/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Ben Widawsky * Michel Thierry * Thomas Daniel * Oscar Mateo * */ /** * DOC: Logical Rings, Logical Ring Contexts and Execlists * * Motivation: * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". * These expanded contexts enable a number of new abilities, especially * "Execlists" (also implemented in this file). * * One of the main differences with the legacy HW contexts is that logical * ring contexts incorporate many more things to the context's state, like * PDPs or ringbuffer control registers: * * The reason why PDPs are included in the context is straightforward: as * PPGTTs (per-process GTTs) are actually per-context, having the PDPs * contained there mean you don't need to do a ppgtt->switch_mm yourself, * instead, the GPU will do it for you on the context switch. * * But, what about the ringbuffer control registers (head, tail, etc..)? * shouldn't we just need a set of those per engine command streamer? This is * where the name "Logical Rings" starts to make sense: by virtualizing the * rings, the engine cs shifts to a new "ring buffer" with every context * switch. When you want to submit a workload to the GPU you: A) choose your * context, B) find its appropriate virtualized ring, C) write commands to it * and then, finally, D) tell the GPU to switch to that context. * * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch * to a contexts is via a context execution list, ergo "Execlists". * * LRC implementation: * Regarding the creation of contexts, we have: * * - One global default context. * - One local default context for each opened fd. * - One local extra context for each context create ioctl call. * * Now that ringbuffers belong per-context (and not per-engine, like before) * and that contexts are uniquely tied to a given engine (and not reusable, * like before) we need: * * - One ringbuffer per-engine inside each context. * - One backing object per-engine inside each context. * * The global default context starts its life with these new objects fully * allocated and populated. The local default context for each opened fd is * more complex, because we don't know at creation time which engine is going * to use them. To handle this, we have implemented a deferred creation of LR * contexts: * * The local context starts its life as a hollow or blank holder, that only * gets populated for a given engine once we receive an execbuffer. If later * on we receive another execbuffer ioctl for the same context but a different * engine, we allocate/populate a new ringbuffer and context backing object and * so on. * * Finally, regarding local contexts created using the ioctl call: as they are * only allowed with the render ring, we can allocate & populate them right * away (no need to defer anything, at least for now). * * Execlists implementation: * Execlists are the new method by which, on gen8+ hardware, workloads are * submitted for execution (as opposed to the legacy, ringbuffer-based, method). * This method works as follows: * * When a request is committed, its commands (the BB start and any leading or * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer * for the appropriate context. The tail pointer in the hardware context is not * updated at this time, but instead, kept by the driver in the ringbuffer * structure. A structure representing this request is added to a request queue * for the appropriate engine: this structure contains a copy of the context's * tail after the request was written to the ring buffer and a pointer to the * context itself. * * If the engine's request queue was empty before the request was added, the * queue is processed immediately. Otherwise the queue will be processed during * a context switch interrupt. In any case, elements on the queue will get sent * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a * globally unique 20-bits submission ID. * * When execution of a request completes, the GPU updates the context status * buffer with a context complete event and generates a context switch interrupt. * During the interrupt handling, the driver examines the events in the buffer: * for each context complete event, if the announced ID matches that on the head * of the request queue, then that request is retired and removed from the queue. * * After processing, if any requests were retired and the queue is not empty * then a new execution list can be submitted. The two requests at the front of * the queue are next to be submitted but since a context may not occur twice in * an execution list, if subsequent requests have the same ID as the first then * the two requests must be combined. This is done simply by discarding requests * at the head of the queue until either only one requests is left (in which case * we use a NULL second context) or the first two requests have unique IDs. * * By always executing the first two requests in the queue the driver ensures * that the GPU is kept as busy as possible. In the case where a single context * completes but a second context is still executing, the request for this second * context will be at the head of the queue when we remove the first one. This * request will then be resubmitted along with a new request for a different context, * which will cause the hardware to continue executing the second request and queue * the new request (the GPU detects the condition of a context getting preempted * with the same context and optimizes the context switch flow by not doing * preemption, but just sampling the new tail pointer). * */ #include #include #include #include "i915_drv.h" #include "intel_mocs.h" #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE) #define RING_EXECLIST_QFULL (1 << 0x2) #define RING_EXECLIST1_VALID (1 << 0x3) #define RING_EXECLIST0_VALID (1 << 0x4) #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) #define RING_EXECLIST1_ACTIVE (1 << 0x11) #define RING_EXECLIST0_ACTIVE (1 << 0x12) #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) #define GEN8_CTX_STATUS_COMPLETE (1 << 4) #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) #define GEN8_CTX_STATUS_COMPLETED_MASK \ (GEN8_CTX_STATUS_ACTIVE_IDLE | \ GEN8_CTX_STATUS_PREEMPTED | \ GEN8_CTX_STATUS_ELEMENT_SWITCH) #define CTX_LRI_HEADER_0 0x01 #define CTX_CONTEXT_CONTROL 0x02 #define CTX_RING_HEAD 0x04 #define CTX_RING_TAIL 0x06 #define CTX_RING_BUFFER_START 0x08 #define CTX_RING_BUFFER_CONTROL 0x0a #define CTX_BB_HEAD_U 0x0c #define CTX_BB_HEAD_L 0x0e #define CTX_BB_STATE 0x10 #define CTX_SECOND_BB_HEAD_U 0x12 #define CTX_SECOND_BB_HEAD_L 0x14 #define CTX_SECOND_BB_STATE 0x16 #define CTX_BB_PER_CTX_PTR 0x18 #define CTX_RCS_INDIRECT_CTX 0x1a #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c #define CTX_LRI_HEADER_1 0x21 #define CTX_CTX_TIMESTAMP 0x22 #define CTX_PDP3_UDW 0x24 #define CTX_PDP3_LDW 0x26 #define CTX_PDP2_UDW 0x28 #define CTX_PDP2_LDW 0x2a #define CTX_PDP1_UDW 0x2c #define CTX_PDP1_LDW 0x2e #define CTX_PDP0_UDW 0x30 #define CTX_PDP0_LDW 0x32 #define CTX_LRI_HEADER_2 0x41 #define CTX_R_PWR_CLK_STATE 0x42 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44 #define GEN8_CTX_VALID (1<<0) #define GEN8_CTX_FORCE_PD_RESTORE (1<<1) #define GEN8_CTX_FORCE_RESTORE (1<<2) #define GEN8_CTX_L3LLC_COHERENT (1<<5) #define