)eng->dma_buf_in, (u32)eng->dma_buf_out, 1, FLAGS_CBC, false); if (ret < 0) { dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); goto out; } /* sync the buffer for cpu */ dma_sync_single_for_cpu(dd->dev, eng->dma_buf_out, AES_HW_DMA_BUFFER_SIZE_BYTES, DMA_FROM_DEVICE); } while (total) { dev_dbg(dd->dev, "remain: %d\n", total); ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); if (!ret) { dev_err(dd->dev, "dma_map_sg() error\n"); goto out; } ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); if (!ret) { dev_err(dd->dev, "dma_map_sg() error\n"); dma_unmap_sg(dd->dev, eng->in_sg, 1, DMA_TO_DEVICE); goto out; } addr_in = sg_dma_address(in_sg); addr_out = sg_dma_address(out_sg); count = min((int)sg_dma_len(in_sg), (int)dma_max); WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg)); nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE); ret = aes_start_crypt(eng, addr_in, addr_out, nblocks, dd->flags, true); dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); if (ret < 0) { dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); goto out; } dev_dbg(dd->dev, "out: copied %d\n", count); total -= count; in_sg = sg_next(in_sg); out_sg = sg_next(out_sg); WARN_ON(((total != 0) && (!in_sg || !out_sg))); } out: /* release the hardware semaphore */ tegra_arb_mutex_unlock(eng->res_id); eng->total = total; if (eng->req->base.complete) eng->req->base.complete(&eng->req->base, ret); dev_dbg(dd->dev, "%s: exit\n", __func__); return ret; } static int tegra_aes_key_save(struct tegra_aes_ctx *ctx) { struct tegra_aes_dev *dd = aes_dev; int retry_count, eng_busy, ret, eng_no; struct tegra_aes_engine *eng[2] = {&dd->bsev, &dd->bsea}; unsigned long flags; /* check for engine free state */ for (eng_no = 0; eng_no < ARRAY_SIZE(eng); eng_no++) { for (retry_count = 0; retry_count <= 10; retry_count++) { spin_lock_irqsave(&dd->lock, flags); eng_busy = test_and_set_bit(FLAGS_BUSY, &eng[eng_no]->busy); spin_unlock_irqrestore(&dd->lock, flags); if (!eng_busy) break; if (retry_count == 10) { dev_err(dd->dev, "%s: eng=%d busy, wait timeout\n", __func__, eng[eng_no]->res_id); ret = -EBUSY; goto out; } mdelay(5); } } /* save key in the engine */ for (eng_no = 0; eng_no < ARRAY_SIZE(eng); eng_no++) { ret = aes_hw_init(eng[eng_no]); if (ret < 0) { dev_err(dd->dev, "%s: eng=%d hw init fail(%d)\n", __func__, eng[eng_no]->res_id, ret); goto out; } eng[eng_no]->ctx = ctx; if (ctx->use_ssk) aes_set_key(eng[eng_no], SSK_SLOT_NUM); else aes_set_key(eng[eng_no], ctx->slot->slot_num); aes_hw_deinit(eng[eng_no]); } out: spin_lock_irqsave(&dd->lock, flags); while (--eng_no >= 0) clear_bit(FLAGS_BUSY, &eng[eng_no]->busy); spin_unlock_irqrestore(&dd->lock, flags); return ret; } static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); struct tegra_aes_dev *dd = aes_dev; struct tegra_aes_slot *key_slot; int ret = 0; if (!ctx || !dd) { pr_err("ctx=0x%x, dd=0x%x\n", (unsigned int)ctx, (unsigned int)dd); return -EINVAL; } if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) && (keylen != AES_KEYSIZE_256)) { dev_err(dd->dev, "unsupported key size\n"); return -EINVAL; } /* take the hardware semaphore */ if (tegra_arb_mutex_lock_timeout(dd->bsev.res_id, ARB_SEMA_TIMEOUT) < 0) { dev_err(dd->dev, "aes hardware (%d) not available\n", dd->bsev.res_id); return -EBUSY; } if (tegra_arb_mutex_lock_timeout(dd->bsea.res_id, ARB_SEMA_TIMEOUT) < 