/* * edac_mc kernel module * (C) 2005-2007 Linux Networx (http://lnxi.com) * * This file may be distributed under the terms of the * GNU General Public License. * * Written Doug Thompson www.softwarebitmaker.com * */ #include #include #include #include #include "edac_core.h" #include "edac_module.h" /* MC EDAC Controls, setable by module parameter, and sysfs */ static int edac_mc_log_ue = 1; static int edac_mc_log_ce = 1; static int edac_mc_panic_on_ue; static int edac_mc_poll_msec = 1000; /* Getter functions for above */ int edac_mc_get_log_ue(void) { return edac_mc_log_ue; } int edac_mc_get_log_ce(void) { return edac_mc_log_ce; } int edac_mc_get_panic_on_ue(void) { return edac_mc_panic_on_ue; } /* this is temporary */ int edac_mc_get_poll_msec(void) { return edac_mc_poll_msec; } static int edac_set_poll_msec(const char *val, struct kernel_param *kp) { long l; int ret; if (!val) return -EINVAL; ret = strict_strtol(val, 0, &l); if (ret == -EINVAL || ((int)l != l)) return -EINVAL; *((int *)kp->arg) = l; /* notify edac_mc engine to reset the poll period */ edac_mc_reset_delay_period(l); return 0; } /* Parameter declarations for above */ module_param(edac_mc_panic_on_ue, int, 0644); MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); module_param(edac_mc_log_ue, int, 0644); MODULE_PARM_DESC(edac_mc_log_ue, "Log uncorrectable error to console: 0=off 1=on"); module_param(edac_mc_log_ce, int, 0644); MODULE_PARM_DESC(edac_mc_log_ce, "Log correctable error to console: 0=off 1=on"); module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int, &edac_mc_poll_msec, 0644); MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); /* * various constants for Memory Controllers */ static const char *mem_types[] = { [MEM_EMPTY] = "Empty", [MEM_RESERVED] = "Reserved", [MEM_UNKNOWN] = "Unknown", [MEM_FPM] = "FPM", [MEM_EDO] = "EDO", [MEM_BEDO] = "BEDO", [MEM_SDR] = "Unbuffered-SDR", [MEM_RDR] = "Registered-SDR", [MEM_DDR] = "Unbuffered-DDR", [MEM_RDDR] = "Registered-DDR", [MEM_RMBS] = "RMBS", [MEM_DDR2] = "Unbuffered-DDR2", [MEM_FB_DDR2] = "FullyBuffered-DDR2", [MEM_RDDR2] = "Registered-DDR2", [MEM_XDR] = "XDR", [MEM_DDR3] = "Unbuffered-DDR3", [MEM_RDDR3] = "Registered-DDR3" }; static const char *dev_types[] = { [DEV_UNKNOWN] = "Unknown", [DEV_X1] = "x1", [DEV_X2] = "x2", [DEV_X4] = "x4", [DEV_X8] = "x8", [DEV_X16] = "x16", [DEV_X32] = "x32", [DEV_X64] = "x64" }; static const char *edac_caps[] = { [EDAC_UNKNOWN] = "Unknown", [EDAC_NONE] = "None", [EDAC_RESERVED] = "Reserved", [EDAC_PARITY] = "PARITY", [EDAC_EC] = "EC", [EDAC_SECDED] = "SECDED", [EDAC_S2ECD2ED] = "S2ECD2ED", [EDAC_S4ECD4ED] = "S4ECD4ED", [EDAC_S8ECD8ED] = "S8ECD8ED", [EDAC_S16ECD16ED] = "S16ECD16ED" }; /* EDAC sysfs CSROW data structures and methods */ /* Set of more default csrow attribute show/store functions */ static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data, int private) { return sprintf(data, "%u\n", csrow->ue_count); } static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data, int private) { return sprintf(data, "%u\n", csrow->ce_count); } static ssize_t csrow_size_show(struct csrow_info *csrow, char *data, int private) { return sprintf(data, "%u\n", PAGES_TO_MiB(csrow->nr_pages)); } static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data, int private) { return sprintf(data, "%s\n", mem_types[csrow->mtype]); } static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data, int private) { return sprintf(data, "%s\n", dev_types[csrow->dtype]); } static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data, int private) { return sprintf(data, "%s\n", edac_caps[csrow->edac_mode]); } /* show/store