GEN8_CTX_PRIVILEGE (1<<8) #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \ (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \ (reg_state)[(pos)+1] = (val); \ } while (0) #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \ const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \ reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \ reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \ } while (0) #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \ reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \ reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \ } while (0) enum { FAULT_AND_HANG = 0, FAULT_AND_HALT, /* Debug only */ FAULT_AND_STREAM, FAULT_AND_CONTINUE /* Unsupported */ }; #define GEN8_CTX_ID_SHIFT 32 #define GEN8_CTX_ID_WIDTH 21 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26 /* Typical size of the average request (2 pipecontrols and a MI_BB) */ #define EXECLISTS_REQUEST_SIZE 64 /* bytes */ #define WA_TAIL_DWORDS 2 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx, struct intel_engine_cs *engine); static int intel_lr_context_pin(struct i915_gem_context *ctx, struct intel_engine_cs *engine); static void execlists_init_reg_state(u32 *reg_state, struct i915_gem_context *ctx, struct intel_engine_cs *engine, struct intel_ring *ring); /** * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists * @dev_priv: i915 device private * @enable_execlists: value of i915.enable_execlists module parameter. * * Only certain platforms support Execlists (the prerequisites being * support for Logical Ring Contexts and Aliasing PPGTT or better). * * Return: 1 if Execlists is supported and has to be enabled. */ int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists) { /* On platforms with execlist available, vGPU will only * support execlist mode, no ring buffer mode. */ if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv)) return 1; if (INTEL_GEN(dev_priv) >= 9) return 1; if (enable_execlists == 0) return 0; if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && USES_PPGTT(dev_priv) && i915.use_mmio_flip >= 0) return 1; return 0; } static void logical_ring_init_platform_invariants(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) || IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) && (engine->id == VCS || engine->id == VCS2); engine->ctx_desc_template = GEN8_CTX_VALID; if (IS_GEN8(dev_priv)) engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT; engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE; /* TODO: WaDisableLiteRestore when we start using semaphore * signalling between Command Streamers */ /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */ /* WaEnableForceRestoreInCtxtDescForVCS:skl */ /* WaEnableForceRestoreInCtxtDescForVCS:bxt */ if (engine->disable_lite_restore_wa) engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; } /** * intel_lr_context_descriptor_update() - calculate & cache the descriptor * descriptor for a pinned context * @ctx: Context to work on * @engine: Engine the descriptor will be used with * * The context descriptor encodes various attributes of a context, * including its GTT address and some flags. Because it's fairly * expensive to calculate, we'll just do it once and cache the result, * which remains valid until the context is unpinned. * * This is what a descriptor looks like, from LSB to MSB:: * * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template) * bits 12-31: LRCA, GTT address of (the HWSP of) this context * bits 32-52: ctx ID, a globally unique tag * bits 53-54: mbz, reserved for use by hardware * bits 55-63: group ID, currently unused and set to 0 */ static void intel_lr_context_descriptor_update(struct i915_gem_context *ctx, struct intel_engine_cs *engine) { struct intel_context *ce = &ctx->engine[engine->id]; u64 desc; BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<desc_template; /* bits 3-4 */ desc |= engine->ctx_desc_template; /* bits 0-11 */ desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE; /* bits 12-31 */ desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */ ce->lrc_desc = desc; } uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx, struct intel_engine_cs *engine) { return ctx->engine[engine->id].lrc_desc; } static inline void execlists_context_status_change(struct drm_i915_gem_request *rq, unsigned long status) { /* * Only used when GVT-g is enabled now. When GVT-g is disabled, * The compiler should eliminate this function as dead-code. */ if (!IS_ENABLED(CONFIG_DRM_I915_GVT)) return; atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq); } static void execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state) { ASSIGN_CTX_PDP(ppgtt, reg_state, 3); ASSIGN_CTX_PDP(ppgtt, reg_state, 2); ASSIGN_CTX_PDP(ppgtt, reg_state, 1); ASSIGN_CTX_PDP(ppgtt, reg_state, 0); } static u64 execlists_update_context(struct drm_i915_gem_request *rq) { struct intel_context *ce = &rq->ctx->engine[rq->engine->id]; struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt; u32 *reg_state = ce->lrc_reg_state; reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail); /* True 32b PPGTT with dynamic page allocation: update PDP * registers and point the unallocated PDPs to scratch page. * PML4 is allocated during ppgtt init, so this is not needed * in 48-bit mode. */ if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) execlists_update_context_pdps(ppgtt, reg_state); return ce->lrc_desc; } static void execlists_submit_ports(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; struct execlist_port *port = engine->execlist_port; u32 __iomem *elsp = dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine)); u64 desc[2]; if (!port[0].count) execlists_context_status_change(port[0].request, INTEL_CONTEXT_SCHEDULE_IN); desc[0] = execlists_update_context(port[0].request); engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */ if (port[1].request) { GEM_BUG_ON(port[1].count); execlists_context_status_change(port[1].request, INTEL_CONTEXT_SCHEDULE_IN); desc[1] = execlists_update_context(port[1].request); port[1].count = 1; } else { desc[1] = 0; } GEM_BUG_ON(desc[0] == desc[1]); /* You must always write both descriptors in the order below. */ writel(upper_32_bits(desc[1]), elsp); writel(lower_32_bits(desc[1]), elsp); writel(upper_32_bits(desc[0]), elsp); /* The context is automatically loaded after the following */ writel(lower_32_bits(desc[0]), elsp); } static bool ctx_single_port_submission(const struct i915_gem_context *ctx) { return (IS_ENABLED(CONFIG_DRM_I915_GVT) && ctx->execlists_force_single_submission); } static bool can_merge_ctx(const struct i915_gem_context *prev, const struct i915_gem_context *next) { if (prev != next) return false; if (ctx_single_port_submission(prev)) return false; return true; } static void execlists_dequeue(struct intel_engine_cs *engine) { struct drm_i915_gem_request *cursor, *last; struct execlist_port *port = engine->execlist_port; bool submit = false; last = port->request; if (last) /* WaIdleLiteRestore:bdw,skl * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL * as we resubmit the request. See gen8_emit_request() * for where we prepare the padding after the end of the * request. */ last->tail = last->wa_tail; GEM_BUG_ON(port[1].request); /* Hardware submission