0) { dev_err(dd->dev, "aes hardware (%d) not available\n", dd->bsea.res_id); tegra_arb_mutex_unlock(dd->bsev.res_id); return -EBUSY; } dev_dbg(dd->dev, "keylen: %d\n", keylen); ctx->dd = dd; if (key) { if (!ctx->slot) { key_slot = aes_find_key_slot(dd); if (!key_slot) { dev_err(dd->dev, "no empty slot\n"); ret = -EBUSY; goto out; } ctx->slot = key_slot; } /* copy the key to the proper slot */ memset(ctx->key, 0, AES_MAX_KEY_SIZE); memcpy(ctx->key, key, keylen); ctx->keylen = keylen; ctx->use_ssk = false; } else { ctx->use_ssk = true; ctx->keylen = AES_KEYSIZE_128; } ret = tegra_aes_key_save(ctx); if (ret != 0) dev_err(dd->dev, "%s failed\n", __func__); out: tegra_arb_mutex_unlock(dd->bsev.res_id); tegra_arb_mutex_unlock(dd->bsea.res_id); dev_dbg(dd->dev, "done\n"); return ret; } static void bsev_workqueue_handler(struct work_struct *work) { struct tegra_aes_dev *dd = aes_dev; struct tegra_aes_engine *engine = &dd->bsev; int ret; aes_hw_init(engine); /* empty the crypto queue and then return */ do { ret = tegra_aes_handle_req(engine); } while (!ret); aes_hw_deinit(engine); } static void bsea_workqueue_handler(struct work_struct *work) { struct tegra_aes_dev *dd = aes_dev; struct tegra_aes_engine *engine = &dd->bsea; int ret; aes_hw_init(engine); /* empty the crypto queue and then return */ do { ret = tegra_aes_handle_req(engine); } while (!ret); aes_hw_deinit(engine); } #define INT_ERROR_MASK 0xFFF000 static irqreturn_t aes_bsev_irq(int irq, void *dev_id) { struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id; u32 value = aes_readl(&dd->bsev, INTR_STATUS); dev_dbg(dd->dev, "bsev irq_stat: 0x%x", value); dd->bsev.status = 0; if (value & INT_ERROR_MASK) { aes_writel(&dd->bsev, INT_ERROR_MASK, INTR_STATUS); dd->bsev.status = value & INT_ERROR_MASK; } value = aes_readl(&dd->bsev, INTR_STATUS); if (!(value & ENGINE_BUSY_FIELD)) complete(&dd->bsev.op_complete); return IRQ_HANDLED; } static irqreturn_t aes_bsea_irq(int irq, void *dev_id) { struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id; u32 value = aes_readl(&dd->bsea, INTR_STATUS); dev_dbg(dd->dev, "bsea irq_stat: 0x%x", value); dd->bsea.status = 0; if (value & INT_ERROR_MASK) { aes_writel(&dd->bsea, INT_ERROR_MASK, INTR_STATUS); dd->bsea.status = value & INT_ERROR_MASK; } value = aes_readl(&dd->bsea, INTR_STATUS); if (!(value & ENGINE_BUSY_FIELD)) complete(&dd->bsea.op_complete); return IRQ_HANDLED; } static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode) { struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req); struct tegra_aes_dev *dd = aes_dev; unsigned long flags; int err = 0; int bsev_busy; int bsea_busy; dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n", req->nbytes, !!(mode & FLAGS_ENCRYPT), !!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB)); rctx->mode = mode; spin_lock_irqsave(&dd->lock, flags); err = ablkcipher_enqueue_request(&dd->queue, req); spin_unlock_irqrestore(&dd->lock, flags); bsev_busy = test_and_set_bit(FLAGS_BUSY, &dd->bsev.busy); if (!bsev_busy) { queue_work(bsev_wq, &bsev_work); goto finish; } bsea_busy = test_and_set_bit(FLAGS_BUSY, &dd->bsea.busy); if (!bsea_busy) queue_work(bsea_wq, &bsea_work); finish: return err; } static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, FLAGS_ENCRYPT); } static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, 