functions for DIMM Label attributes */ static ssize_t channel_dimm_label_show(struct csrow_info *csrow, char *data, int channel) { /* if field has not been initialized, there is nothing to send */ if (!csrow->channels[channel].label[0]) return 0; return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", csrow->channels[channel].label); } static ssize_t channel_dimm_label_store(struct csrow_info *csrow, const char *data, size_t count, int channel) { ssize_t max_size = 0; max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1); strncpy(csrow->channels[channel].label, data, max_size); csrow->channels[channel].label[max_size] = '\0'; return max_size; } /* show function for dynamic chX_ce_count attribute */ static ssize_t channel_ce_count_show(struct csrow_info *csrow, char *data, int channel) { return sprintf(data, "%u\n", csrow->channels[channel].ce_count); } /* csrow specific attribute structure */ struct csrowdev_attribute { struct attribute attr; ssize_t(*show) (struct csrow_info *, char *, int); ssize_t(*store) (struct csrow_info *, const char *, size_t, int); int private; }; #define to_csrow(k) container_of(k, struct csrow_info, kobj) #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr) /* Set of show/store higher level functions for default csrow attributes */ static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr, char *buffer) { struct csrow_info *csrow = to_csrow(kobj); struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr); if (csrowdev_attr->show) return csrowdev_attr->show(csrow, buffer, csrowdev_attr->private); return -EIO; } static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr, const char *buffer, size_t count) { struct csrow_info *csrow = to_csrow(kobj); struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr); if (csrowdev_attr->store) return csrowdev_attr->store(csrow, buffer, count, csrowdev_attr->private); return -EIO; } static const struct sysfs_ops csrowfs_ops = { .show = csrowdev_show, .store = csrowdev_store }; #define CSROWDEV_ATTR(_name,_mode,_show,_store,_private) \ static struct csrowdev_attribute attr_##_name = { \ .attr = {.name = __stringify(_name), .mode = _mode }, \ .show = _show, \ .store = _store, \ .private = _private, \ }; /* default cwrow/attribute files */ CSROWDEV_ATTR(size_mb, S_IRUGO, csrow_size_show, NULL, 0); CSROWDEV_ATTR(dev_type, S_IRUGO, csrow_dev_type_show, NULL, 0); CSROWDEV_ATTR(mem_type, S_IRUGO, csrow_mem_type_show, NULL, 0); CSROWDEV_ATTR(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL, 0); CSROWDEV_ATTR(ue_count, S_IRUGO, csrow_ue_count_show, NULL, 0); CSROWDEV_ATTR(ce_count, S_IRUGO, csrow_ce_count_show, NULL, 0); /* default attributes of the CSROW object */ static struct csrowdev_attribute *default_csrow_attr[] = { &attr_dev_type, &attr_mem_type, &attr_edac_mode, &attr_size_mb, &attr_ue_count, &attr_ce_count, NULL, }; /* possible dynamic channel DIMM Label attribute files */ CSROWDEV_ATTR(ch0_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 0); CSROWDEV_ATTR(ch1_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 1); CSROWDEV_ATTR(ch2_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 2); CSROWDEV_ATTR(ch3_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 3); CSROWDEV_ATTR(ch4_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 4); CSROWDEV_ATTR(ch5_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 5); /* Total possible dynamic DIMM Label attribute file table */ static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = { &attr_ch0_dimm_label, &attr_ch1_dimm_label, &attr_ch2_dimm_label, &attr_ch3_dimm_label, &attr_ch4_dimm_label, &attr_ch5_dimm_label }; /* possible