is through 2 ports. Conceptually each port * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is * static for a context, and unique to each, so we only execute * requests belonging to a single context from each ring. RING_HEAD * is maintained by the CS in the context image, it marks the place * where it got up to last time, and through RING_TAIL we tell the CS * where we want to execute up to this time. * * In this list the requests are in order of execution. Consecutive * requests from the same context are adjacent in the ringbuffer. We * can combine these requests into a single RING_TAIL update: * * RING_HEAD...req1...req2 * ^- RING_TAIL * since to execute req2 the CS must first execute req1. * * Our goal then is to point each port to the end of a consecutive * sequence of requests as being the most optimal (fewest wake ups * and context switches) submission. */ spin_lock(&engine->execlist_lock); list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) { /* Can we combine this request with the current port? It has to * be the same context/ringbuffer and not have any exceptions * (e.g. GVT saying never to combine contexts). * * If we can combine the requests, we can execute both by * updating the RING_TAIL to point to the end of the second * request, and so we never need to tell the hardware about * the first. */ if (last && !can_merge_ctx(cursor->ctx, last->ctx)) { /* If we are on the second port and cannot combine * this request with the last, then we are done. */ if (port != engine->execlist_port) break; /* If GVT overrides us we only ever submit port[0], * leaving port[1] empty. Note that we also have * to be careful that we don't queue the same * context (even though a different request) to * the second port. */ if (ctx_single_port_submission(cursor->ctx)) break; GEM_BUG_ON(last->ctx == cursor->ctx); i915_gem_request_assign(&port->request, last); port++; } last = cursor; submit = true; } if (submit) { /* Decouple all the requests submitted from the queue */ engine->execlist_queue.next = &cursor->execlist_link; cursor->execlist_link.prev = &engine->execlist_queue; i915_gem_request_assign(&port->request, last); } spin_unlock(&engine->execlist_lock); if (submit) execlists_submit_ports(engine); } static bool execlists_elsp_idle(struct intel_engine_cs *engine) { return !engine->execlist_port[0].request; } static bool execlists_elsp_ready(struct intel_engine_cs *engine) { int port; port = 1; /* wait for a free slot */ if (engine->disable_lite_restore_wa || engine->preempt_wa) port = 0; /* wait for GPU to be idle before continuing */ return !engine->execlist_port[port].request; } /* * Check the unread Context Status Buffers and manage the submission of new * contexts to the ELSP accordingly. */ static void intel_lrc_irq_handler(unsigned long data) { struct intel_engine_cs *engine = (struct intel_engine_cs *)data; struct execlist_port *port = engine->execlist_port; struct drm_i915_private *dev_priv = engine->i915; intel_uncore_forcewake_get(dev_priv, engine->fw_domains); if (!execlists_elsp_idle(engine)) { u32 __iomem *csb_mmio = dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)); u32 __iomem *buf = dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)); unsigned int csb, head, tail; csb = readl(csb_mmio); head = GEN8_CSB_READ_PTR(csb); tail = GEN8_CSB_WRITE_PTR(csb); if (tail < head) tail += GEN8_CSB_ENTRIES; while (head < tail) { unsigned int idx = ++head % GEN8_CSB_ENTRIES; unsigned int status = readl(buf + 2 * idx); if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK)) continue; GEM_BUG_ON(port[0].count == 0); if (--port[0].count == 0) { GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED); execlists_context_status_change(port[0].request, INTEL_CONTEXT_SCHEDULE_OUT); i915_gem_request_put(port[0].request); port[0] = port[1]; memset(&port[1], 0, sizeof(port[1])); engine->preempt_wa = false; } GEM_BUG_ON(port[0].count == 0 && !(status & GEN8_CTX_STATUS_ACTIVE_IDLE)); } writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, GEN8_CSB_WRITE_PTR(csb) << 8), csb_mmio); } if (execlists_elsp_ready(engine)) execlists_dequeue(engine); intel_uncore_forcewake_put(dev_priv, engine->fw_domains); } static void execlists_submit_request(struct drm_i915_gem_request *request) { struct intel_engine_cs *engine = request->engine; unsigned long flags; spin_lock_irqsave(&engine->execlist_lock, flags); list_add_tail(&request->execlist_link, &engine->execlist_queue); if (execlists_elsp_idle(engine)) tasklet_hi_schedule(&engine->irq_tasklet); spin_unlock_irqrestore(&engine->execlist_lock, flags); } int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request) { struct intel_engine_cs *engine = request->engine; struct intel_context *ce = &request->ctx->engine[engine->id]; int ret; /* Flush enough space to reduce the likelihood of waiting after * we start building the request - in which case we will just * have to repeat work. */ request->reserved_space += EXECLISTS_REQUEST_SIZE; if (!ce->state) { ret = execlists_context_deferred_alloc(request->ctx, engine); if (ret) return ret; } request->ring = ce->ring; ret = intel_lr_context_pin(request->ctx, engine); if (ret) return ret; if (i915.enable_guc_submission) { /* * Check that the GuC has space for the request before * going any further, as the i915_add_request() call * later on mustn't fail ... */ ret = i915_guc_wq_reserve(request); if (ret) goto err_unpin; } ret = intel_ring_begin(request, 0); if (ret) goto err_unreserve; if (!ce->initialised) { ret = engine->init_context(request); if (ret) goto err_unreserve; ce->initialised = true; } /* Note that after this point, we have committed to using * this request as it is being used to both track the * state of engine initialisation and liveness of the * golden renderstate above. Think twice before you try * to cancel/unwind this request now. */ request->reserved_space -= EXECLISTS_REQUEST_SIZE; return 0; err_unreserve: if (i915.enable_guc_submission) i915_guc_wq_unreserve(request); err_unpin: intel_lr_context_unpin(request->ctx, engine); return ret; } /* * intel_logical_ring_advance() - advance the tail and prepare for submission * @request: Request to advance the logical ringbuffer of. * * The tail is updated in our logical ringbuffer struct, not in the actual context. What * really happens during submission is that the context and current tail will be placed * on a queue waiting for the ELSP to be ready to accept a new context submission. At that * point, the tail *inside* the context is updated and the ELSP written to. */ static int intel_logical_ring_advance(struct drm_i915_gem_request *request) { struct intel_ring *ring = request->ring; struct intel_engine_cs *engine = request->engine; intel_ring_advance(ring); request->tail = ring->tail; /* * Here we add two extra NOOPs as padding to avoid * lite restore of a context with HEAD==TAIL. * * Caller must reserve WA_TAIL_DWORDS for us! */ intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); request->wa_tail = ring->tail; /* We keep the previous context alive until we retire the following * request. This ensures that any the context object is still pinned * for any residual writes the HW makes into it on the context switch * into the next object following the breadcrumb. Otherwise, we may * retire