0); } static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC); } static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, FLAGS_CBC); } static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB); } static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req) { return tegra_aes_crypt(req, FLAGS_OFB); } static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata, unsigned int dlen) { struct tegra_aes_dev *dd = aes_dev; struct tegra_aes_engine *eng = rng_ctx.eng; unsigned long flags; int ret, i; u8 *dest = rdata, *dt = rng_ctx.dt; /* take the hardware semaphore */ if (tegra_arb_mutex_lock_timeout(eng->res_id, ARB_SEMA_TIMEOUT) < 0) { dev_err(dd->dev, "aes hardware (%d) not available\n", eng->res_id); return -EBUSY; } ret = aes_hw_init(eng); if (ret < 0) { dev_err(dd->dev, "%s: hw init fail(%d)\n", __func__, ret); dlen = ret; goto fail; } memset(eng->buf_in, 0, AES_BLOCK_SIZE); memcpy(eng->buf_in, dt, DEFAULT_RNG_BLK_SZ); /* sync the buffer for device */ dma_sync_single_for_device(dd->dev, eng->dma_buf_in, AES_HW_DMA_BUFFER_SIZE_BYTES, DMA_TO_DEVICE); ret = aes_start_crypt(eng, (u32)eng->dma_buf_in, (u32)eng->dma_buf_out, 1, FLAGS_ENCRYPT | FLAGS_RNG, true); if (ret < 0) { dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); dlen = ret; goto out; } /* sync the buffer for cpu */ dma_sync_single_for_cpu(dd->dev, eng->dma_buf_out, AES_HW_DMA_BUFFER_SIZE_BYTES, DMA_FROM_DEVICE); memcpy(dest, eng->buf_out, dlen); /* update the DT */ for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) { dt[i] += 1; if (dt[i] != 0) break; } out: aes_hw_deinit(eng); spin_lock_irqsave(&dd->lock, flags); clear_bit(FLAGS_BUSY, &eng->busy); spin_unlock_irqrestore(&dd->lock, flags); fail: /* release the hardware semaphore */ tegra_arb_mutex_unlock(eng->res_id); dev_dbg(dd->dev, "%s: done\n", __func__); return dlen; } static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen) { struct tegra_aes_dev *dd = aes_dev; struct tegra_aes_ctx *ctx = &rng_ctx; struct tegra_aes_engine *eng = NULL; struct tegra_aes_slot *key_slot; int bsea_busy = false; unsigned long flags; struct timespec ts; u64 nsec, tmp[2]; int ret = 0; u8 *dt; if (!dd) return -EINVAL; if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { return -ENOMEM; } spin_lock_irqsave(&dd->lock, flags); bsea_busy = test_and_set_bit(FLAGS_BUSY, &dd->bsea.busy); spin_unlock_irqrestore(&dd->lock, flags); if (!bsea_busy) eng = &dd->bsea; else return -EBUSY; ctx->eng = eng; dd->flags = FLAGS_ENCRYPT | FLAGS_RNG; if (!ctx->slot) { key_slot = aes_find_key_slot(dd); if (!key_slot) { dev_err(dd->dev, "no empty slot\n"); return -ENOMEM; } ctx->slot = key_slot; } /* take the hardware semaphore */ if (tegra_arb_mutex_lock_timeout(eng->res_id, ARB_SEMA_TIMEOUT) < 0) { dev_err(dd->dev, "aes hardware (%d) not available\n", eng->res_id); return -EBUSY; } ret = aes_hw_init(eng); if (ret < 0) { dev_err(dd->dev, "%s: hw init fail(%d)\n", __func__, ret); goto fail; } memcpy(ctx->key, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128); eng->ctx = ctx; eng->ctx->keylen = AES_KEYSIZE_128; aes_set_key(eng, ctx->slot->slot_num); /* set seed to the aes hw slot */ memset(eng->buf_in, 0, AES_BLOCK_SIZE); memcpy(eng->buf_in, seed, DEFAULT_RNG_BLK_SZ); /* sync the buffer for device */ dma_sync_single_for_device(dd->dev, eng->dma_buf_in, AES_HW_DMA_BUFFER_SIZE_BYTES, DMA_TO_DEVICE); ret = aes_start_crypt(eng, (u32)eng->dma_buf_in, (u32)eng->dma_buf_out, 