dynamic channel ce_count attribute files */ CSROWDEV_ATTR(ch0_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 0); CSROWDEV_ATTR(ch1_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 1); CSROWDEV_ATTR(ch2_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 2); CSROWDEV_ATTR(ch3_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 3); CSROWDEV_ATTR(ch4_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 4); CSROWDEV_ATTR(ch5_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 5); /* Total possible dynamic ce_count attribute file table */ static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = { &attr_ch0_ce_count, &attr_ch1_ce_count, &attr_ch2_ce_count, &attr_ch3_ce_count, &attr_ch4_ce_count, &attr_ch5_ce_count }; #define EDAC_NR_CHANNELS 6 /* Create dynamic CHANNEL files, indexed by 'chan', under specifed CSROW */ static int edac_create_channel_files(struct kobject *kobj, int chan) { int err = -ENODEV; if (chan >= EDAC_NR_CHANNELS) return err; /* create the DIMM label attribute file */ err = sysfs_create_file(kobj, (struct attribute *) dynamic_csrow_dimm_attr[chan]); if (!err) { /* create the CE Count attribute file */ err = sysfs_create_file(kobj, (struct attribute *) dynamic_csrow_ce_count_attr[chan]); } else { debugf1("%s() dimm labels and ce_count files created", __func__); } return err; } /* No memory to release for this kobj */ static void edac_csrow_instance_release(struct kobject *kobj) { struct mem_ctl_info *mci; struct csrow_info *cs; debugf1("%s()\n", __func__); cs = container_of(kobj, struct csrow_info, kobj); mci = cs->mci; kobject_put(&mci->edac_mci_kobj); } /* the kobj_type instance for a CSROW */ static struct kobj_type ktype_csrow = { .release = edac_csrow_instance_release, .sysfs_ops = &csrowfs_ops, .default_attrs = (struct attribute **)default_csrow_attr, }; /* Create a CSROW object under specifed edac_mc_device */ static int edac_create_csrow_object(struct mem_ctl_info *mci, struct csrow_info *csrow, int index) { struct kobject *kobj_mci = &mci->edac_mci_kobj; struct kobject *kobj; int chan; int err; /* generate ..../edac/mc/mc/csrow */ memset(&csrow->kobj, 0, sizeof(csrow->kobj)); csrow->mci = mci; /* include container up link */ /* bump the mci instance's kobject's ref count */ kobj = kobject_get(&mci->edac_mci_kobj); if (!kobj) { err = -ENODEV; goto err_out; } /* Instanstiate the csrow object */ err = kobject_init_and_add(&csrow->kobj, &ktype_csrow, kobj_mci, "csrow%d", index); if (err) goto err_release_top_kobj; /* At this point, to release a csrow kobj, one must * call the kobject_put and allow that tear down * to work the releasing */ /* Create the dyanmic attribute files on this csrow, * namely, the DIMM labels and the channel ce_count */ for (chan = 0; chan < csrow->nr_channels; chan++) { err = edac_create_channel_files(&csrow->kobj, chan); if (err) { /* special case the unregister here */ kobject_put(&csrow->kobj); goto err_out; } } kobject_uevent(&csrow->kobj, KOBJ_ADD); return 0; /* error unwind stack */ err_release_top_kobj: kobject_put(&mci->edac_mci_kobj); err_out: return err; } /* default sysfs methods and data structures for the main MCI kobject */ static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci, const char *data, size_t count) { int row, chan; mci->ue_noinfo_count = 0; mci->ce_noinfo_count = 0; mci->ue_count = 0; mci->ce_count = 0; for (row = 0; row < mci->nr_csrows; row++) { struct csrow_info *ri = &mci->csrows[row]; ri->ue_count = 0; ri->ce_count = 0; for (chan = 0; chan < ri->nr_channels; chan++) ri->channels[chan].ce_count = 0; } mci->start_time = jiffies; return count; } /* Memory scrubbing interface: * * A MC driver can limit the scrubbing bandwidth based on the CPU type. * Therefore, ->set_sdram_scrub_rate should be made to return the actual * bandwidth that is accepted or 0 when scrubbing is to be disabled. * * Negative value still means that an error has occurred while setting * the scrub rate. */ static ssize_t mci_sdram_scrub_rate_store(struct mem_ctl_info *mci, const char *data, size_t count) { unsigned long bandwidth = 0; int new_bw = 0; if (!mci->set_sdram_scrub_rate) return -EINVAL; if (strict_strtoul(data, 10, &bandwidth) < 0) return -EINVAL; new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); if (new_bw < 0) { edac_printk(KERN_WARNING, EDAC_MC, "Error setting scrub rate to: %lu\n", bandwidth); return -EINVAL; } return count; } /* * ->get_sdram_scrub_rate() return value semantics same as above. */ static ssize_t mci_sdram_scrub_rate_show(struct mem_ctl_info *mci, char *data) { int bandwidth = 0; if (!mci->get_sdram_scrub_rate) return -EINVAL; bandwidth = mci->get_sdram_scrub_rate(mci); if (bandwidth < 0) { edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); return bandwidth; } return sprintf(data, "%d\n", bandwidth); } /* default attribute files for the MCI object */ static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data) { return sprintf(data, "%d\n", mci->ue_count); } static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data) { return sprintf(data, "%d\n", mci->ce_count); } static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data) { return sprintf(data, "%d\n", mci->ce_noinfo_count); } static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data) { return sprintf(data, "%d\n", mci->ue_noinfo_count); } static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data) { return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); } static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data) { return sprintf(data, "%s\n", mci->ctl_name); } static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data) { int total_pages, csrow_idx; for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { struct csrow_info *csrow = &mci->csrows[csrow_idx]; if (!csrow->nr_pages) continue; total_pages += csrow->nr_pages; } return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); } #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj) #define to_mcidev_attr(a) container_of(a,struct mcidev_sysfs_attribute,attr) /* MCI show/store functions for top most object */ static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr, char *buffer) { struct mem_ctl_info *mem_ctl_info = to_mci(kobj); struct mcidev_sysfs_attribute *mcidev_attr = to_mcidev_attr(attr); debugf1("%s() mem_ctl_info %p\n", __func__, mem_ctl_info); if (mcidev_attr->show) return mcidev_attr->show(mem_ctl_info, buffer); return -EIO; } static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr, const char *buffer, size_t count) { struct mem_ctl_info *mem_ctl_info = to_mci(kobj); struct mcidev_sysfs_attribute *mcidev_attr = to_mcidev_attr(attr); debugf1("%s() mem_ctl_info %p\n", __func__, mem_ctl_info); if (mcidev_attr->store) return mcidev_attr->store(mem_ctl_info, buffer, count); return -EIO; } /* Intermediate show/store table */ static const struct sysfs_ops mci_ops = { .show = mcidev_show, .store = mcidev_store }; #define MCIDEV_ATTR(_name,_mode,_show,_store) \ static struct mcidev_sysfs_attribute mci_attr_##_name = { \ .attr = {.name = __stringify(_name), .mode = _mode }, \ .show = _show, \ .store = _store, \ }; /* default Control file */ MCIDEV_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); /* default Attribute files */ MCIDEV_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); MCIDEV_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); MCIDEV_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); MCIDEV_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); MCIDEV_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); MCIDEV_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); MCIDEV_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); /* memory scrubber attribute file */ MCIDEV_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show, mci_sdram_scrub_rate_store); static struct mcidev_sysfs_attribute *mci_attr[] = { &mci_attr_reset_counters, &mci_attr_mc_name, &mci_attr_size_mb, &mci_attr_seconds_since_reset, &mci_attr_ue_noinfo_count, &mci_attr_ce_noinfo_count, &mci_attr_ue_count, &mci_attr_ce_count, &mci_attr_sdram_scrub_rate, NULL }; /* * Release of a MC controlling instance * * each MC control instance has the following resources upon entry: * a) a ref count on the top memctl kobj * b) a ref count on this module * * this function must decrement those ref counts and then * issue a free on the instance's memory */ static void edac_mci_control_release(struct kobject *kobj) { struct mem_ctl_info *mci; mci = to_mci(kobj); debugf0("%s() mci instance idx=%d releasing\n", __func__, mci->mc_idx); /* decrement the module ref count */ module_put(mci->owner); } static struct kobj_type ktype_mci = { .release = edac_mci_control_release, .sysfs_ops = &mci_ops, .default_attrs = (struct attribute **)mci_attr, }; /* EDAC memory controller sysfs kset: * /sys/devices/system/edac/mc */ static struct kset *mc_kset; /* * edac_mc_register_sysfs_main_kobj * * setups and registers the main kobject for each mci */ int edac_mc_register_sysfs_main_kobj(struct mem_ctl_info *mci) { struct kobject *kobj_mci; int err; debugf1("%s()\n", __func__); kobj_mci = &mci->edac_mci_kobj; /* Init the mci's kobject */ memset(kobj_mci, 0, sizeof(*kobj_mci)); /* Record which module 'owns' this control structure * and bump the ref count of the module */ mci->owner = THIS_MODULE; /* bump ref count on this module */ if (!try_module_get(mci->owner)) { err = -ENODEV; goto fail_out; } /* this instance become part of the mc_kset */ kobj_mci->kset = mc_kset; /* register the mc kobject to the mc_kset */ err = kobject_init_and_add(kobj_mci, &ktype_mci, NULL, "mc%d", mci->mc_idx); if (err) { debugf1("%s()Failed to register '.../edac/mc%d'\n", __func__, mci->mc_idx); goto kobj_reg_fail; } kobject_uevent(kobj_mci, KOBJ_ADD); /* At this point, to 'free' the control struct, * edac_mc_unregister_sysfs_main_kobj() must be used */ debugf1("%s() Registered '.../edac/mc%d' kobject\n", __func__, mci->mc_idx); return 0; /* Error exit stack */ kobj_reg_fail: module_put(mci->owner); fail_out: return err; } /* * edac_mc_register_sysfs_main_kobj * * tears down and the main mci kobject from the mc_kset */ void edac_mc_unregister_sysfs_main_kobj(struct mem_ctl_info *mci) { debugf1("%s()\n", __func__); /* delete the kobj from the mc_kset */ kobject_put(&mci->edac_mci_kobj); } #define EDAC_DEVICE_SYMLINK "device" #define grp_to_mci(k) (container_of(k, struct mcidev_sysfs_group_kobj, kobj)->mci) /* MCI show/store functions for top most object */ static ssize_t inst_grp_show(struct kobject *kobj, struct attribute *attr, char *buffer) { struct mem_ctl_info *mem_ctl_info = grp_to_mci(kobj); struct mcidev_sysfs_attribute *mcidev_attr = to_mcidev_attr(attr); debugf1("%s() mem_ctl_info %p\n", __func__, mem_ctl_info); if (mcidev_attr->show) return mcidev_attr->show(mem_ctl_info, buffer); return -EIO; } static ssize_t inst_grp_store(struct kobject *kobj, struct attribute *attr, const char *buffer, size_t