the context too early. */ request->previous_context = engine->last_context; engine->last_context = request->ctx; return 0; } static int intel_lr_context_pin(struct i915_gem_context *ctx, struct intel_engine_cs *engine) { struct intel_context *ce = &ctx->engine[engine->id]; void *vaddr; int ret; lockdep_assert_held(&ctx->i915->drm.struct_mutex); if (ce->pin_count++) return 0; ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL); if (ret) goto err; vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto unpin_vma; } ret = intel_ring_pin(ce->ring); if (ret) goto unpin_map; intel_lr_context_descriptor_update(ctx, engine); ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE; ce->lrc_reg_state[CTX_RING_BUFFER_START+1] = i915_ggtt_offset(ce->ring->vma); ce->state->obj->dirty = true; /* Invalidate GuC TLB. */ if (i915.enable_guc_submission) { struct drm_i915_private *dev_priv = ctx->i915; I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); } i915_gem_context_get(ctx); return 0; unpin_map: i915_gem_object_unpin_map(ce->state->obj); unpin_vma: __i915_vma_unpin(ce->state); err: ce->pin_count = 0; return ret; } void intel_lr_context_unpin(struct i915_gem_context *ctx, struct intel_engine_cs *engine) { struct intel_context *ce = &ctx->engine[engine->id]; lockdep_assert_held(&ctx->i915->drm.struct_mutex); GEM_BUG_ON(ce->pin_count == 0); if (--ce->pin_count) return; intel_ring_unpin(ce->ring); i915_gem_object_unpin_map(ce->state->obj); i915_vma_unpin(ce->state); i915_gem_context_put(ctx); } static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req) { int ret, i; struct intel_ring *ring = req->ring; struct i915_workarounds *w = &req->i915->workarounds; if (w->count == 0) return 0; ret = req->engine->emit_flush(req, EMIT_BARRIER); if (ret) return ret; ret = intel_ring_begin(req, w->count * 2 + 2); if (ret) return ret; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count)); for (i = 0; i < w->count; i++) { intel_ring_emit_reg(ring, w->reg[i].addr); intel_ring_emit(ring, w->reg[i].value); } intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); ret = req->engine->emit_flush(req, EMIT_BARRIER); if (ret) return ret; return 0; } #define wa_ctx_emit(batch, index, cmd) \ do { \ int __index = (index)++; \ if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \ return -ENOSPC; \ } \ batch[__index] = (cmd); \ } while (0) #define wa_ctx_emit_reg(batch, index, reg) \ wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg)) /* * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after * PIPE_CONTROL instruction. This is required for the flush to happen correctly * but there is a slight complication as this is applied in WA batch where the * values are only initialized once so we cannot take register value at the * beginning and reuse it further; hence we save its value to memory, upload a * constant value with bit21 set and then we restore it back with the saved value. * To simplify the WA, a constant value is formed by using the default value * of this register. This shouldn't be a problem because we are only modifying * it for a short period and this batch in non-premptible. We can ofcourse * use additional instructions that read the actual value of the register * at that time and set our bit of interest but it makes the WA complicated. * * This WA is also required for Gen9 so extracting as a function avoids * code duplication. */ static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, uint32_t *batch, uint32_t index) { struct drm_i915_private *dev_priv = engine->i915; uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES); /* * WaDisableLSQCROPERFforOCL:skl,kbl * This WA is implemented in skl_init_clock_gating() but since * this batch updates GEN8_L3SQCREG4 with default value we need to * set this bit here to retain the WA during flush. */ if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS; wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT)); wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4); wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1)); wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4); wa_ctx_emit(batch, index, l3sqc4_flush); wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6)); wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL | PIPE_CONTROL_DC_FLUSH_ENABLE)); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT)); wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4); wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256); wa_ctx_emit(batch, index, 0); return index; } static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx, uint32_t offset, uint32_t start_alignment) { return wa_ctx->offset = ALIGN(offset, start_alignment); } static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx, uint32_t offset, uint32_t size_alignment) { wa_ctx->size = offset - wa_ctx->offset; WARN(wa_ctx->size % size_alignment, "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n", wa_ctx->size, size_alignment); return 0; } /* * Typically we only have one indirect_ctx and per_ctx batch buffer which are * initialized at the beginning and shared across all contexts but this field * helps us to have multiple batches at different offsets and select them based * on a criteria. At the moment this batch always start at the beginning of the page * and at this point we don't have multiple wa_ctx batch buffers. * * The number of WA applied are not known at the beginning; we use this field * to return the no of DWORDS written. * * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END * so it adds NOOPs as padding to make it cacheline aligned. * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together * makes a complete batch buffer. */ static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine, struct i915_wa_ctx_bb *wa_ctx, uint32_t *batch, uint32_t *offset) { uint32_t scratch_addr; uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); /* WaDisableCtxRestoreArbitration:bdw,chv */ wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE); /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ if (IS_BROADWELL(engine->i915)) { int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index); if (rc < 0) return rc; index = rc; } /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ /* Actual scratch location is at 128 bytes offset */ scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES; wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6)); wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE)); wa_ctx_emit(batch, index, scratch_addr); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); /* Pad to end of cacheline */ while (index % CACHELINE_DWORDS) wa_ctx_emit(batch, index, MI_NOOP); /* * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because * execution depends on the length specified in terms of cache lines * in the register CTX_RCS_INDIRECT_CTX */ return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS); } /* * This batch is started immediately after indirect_ctx batch. Since we ensure * that indirect_ctx ends on a cacheline this batch is aligned automatically. * * The number of DWORDS written are returned using this field. * * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant. */ static int gen8_init_perctx_bb(struct intel_engine_cs *engine, struct i915_wa_ctx_bb *wa_ctx, uint32_t *batch, uint32_t *offset) { uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); /* WaDisableCtxRestoreArbitration:bdw,chv */ wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE); wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END); return wa_ctx_end(wa_ctx, *offset = index, 1); } static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine, struct i915_wa_ctx_bb *wa_ctx, uint32_t *batch, uint32_t *offset) { int ret; struct drm_i915_private *dev_priv = engine->i915; uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); /* WaDisableCtxRestoreArbitration:skl,bxt */ if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) || IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE); /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */ ret = gen8_emit_flush_coherentl3_wa(engine, batch, index); if (ret < 0) return ret; index = ret; /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */ wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1)); wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2); wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE( GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE)); wa_ctx_emit(batch, index, MI_NOOP); /* WaClearSlmSpaceAtContextSwitch:kbl */ /* Actual scratch location is at 128 bytes offset */ if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) { u32 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES; wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6)); wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE)); wa_ctx_emit(batch, index, scratch_addr); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); } /* WaMediaPoolStateCmdInWABB:bxt */ if (HAS_POOLED_EU(engine->i915)) { /* * EU pool configuration is setup along with golden context * during context initialization. This value depends on * device type (2x6 or 3x6) and needs to be updated based * on which subslice is disabled especially for 2x6 * devices, however it is safe to load default * configuration of 3x6 device instead of masking off * corresponding bits because HW ignores bits of a disabled * subslice and drops down to appropriate config. Please * see render_state_setup() in i915_gem_render_state.c for * possible configurations, to avoid duplication they are * not shown here again. */ u32 eu_pool_config = 0x00777000; wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE); wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE); wa_ctx_emit(batch, index, eu_pool_config); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); wa_ctx_emit(batch, index, 0); } /* Pad to end of cacheline */ while (index % CACHELINE_DWORDS) wa_ctx_emit(batch, index, MI_NOOP); return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS); } static int gen9_init_perctx_bb(struct intel_engine_cs *engine, struct i915_wa_ctx_bb *wa_ctx, uint32_t *batch, uint32_t *offset) { uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */ if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) || IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) { wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1)); wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0); wa_ctx_emit(batch, index, _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING)); wa_ctx_emit(batch, index, MI_NOOP); } /* WaClearTdlStateAckDirtyBits:bxt */ if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) { wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4)); wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK); wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS)); wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1); wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS)); wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2); wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS)); wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2); /* dummy write to CS, mask bits are 0 to ensure the register is not modified */ wa_ctx_emit(batch, index, 0x0); wa_ctx_emit(batch, index, MI_NOOP); } /* WaDisableCtxRestoreArbitration:skl,bxt */ if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) || IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE); wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END); return wa_ctx_end(wa_ctx, *offset = index, 1); } static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size) { struct drm_i915_gem_object *obj; struct i915_vma *vma; int err; obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size)); if (IS_ERR(obj)) return PTR_ERR(obj); vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err; } err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH); if (err) goto err; engine->wa_ctx.vma = vma; return 0; err: i915_gem_object_put(obj); return err; } static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine) { i915_vma_unpin_and_release(&engine->wa_ctx.vma); } static int intel_init_workaround_bb(struct intel_engine_cs *engine) { struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; uint32_t *batch; uint32_t offset; struct page *page; int ret; WARN_ON(engine->id != RCS); /* update this when WA for higher Gen are added */ if (INTEL_GEN(engine->i915) > 9) { DRM_ERROR("WA batch buffer is not initialized for Gen%d\n", INTEL_GEN(engine->i915)); return 0; } /* some WA perform writes to scratch page, ensure it is valid */ if (!engine->scratch) { DRM_ERROR("scratch page not allocated for %s\n", engine->name); return -EINVAL; } ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE); if (ret) { DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret); return ret; } page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0); batch = kmap_atomic(page); offset = 0; if (IS_GEN8(engine->i915)) { ret = gen8_init_indirectctx_bb(engine, &wa_ctx->indirect_ctx, batch, &offset); if (ret) goto out; ret = gen8_init_perctx_bb(engine, &wa_ctx->per_ctx, batch, &offset); if (ret) goto out; } else if (IS_GEN9(engine->i915)) { ret = gen9_init_indirectctx_bb(engine, &wa_ctx->indirect_ctx, batch, &offset); if (ret) goto out; ret = gen9_init_perctx_bb(engine, &wa_ctx->per_ctx, batch, &offset); if (ret) goto out; } out: kunmap_atomic(batch); if (ret) lrc_destroy_wa_ctx_obj(engine); return ret; } static void lrc_init_hws(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; I915_WRITE(RING_HWS_PGA(engine->mmio_base), engine->status_page.ggtt_offset); POSTING_READ(RING_HWS_PGA(engine->mmio_base)); } static int gen8_init_common_ring(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; int ret; ret = intel_mocs_init_engine(engine); if (ret) return ret; lrc_init_hws(engine); intel_engine_reset_breadcrumbs(engine); I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff); I915_WRITE(RING_MODE_GEN7(engine), _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) | _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE)); DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name); intel_engine_init_hangcheck(engine); if (!execlists_elsp_idle(engine)) execlists_submit_ports(engine); return 0; } static int gen8_init_render_ring(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; int ret; ret = gen8_init_common_ring(engine); if (ret) return ret; /* We need to disable the AsyncFlip performance optimisations in order * to use MI_WAIT_FOR_EVENT within the CS. It should already be * programmed