1, FLAGS_CBC, false); if (ret < 0) { dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); goto out; } /* sync the buffer for cpu */ dma_sync_single_for_cpu(dd->dev, eng->dma_buf_out, AES_HW_DMA_BUFFER_SIZE_BYTES, DMA_FROM_DEVICE); if (slen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { dt = seed + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128; } else { getnstimeofday(&ts); nsec = timespec_to_ns(&ts); do_div(nsec, 1000); nsec ^= dd->ctr << 56; dd->ctr++; tmp[0] = nsec; tmp[1] = tegra_chip_uid(); dt = (u8 *)tmp; } memcpy(ctx->dt, dt, DEFAULT_RNG_BLK_SZ); out: aes_hw_deinit(eng); fail: /* release the hardware semaphore */ tegra_arb_mutex_unlock(eng->res_id); dev_dbg(dd->dev, "%s: done\n", __func__); return ret; } static int tegra_aes_cra_init(struct crypto_tfm *tfm) { tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx); return 0; } void tegra_aes_cra_exit(struct crypto_tfm *tfm) { struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm); if (ctx && ctx->slot) aes_release_key_slot(ctx); } static struct crypto_alg algs[] = { { .cra_name = "disabled_ecb(aes)", .cra_driver_name = "ecb-aes-tegra", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct tegra_aes_ctx), .cra_alignmask = 3, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = tegra_aes_cra_init, .cra_exit = tegra_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = tegra_aes_setkey, .encrypt = tegra_aes_ecb_encrypt, .decrypt = tegra_aes_ecb_decrypt, }, }, { .cra_name = "disabled_cbc(aes)", .cra_driver_name = "cbc-aes-tegra", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct tegra_aes_ctx), .cra_alignmask = 3, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = tegra_aes_cra_init, .cra_exit = tegra_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_MIN_KEY_SIZE, .setkey = tegra_aes_setkey, .encrypt = tegra_aes_cbc_encrypt, .decrypt = tegra_aes_cbc_decrypt, } }, { .cra_name = "disabled_ofb(aes)", .cra_driver_name = "ofb-aes-tegra", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct tegra_aes_ctx), .cra_alignmask = 3, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = tegra_aes_cra_init, .cra_exit = tegra_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_MIN_KEY_SIZE, .setkey = tegra_aes_setkey, .encrypt = tegra_aes_ofb_encrypt, .decrypt = tegra_aes_ofb_decrypt, } }, { .cra_name = "disabled_ansi_cprng", .cra_driver_name = "rng-aes-tegra", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_RNG, .cra_ctxsize = sizeof(struct tegra_aes_ctx), .cra_type = &crypto_rng_type, .cra_module = THIS_MODULE, .cra_init = tegra_aes_cra_init, .cra_exit = tegra_aes_cra_exit, .cra_u.rng = { .rng_make_random = tegra_aes_get_random, .rng_reset = tegra_aes_rng_reset, .seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ), } } }; static int tegra_aes_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct tegra_aes_dev *dd; struct resource *res[2]; int err = -ENOMEM, i = 0, j; if (aes_dev) return -EEXIST; dd = kzalloc(sizeof(struct tegra_aes_dev), GFP_KERNEL); if (dd == NULL) { dev_err(dev, "unable to alloc data struct.\n"); return -ENOMEM;; } dd->dev = dev; platform_set_drvdata(pdev, dd); dd->slots = kzalloc(sizeof(struct tegra_aes_slot) * AES_NR_KEYSLOTS, GFP_KERNEL); if (dd->slots == NULL) { dev_err(dev, "unable to alloc slot struct.