count) { struct mem_ctl_info *mem_ctl_info = grp_to_mci(kobj); struct mcidev_sysfs_attribute *mcidev_attr = to_mcidev_attr(attr); debugf1("%s() mem_ctl_info %p\n", __func__, mem_ctl_info); if (mcidev_attr->store) return mcidev_attr->store(mem_ctl_info, buffer, count); return -EIO; } /* No memory to release for this kobj */ static void edac_inst_grp_release(struct kobject *kobj) { struct mcidev_sysfs_group_kobj *grp; struct mem_ctl_info *mci; debugf1("%s()\n", __func__); grp = container_of(kobj, struct mcidev_sysfs_group_kobj, kobj); mci = grp->mci; } /* Intermediate show/store table */ static struct sysfs_ops inst_grp_ops = { .show = inst_grp_show, .store = inst_grp_store }; /* the kobj_type instance for a instance group */ static struct kobj_type ktype_inst_grp = { .release = edac_inst_grp_release, .sysfs_ops = &inst_grp_ops, }; /* * edac_create_mci_instance_attributes * create MC driver specific attributes bellow an specified kobj * This routine calls itself recursively, in order to create an entire * object tree. */ static int edac_create_mci_instance_attributes(struct mem_ctl_info *mci, const struct mcidev_sysfs_attribute *sysfs_attrib, struct kobject *kobj) { int err; debugf4("%s()\n", __func__); while (sysfs_attrib) { debugf4("%s() sysfs_attrib = %p\n",__func__, sysfs_attrib); if (sysfs_attrib->grp) { struct mcidev_sysfs_group_kobj *grp_kobj; grp_kobj = kzalloc(sizeof(*grp_kobj), GFP_KERNEL); if (!grp_kobj) return -ENOMEM; grp_kobj->grp = sysfs_attrib->grp; grp_kobj->mci = mci; list_add_tail(&grp_kobj->list, &mci->grp_kobj_list); debugf0("%s() grp %s, mci %p\n", __func__, sysfs_attrib->grp->name, mci); err = kobject_init_and_add(&grp_kobj->kobj, &ktype_inst_grp, &mci->edac_mci_kobj, sysfs_attrib->grp->name); if (err < 0) { printk(KERN_ERR "kobject_init_and_add failed: %d\n", err); return err; } err = edac_create_mci_instance_attributes(mci, grp_kobj->grp->mcidev_attr, &grp_kobj->kobj); if (err < 0) return err; } else if (sysfs_attrib->attr.name) { debugf4("%s() file %s\n", __func__, sysfs_attrib->attr.name); err = sysfs_create_file(kobj, &sysfs_attrib->attr); if (err < 0) { printk(KERN_ERR "sysfs_create_file failed: %d\n", err); return err; } } else break; sysfs_attrib++; } return 0; } /* * edac_remove_mci_instance_attributes * remove MC driver specific attributes at the topmost level * directory of this mci instance. */ static void edac_remove_mci_instance_attributes(struct mem_ctl_info *mci, const struct mcidev_sysfs_attribute *sysfs_attrib, struct kobject *kobj, int count) { struct mcidev_sysfs_group_kobj *grp_kobj, *tmp; debugf1("%s()\n", __func__); /* * loop if there are attributes and until we hit a NULL entry * Remove first all the attributes */ while (sysfs_attrib) { debugf4("%s() sysfs_attrib = %p\n",__func__, sysfs_attrib); if (sysfs_attrib->grp) { debugf4("%s() seeking for group %s\n", __func__, sysfs_attrib->grp->name); list_for_each_entry(grp_kobj, &mci->grp_kobj_list, list) { debugf4("%s() grp_kobj->grp = %p\n",__func__, grp_kobj->grp); if (grp_kobj->grp == sysfs_attrib->grp) { edac_remove_mci_instance_attributes(mci, grp_kobj->grp->mcidev_attr, &grp_kobj->kobj, count + 1); debugf4("%s() group %s\n", __func__, sysfs_attrib->grp->name); kobject_put(&grp_kobj->kobj); } } debugf4("%s() end of seeking for group %s\n", __func__, sysfs_attrib->grp->name); } else if (sysfs_attrib->attr.name) { debugf4("%s() file %s\n", __func__, sysfs_attrib->attr.name); sysfs_remove_file(kobj, &sysfs_attrib->attr); } else break; sysfs_attrib++; } /* Remove the group objects */ if (count) return; list_for_each_entry_safe(grp_kobj, tmp, &mci->grp_kobj_list, list) { list_del(&grp_kobj->list); kfree(grp_kobj); } } /* * Create