to '1' on all products. * * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv */ I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE)); I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING)); return init_workarounds_ring(engine); } static int gen9_init_render_ring(struct intel_engine_cs *engine) { int ret; ret = gen8_init_common_ring(engine); if (ret) return ret; return init_workarounds_ring(engine); } static void reset_common_ring(struct intel_engine_cs *engine, struct drm_i915_gem_request *request) { struct drm_i915_private *dev_priv = engine->i915; struct execlist_port *port = engine->execlist_port; struct intel_context *ce = &request->ctx->engine[engine->id]; /* We want a simple context + ring to execute the breadcrumb update. * We cannot rely on the context being intact across the GPU hang, * so clear it and rebuild just what we need for the breadcrumb. * All pending requests for this context will be zapped, and any * future request will be after userspace has had the opportunity * to recreate its own state. */ execlists_init_reg_state(ce->lrc_reg_state, request->ctx, engine, ce->ring); /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */ ce->lrc_reg_state[CTX_RING_BUFFER_START+1] = i915_ggtt_offset(ce->ring->vma); ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix; request->ring->head = request->postfix; request->ring->last_retired_head = -1; intel_ring_update_space(request->ring); if (i915.enable_guc_submission) return; /* Catch up with any missed context-switch interrupts */ I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0)); if (request->ctx != port[0].request->ctx) { i915_gem_request_put(port[0].request); port[0] = port[1]; memset(&port[1], 0, sizeof(port[1])); } /* CS is stopped, and we will resubmit both ports on resume */ GEM_BUG_ON(request->ctx != port[0].request->ctx); port[0].count = 0; port[1].count = 0; /* Reset WaIdleLiteRestore:bdw,skl as well */ request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32); } static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req) { struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt; struct intel_ring *ring = req->ring; struct intel_engine_cs *engine = req->engine; const int num_lri_cmds = GEN8_LEGACY_PDPES * 2; int i, ret; ret = intel_ring_begin(req, num_lri_cmds * 2 + 2); if (ret) return ret; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds)); for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) { const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i)); intel_ring_emit(ring, upper_32_bits(pd_daddr)); intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i)); intel_ring_emit(ring, lower_32_bits(pd_daddr)); } intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int gen8_emit_bb_start(struct drm_i915_gem_request *req, u64 offset, u32 len, unsigned int dispatch_flags) { struct intel_ring *ring = req->ring; bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE); int ret; /* Don't rely in hw updating PDPs, specially in lite-restore. * Ideally, we should set Force PD Restore in ctx descriptor, * but we can't. Force Restore would be a second option, but * it is unsafe in case of lite-restore (because the ctx is * not idle). PML4 is allocated during ppgtt init so this is * not needed in 48-bit.*/ if (req->ctx->ppgtt && (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) { if (!USES_FULL_48BIT_PPGTT(req->i915) && !intel_vgpu_active(req->i915)) { ret = intel_logical_ring_emit_pdps(req); if (ret) return ret; } req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine); } ret = intel_ring_begin(req, 4); if (ret) return ret; /* FIXME(BDW): Address space and security selectors. */ intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) | (dispatch_flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0)); intel_ring_emit(ring, lower_32_bits(offset)); intel_ring_emit(ring, upper_32_bits(offset)); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; I915_WRITE_IMR(engine, ~(engine->irq_enable_mask | engine->irq_keep_mask)); POSTING_READ_FW(RING_IMR(engine->mmio_base)); } static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; I915_WRITE_IMR(engine, ~engine->irq_keep_mask); } static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode) { struct intel_ring *ring = request->ring; u32 cmd; int ret; ret = intel_ring_begin(request, 4); if (ret) return ret; cmd = MI_FLUSH_DW + 1; /* We always require a command barrier so that subsequent * commands, such as breadcrumb interrupts, are strictly ordered * wrt the contents of the write cache being flushed to memory * (and thus being coherent from the CPU). */ cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; if (mode & EMIT_INVALIDATE) { cmd |= MI_INVALIDATE_TLB; if (request->engine->id == VCS) cmd |= MI_INVALIDATE_BSD; } intel_ring_emit(ring, cmd); intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT); intel_ring_emit(ring, 0); /* upper addr */ intel_ring_emit(ring, 0); /* value */ intel_ring_advance(ring); return 0; } static int gen8_emit_flush_render(struct drm_i915_gem_request *request, u32 mode) { struct intel_ring *ring = request->ring; struct intel_engine_cs *engine = request->engine; u32 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES; bool vf_flush_wa = false, dc_flush_wa = false; u32 flags = 0; int ret; int len; flags |= PIPE_CONTROL_CS_STALL; if (mode & EMIT_FLUSH) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; flags |= PIPE_CONTROL_FLUSH_ENABLE; } if (mode & EMIT_INVALIDATE) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; /* * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL * pipe control. */ if (IS_GEN9(request->i915)) vf_flush_wa = true; /* WaForGAMHang:kbl */ if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0)) dc_flush_wa = true; } len = 6; if (vf_flush_wa) len += 6; if (dc_flush_wa) len += 12; ret = intel_ring_begin(request, len); if (ret) return ret; if (vf_flush_wa) { intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6)); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); } if (dc_flush_wa) { intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6)); intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); } intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6)); intel_ring_emit(ring, flags); intel_ring_emit(ring, scratch_addr); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); if (dc_flush_wa) { intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6)); intel_ring_emit(ring, PIPE_CONTROL_CS_STALL); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); } intel_ring_advance(ring); return 0; } static void bxt_a_seqno_barrier(struct intel_engine_cs *engine) { /* * On BXT A steppings there is a HW coherency issue whereby the * MI_STORE_DATA_IMM storing the completed request's seqno * occasionally doesn't invalidate the CPU cache. Work around this by * clflushing the corresponding cacheline whenever the caller wants * the coherency to be guaranteed. Note that this cacheline is known * to be clean at this point, since we only write it in * bxt_a_set_seqno(), where we also do a clflush after the write. So * this clflush in practice becomes an invalidate operation. */ intel_flush_status_page(engine, I915_GEM_HWS_INDEX); } /* * Reserve space for 2 NOOPs at the end of each request to be * used as a