\n"); goto out; } spin_lock_init(&dd->lock); crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH); /* Get the module base address */ res[0] = platform_get_resource(pdev, IORESOURCE_MEM, 0); res[1] = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res[0] || !res[1]) { dev_err(dev, "invalid resource type: base\n"); err = -ENODEV; goto out; } dd->bsev.phys_base = res[0]->start; dd->bsev.io_base = ioremap(dd->bsev.phys_base, resource_size(res[0])); dd->bsea.phys_base = res[1]->start; dd->bsea.io_base = ioremap(dd->bsea.phys_base, resource_size(res[1])); if (!dd->bsev.io_base || !dd->bsea.io_base) { dev_err(dev, "can't ioremap phys_base\n"); err = -ENOMEM; goto out; } err = alloc_iram(dd); if (err < 0) { dev_err(dev, "Failed to allocate IRAM for BSEA\n"); goto out; } dd->bsev.res_id = TEGRA_ARB_BSEV; dd->bsea.res_id = TEGRA_ARB_BSEA; dd->bsev.pclk = clk_get(dev, "bsev"); if (IS_ERR(dd->bsev.pclk)) { dev_err(dev, "v: pclock intialization failed.\n"); err = -ENODEV; goto out; } dd->bsev.iclk = clk_get(dev, "vde"); if (IS_ERR(dd->bsev.iclk)) { dev_err(dev, "v: iclock intialization failed.\n"); err = -ENODEV; goto out; } dd->bsea.pclk = clk_get(dev, "bsea"); if (IS_ERR(dd->bsea.pclk)) { dev_err(dev, "a: pclock intialization failed.\n"); err = -ENODEV; goto out; } dd->bsea.iclk = clk_get(dev, "sclk"); if (IS_ERR(dd->bsea.iclk)) { dev_err(dev, "a: iclock intialization failed.\n"); err = -ENODEV; goto out; } err = clk_set_rate(dd->bsev.iclk, ULONG_MAX); if (err) { dev_err(dd->dev, "bsev iclk set_rate fail(%d)\n", err); goto out; } err = clk_set_rate(dd->bsea.iclk, ULONG_MAX); if (err) { dev_err(dd->dev, "bsea iclk set_rate fail(%d)\n", err); goto out; } /* * the foll contiguous memory is allocated as follows - * - hardware key table * - key schedule */ dd->bsea.ivkey_base = NULL; dd->bsev.ivkey_base = dma_alloc_coherent(dev, SZ_512, &dd->bsev.ivkey_phys_base, GFP_KERNEL); if (!dd->bsev.ivkey_base) { dev_err(dev, "can not allocate iv/key buffer for BSEV\n"); err = -ENOMEM; goto out; } memset(dd->bsev.ivkey_base, 0, SZ_512); dd->bsev.buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, &dd->bsev.dma_buf_in, GFP_KERNEL); dd->bsea.buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, &dd->bsea.dma_buf_in, GFP_KERNEL); if (!dd->bsev.buf_in || !dd->bsea.buf_in) { dev_err(dev, "can not allocate dma-in buffer\n"); err = -ENOMEM; goto out; } dd->bsev.buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, &dd->bsev.dma_buf_out, GFP_KERNEL); dd->bsea.buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, &dd->bsea.dma_buf_out, GFP_KERNEL); if (!dd->bsev.buf_out || !dd->bsea.buf_out) { dev_err(dev, "can not allocate dma-out buffer\n"); err = -ENOMEM; goto out; } init_completion(&dd->bsev.op_complete); init_completion(&dd->bsea.op_complete); bsev_wq = alloc_workqueue("bsev_wq", WQ_HIGHPRI | WQ_UNBOUND, 1); bsea_wq = alloc_workqueue("bsea_wq", WQ_HIGHPRI | WQ_UNBOUND, 1); if (!bsev_wq || !bsea_wq) { dev_err(dev, "alloc_workqueue failed\n"); goto out; } /* get the irq */ dd->bsev.irq = INT_VDE_BSE_V; err = request_irq(dd->bsev.irq, aes_bsev_irq, IRQF_TRIGGER_HIGH, "tegra-aes", dd); if (err) { dev_err(dev, "request_irq failed fir BSEV Engine\n"); goto out; } disable_irq(dd->bsev.irq); dd->bsea.irq = INT_VDE_BSE_A; err = request_irq(dd->bsea.irq, aes_bsea_irq, IRQF_TRIGGER_HIGH, "tegra-aes", dd); if (err) { dev_err(dev, "request_irq failed for BSEA Engine\n"); goto out; } disable_irq(dd->bsea.irq); spin_lock_init(&list_lock); spin_lock(&list_lock); for (i = 0; i < AES_NR_KEYSLOTS; i++) { if (i == SSK_SLOT_NUM) continue; dd->slots[i].available = true; dd->slots[i].slot_num = i; INIT_LIST_HEAD(&dd->slots[i].node); list_add_tail(&dd->slots[i].node, &slot_list); } spin_unlock(&list_lock); aes_dev = dd; for (i = 0; i < ARRAY_SIZE(algs); i++) { INIT_LIST_HEAD(&algs[i].cra_list); err = crypto_register_alg(&algs[i]); if (err) goto out; } dev_info(dev, "registered"); return 0; out: for (j = 0; j < i; j++) crypto_unregister_alg(&algs[j]); free_iram(dd); if (dd->bsev.ivkey_base) { dma_free_coherent(dev, SZ_512, dd->bsev.ivkey_base, dd->bsev.ivkey_phys_base); } if (dd->bsev.buf_in && dd->bsea.buf_in) { dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsev.buf_in, dd->bsev.dma_buf_in); dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsea.buf_in, dd->bsea.dma_buf_in); } if (dd->bsev.buf_out && dd->bsea.buf_out) { dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsev.buf_out, dd->bsev.dma_buf_out); dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsea.buf_out, dd->bsea.dma_buf_out); } if (dd->bsev.io_base && dd->bsea.io_base) { iounmap(dd->bsev.io_base); iounmap(dd->bsea.io_base); } if (dd->bsev.pclk) clk_put(dd->bsev.pclk); if (dd->bsev.iclk) clk_put(dd->bsev.iclk); if (dd->bsea.pclk) clk_put(dd->bsea.pclk); if (bsev_wq) destroy_workqueue(bsev_wq); if (bsea_wq) destroy_workqueue(bsea_wq); if (dd->bsev.irq) free_irq(dd->bsev.irq, dd); if (dd->bsea.irq) free_irq(dd->bsea.irq, dd); spin_lock(&list_lock); list_del(&slot_list); spin_unlock(&list_lock); kfree(dd->slots); kfree(dd); aes_dev = NULL; dev_err(dev, "%s: initialization failed.\n", __func__); return err; } static int __devexit tegra_aes_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct tegra_aes_dev *dd = platform_get_drvdata(pdev); int i; if (!dd) return -ENODEV; cancel_work_sync(&bsev_work); cancel_work_sync(&bsea_work); destroy_workqueue(bsev_wq); destroy_workqueue(bsea_wq); free_irq(dd->bsev.irq, dd); free_irq(dd->bsea.irq, dd); spin_lock(&list_lock); list_del(&slot_list); spin_unlock(&list_lock); for (i = 0; i < ARRAY_SIZE(algs); i++) crypto_unregister_alg(&algs[i]); free_iram(dd); dma_free_coherent(dev, SZ_512, dd->bsev.ivkey_base, dd->bsev.ivkey_phys_base); dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsev.buf_in, dd->bsev.dma_buf_in); dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsea.buf_in, dd->bsea.dma_buf_in); dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsev.buf_out, dd->bsev.dma_buf_out); dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsea.buf_out, dd->bsea.dma_buf_out); iounmap(dd->bsev.io_base); iounmap(dd->bsea.io_base); clk_put(dd->bsev.iclk); clk_put(dd->bsev.pclk); clk_put(dd->bsea.pclk); kfree(dd->slots); kfree(dd); aes_dev = NULL; return 0; } static struct platform_driver tegra_aes_driver = { .probe = tegra_aes_probe, .remove = __devexit_p(tegra_aes_remove), .driver = { .name = "tegra-aes", .owner = THIS_MODULE, }, }; static int __init tegra_aes_mod_init(void) { INIT_LIST_HEAD(&slot_list); return platform_driver_register(&tegra_aes_driver); } static void __exit tegra_aes_mod_exit(void) { platform_driver_unregister(&tegra_aes_driver); } module_init(tegra_aes_mod_init); module_exit(tegra_aes_mod_exit); MODULE_DESCRIPTION("Tegra AES hw acceleration support."); MODULE_AUTHOR("NVIDIA Corporation"); MODULE_LICENSE("GPL v2");