a new Memory Controller kobject instance, * mc under the 'mc' directory * * Return: * 0 Success * !0 Failure */ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci) { int i; int err; struct csrow_info *csrow; struct kobject *kobj_mci = &mci->edac_mci_kobj; debugf0("%s() idx=%d\n", __func__, mci->mc_idx); INIT_LIST_HEAD(&mci->grp_kobj_list); /* create a symlink for the device */ err = sysfs_create_link(kobj_mci, &mci->dev->kobj, EDAC_DEVICE_SYMLINK); if (err) { debugf1("%s() failure to create symlink\n", __func__); goto fail0; } /* If the low level driver desires some attributes, * then create them now for the driver. */ if (mci->mc_driver_sysfs_attributes) { err = edac_create_mci_instance_attributes(mci, mci->mc_driver_sysfs_attributes, &mci->edac_mci_kobj); if (err) { debugf1("%s() failure to create mci attributes\n", __func__); goto fail0; } } /* Make directories for each CSROW object under the mc kobject */ for (i = 0; i < mci->nr_csrows; i++) { csrow = &mci->csrows[i]; /* Only expose populated CSROWs */ if (csrow->nr_pages > 0) { err = edac_create_csrow_object(mci, csrow, i); if (err) { debugf1("%s() failure: create csrow %d obj\n", __func__, i); goto fail1; } } } return 0; /* CSROW error: backout what has already been registered, */ fail1: for (i--; i >= 0; i--) { if (csrow->nr_pages > 0) { kobject_put(&mci->csrows[i].kobj); } } /* remove the mci instance's attributes, if any */ edac_remove_mci_instance_attributes(mci, mci->mc_driver_sysfs_attributes, &mci->edac_mci_kobj, 0); /* remove the symlink */ sysfs_remove_link(kobj_mci, EDAC_DEVICE_SYMLINK); fail0: return err; } /* * remove a Memory Controller instance */ void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) { int i; debugf0("%s()\n", __func__); /* remove all csrow kobjects */ debugf4("%s() unregister this mci kobj\n", __func__); for (i = 0; i < mci->nr_csrows; i++) { if (mci->csrows[i].nr_pages > 0) { debugf0("%s() unreg csrow-%d\n", __func__, i); kobject_put(&mci->csrows[i].kobj); } } /* remove this mci instance's attribtes */ if (mci->mc_driver_sysfs_attributes) { debugf4("%s() unregister mci private attributes\n", __func__); edac_remove_mci_instance_attributes(mci, mci->mc_driver_sysfs_attributes, &mci->edac_mci_kobj, 0); } /* remove the symlink */ debugf4("%s() remove_link\n", __func__); sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK); /* unregister this instance's kobject */ debugf4("%s() remove_mci_instance\n", __func__); kobject_put(&mci->edac_mci_kobj); } /* * edac_setup_sysfs_mc_kset(void) * * Initialize the mc_kset for the 'mc' entry * This requires creating the top 'mc' directory with a kset * and its controls/attributes. * * To this 'mc' kset, instance 'mci' will be grouped as children. * * Return: 0 SUCCESS * !0 FAILURE error code */ int edac_sysfs_setup_mc_kset(void) { int err = -EINVAL; struct sysdev_class *edac_class; debugf1("%s()\n", __func__); /* get the /sys/devices/system/edac class reference */ edac_class = edac_get_sysfs_class(); if (edac_class == NULL) { debugf1("%s() no edac_class error=%d\n", __func__, err); goto fail_out; } /* Init the MC's kobject */ mc_kset = kset_create_and_add("mc", NULL, &edac_class->kset.kobj); if (!mc_kset) { err = -ENOMEM; debugf1("%s() Failed to register '.../edac/mc'\n", __func__); goto fail_kset; } debugf1("%s() Registered '.../edac/mc' kobject\n", __func__); return 0; fail_kset: edac_put_sysfs_class(); fail_out: return err; } /* * edac_sysfs_teardown_mc_kset * * deconstruct the mc_ket for memory controllers */ void edac_sysfs_teardown_mc_kset(void) { kset_unregister(mc_kset); edac_put_sysfs_class(); }