workaround for not being allowed to do lite * restore with HEAD==TAIL (WaIdleLiteRestore). */ static int gen8_emit_request(struct drm_i915_gem_request *request) { struct intel_ring *ring = request->ring; int ret; ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS); if (ret) return ret; /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */ BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5)); intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW); intel_ring_emit(ring, intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT); intel_ring_emit(ring, 0); intel_ring_emit(ring, request->fence.seqno); intel_ring_emit(ring, MI_USER_INTERRUPT); intel_ring_emit(ring, MI_NOOP); return intel_logical_ring_advance(request); } static int gen8_emit_request_render(struct drm_i915_gem_request *request) { struct intel_ring *ring = request->ring; int ret; ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS); if (ret) return ret; /* We're using qword write, seqno should be aligned to 8 bytes. */ BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1); /* w/a for post sync ops following a GPGPU operation we * need a prior CS_STALL, which is emitted by the flush * following the batch. */ intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6)); intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE)); intel_ring_emit(ring, intel_hws_seqno_address(request->engine)); intel_ring_emit(ring, 0); intel_ring_emit(ring, i915_gem_request_get_seqno(request)); /* We're thrashing one dword of HWS. */ intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_USER_INTERRUPT); intel_ring_emit(ring, MI_NOOP); return intel_logical_ring_advance(request); } static int gen8_init_rcs_context(struct drm_i915_gem_request *req) { int ret; ret = intel_logical_ring_workarounds_emit(req); if (ret) return ret; ret = intel_rcs_context_init_mocs(req); /* * Failing to program the MOCS is non-fatal.The system will not * run at peak performance. So generate an error and carry on. */ if (ret) DRM_ERROR("MOCS failed to program: expect performance issues.\n"); return i915_gem_render_state_init(req); } /** * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer * @engine: Engine Command Streamer. */ void intel_logical_ring_cleanup(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv; if (!intel_engine_initialized(engine)) return; /* * Tasklet cannot be active at this point due intel_mark_active/idle * so this is just for documentation. */ if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state))) tasklet_kill(&engine->irq_tasklet); dev_priv = engine->i915; if (engine->buffer) { WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0); } if (engine->cleanup) engine->cleanup(engine); intel_engine_cleanup_common(engine); if (engine->status_page.vma) { i915_gem_object_unpin_map(engine->status_page.vma->obj); engine->status_page.vma = NULL; } intel_lr_context_unpin(dev_priv->kernel_context, engine); lrc_destroy_wa_ctx_obj(engine); engine->i915 = NULL; } void intel_execlists_enable_submission(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; for_each_engine(engine, dev_priv) engine->submit_request = execlists_submit_request; } static void logical_ring_default_vfuncs(struct intel_engine_cs *engine) { /* Default vfuncs which can be overriden by each engine. */ engine->init_hw = gen8_init_common_ring; engine->reset_hw = reset_common_ring; engine->emit_flush = gen8_emit_flush; engine->emit_request = gen8_emit_request; engine->submit_request = execlists_submit_request; engine->irq_enable = gen8_logical_ring_enable_irq; engine->irq_disable = gen8_logical_ring_disable_irq; engine->emit_bb_start = gen8_emit_bb_start; if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) engine->irq_seqno_barrier = bxt_a_seqno_barrier; } static inline void logical_ring_default_irqs(struct intel_engine_cs *engine) { unsigned shift = engine->irq_shift; engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; } static int lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma) { const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE; void *hws; /* The HWSP is part of the default context object in LRC mode. */ hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); if (IS_ERR(hws)) return PTR_ERR(hws); engine->status_page.page_addr = hws + hws_offset; engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset; engine->status_page.vma = vma; return 0; } static void logical_ring_setup(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; enum forcewake_domains fw_domains; intel_engine_setup_common(engine); /* Intentionally left blank. */ engine->buffer = NULL; fw_domains = intel_uncore_forcewake_for_reg(dev_priv, RING_ELSP(engine), FW_REG_WRITE); fw_domains |= intel_uncore_forcewake_for_reg(dev_priv, RING_CONTEXT_STATUS_PTR(engine), FW_REG_READ | FW_REG_WRITE); fw_domains |= intel_uncore_forcewake_for_reg(dev_priv, RING_CONTEXT_STATUS_BUF_BASE(engine), FW_REG_READ); engine->fw_domains = fw_domains; tasklet_init(&engine->irq_tasklet, intel_lrc_irq_handler, (unsigned long)engine); logical_ring_init_platform_invariants(engine); logical_ring_default_vfuncs(engine); logical_ring_default_irqs(engine); } static int logical_ring_init(struct intel_engine_cs *engine) { struct i915_gem_context *dctx = engine->i915->kernel_context; int ret; ret = intel_engine_init_common(engine); if (ret) goto error; ret = execlists_context_deferred_alloc(dctx, engine); if (ret) goto error; /* As this is the default context, always pin it */ ret = intel_lr_context_pin(dctx, engine); if (ret) { DRM_ERROR("Failed to pin context for %s: %d\n", engine->name, ret); goto error; } /* And setup the hardware status page. */ ret = lrc_setup_hws(engine, dctx->engine[engine->id].state); if (ret) { DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret); goto error; } return 0; error: intel_logical_ring_cleanup(engine); return ret; } int logical_render_ring_init(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; int ret; logical_ring_setup(engine); if (HAS_L3_DPF(dev_priv)) engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT; /* Override some for render ring. */ if (INTEL_GEN(dev_priv) >= 9) engine->init_hw = gen9_init_render_ring; else engine->init_hw = gen8_init_render_ring; engine->init_context = gen8_init_rcs_context; engine->emit_flush = gen8_emit_flush_render; engine->emit_request = gen8_emit_request_render; ret = intel_engine_create_scratch(engine, 4096); if (ret) return ret; ret = intel_init_workaround_bb(engine); if (ret) { /* * We continue even if we fail to initialize WA batch * because we only expect rare glitches but nothing * critical to prevent us from using GPU */ DRM_ERROR("WA batch buffer initialization failed: %d\n", ret); } ret = logical_ring_init(engine); if (ret) { lrc_destroy_wa_ctx_obj(engine); } return ret; } int logical_xcs_ring_init(struct intel_engine_cs *engine) { logical_ring_setup(engine); return logical_ring_init(engine); } static u32 make_rpcs(struct drm_i915_private *dev_priv) { u32 rpcs = 0; /* * No explicit RPCS request is needed to ensure full * slice/subslice/EU enablement prior to Gen9. */ if (INTEL_GEN(dev_priv) < 9) return 0; /* * Starting in Gen9, render power gating can leave * slice/subslice/EU in a partially enabled state. We * must make an explicit request through RPCS for full * enablement. */ if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) { rpcs |= GEN8_RPCS_S_CNT_ENABLE; rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) << GEN8_RPCS_S_CNT_SHIFT; rpcs |= GEN8_RPCS_ENABLE; } if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) { rpcs |= GEN8_RPCS_SS_CNT_ENABLE; rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) << GEN8_RPCS_SS_CNT_SHIFT; rpcs |= GEN8_RPCS_ENABLE; } if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) { rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice << GEN8_RPCS_EU_MIN_SHIFT; rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice << GEN8_RPCS_EU_MAX_SHIFT; rpcs |= GEN8_RPCS_ENABLE; } return rpcs; } static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine) { u32 indirect_ctx_offset; switch (INTEL_GEN(engine->i915)) { default: MISSING_CASE(INTEL_GEN(engine->i915)); /* fall through */ case 9: indirect_ctx_offset = GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; break; case 8: indirect_ctx_offset = GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; break; } return indirect_ctx_offset; } static void execlists_init_reg_state(u32 *reg_state, struct i915_gem_context *ctx, struct intel_engine_cs *engine, struct intel_ring *ring) { struct drm_i915_private *dev_priv = engine->i915; struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt; /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM * commands followed by (reg, value) pairs. The values we are setting here are * only for the first context restore: on a subsequent save, the GPU will * recreate this batchbuffer with new values (including all the missing * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */ reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED; ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine), _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH | CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | (HAS_RESOURCE_STREAMER(dev_priv) ? CTX_CTRL_RS_CTX_ENABLE : 0))); ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(engine->mmio_base), ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID); ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(engine->mmio_base), RING_BB_PPGTT); ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(engine->mmio_base), 0); if (engine->id == RCS) { ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(engine->mmio_base), 0); ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0); if (engine->wa_ctx.vma) { struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); reg_state[CTX_RCS_INDIRECT_CTX+1] = (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) | (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS); reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = intel_lr_indirect_ctx_offset(engine) << 6; reg_state[CTX_BB_PER_CTX_PTR+1] = (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) | 0x01; } } reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED; ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(engine->mmio_base), 0); /* PDP values well be assigned later if needed */ ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0); ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0); if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) { /* 64b PPGTT (48bit canonical) * PDP0_DESCRIPTOR contains the base address to PML4 and * other PDP Descriptors are ignored. */ ASSIGN_CTX_PML4(ppgtt, reg_state); } else { /* 32b PPGTT * PDP*_DESCRIPTOR contains the base address of space supported. * With dynamic page allocation, PDPs may not be allocated at * this point. Point the unallocated PDPs to the scratch page */ execlists_update_context_pdps(ppgtt, reg_state); } if (engine->id == RCS) { reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1); ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, make_rpcs(dev_priv)); } } static int populate_lr_context(struct i915_gem_context *ctx, struct drm_i915_gem_object *ctx_obj, struct intel_engine_cs *engine, struct intel_ring *ring) { void *vaddr; int ret; ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true); if (ret) { DRM_DEBUG_DRIVER("Could not set to CPU domain\n"); return ret; } vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret); return ret; } ctx_obj->dirty = true; /* The second page of the context object contains some fields which must * be set up prior to the first execution. */ execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE, ctx, engine, ring); i915_gem_object_unpin_map(ctx_obj); return 0; } /** * intel_lr_context_size() - return the size of the context for an engine * @engine: which engine to find the context size for * * Each engine may require a different amount of space for a context image, * so when allocating (or copying) an image, this function can be used to * find the right size for the specific engine. * * Return: size (in bytes) of an engine-specific context image * * Note: this size includes the HWSP, which is part of the context image * in LRC mode, but does not include the "shared data page" used with * GuC submission. The caller should account for this if using the GuC. */ uint32_t intel_lr_context_size(struct intel_engine_cs *engine) { int ret = 0; WARN_ON(INTEL_GEN(engine->i915) < 8); switch (engine->id) { case RCS: if (INTEL_GEN(engine->i915) >= 9) ret = GEN9_LR_CONTEXT_RENDER_SIZE; else ret = GEN8_LR_CONTEXT_RENDER_SIZE; break; case VCS: case BCS: case VECS: case VCS2: ret = GEN8_LR_CONTEXT_OTHER_SIZE; break; } return ret; } static int execlists_context_deferred_alloc(struct i915_gem_context *ctx, struct intel_engine_cs *engine) { struct drm_i915_gem_object *ctx_obj; struct intel_context *ce = &ctx->engine[engine->id]; struct i915_vma *vma; uint32_t context_size; struct intel_ring *ring; int ret; WARN_ON(ce->state); context_size = round_up(intel_lr_context_size(engine), 4096); /* One extra page as the sharing data between driver and GuC */ context_size += PAGE_SIZE * LRC_PPHWSP_PN; ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size); if (IS_ERR(ctx_obj)) { DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n"); return PTR_ERR(ctx_obj); } vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto error_deref_obj; } ring = intel_engine_create_ring(engine, ctx->ring_size); if (IS_ERR(ring)) { ret = PTR_ERR(ring); goto error_deref_obj; } ret = populate_lr_context(ctx, ctx_obj, engine, ring); if (ret) { DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret); goto error_ring_free; } ce->ring = ring; ce->state = vma; ce->initialised = engine->init_context == NULL; return 0; error_ring_free: intel_ring_free(ring); error_deref_obj: i915_gem_object_put(ctx_obj); return ret; } void intel_lr_context_resume(struct drm_i915_private *dev_priv) { struct i915_gem_context *ctx = dev_priv->kernel_context; struct intel_engine_cs *engine; for_each_engine(engine, dev_priv) { struct intel_context *ce = &ctx->engine[engine->id]; void *vaddr; uint32_t *reg_state; if (!ce->state) continue; vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB); if (WARN_ON(IS_ERR(vaddr))) continue; reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE; reg_state[CTX_RING_HEAD+1] = 0; reg_state[CTX_RING_TAIL+1] = 0; ce->state->obj->dirty = true; i915_gem_object_unpin_map(ce->state->obj); ce->ring->head = 0; ce->ring->tail = 0; } }