/* * Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved. * Copyright 2005 Stephane Marchesin * * The Weather Channel (TM) funded Tungsten Graphics to develop the * initial release of the Radeon 8500 driver under the XFree86 license. * This notice must be preserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Keith Whitwell */ #include "drmP.h" #include "drm.h" #include "drm_sarea.h" #include "nouveau_drv.h" static struct mem_block * split_block(struct mem_block *p, uint64_t start, uint64_t size, struct drm_file *file_priv) { /* Maybe cut off the start of an existing block */ if (start > p->start) { struct mem_block *newblock = kmalloc(sizeof(*newblock), GFP_KERNEL); if (!newblock) goto out; newblock->start = start; newblock->size = p->size - (start - p->start); newblock->file_priv = NULL; newblock->next = p->next; newblock->prev = p; p->next->prev = newblock; p->next = newblock; p->size -= newblock->size; p = newblock; } /* Maybe cut off the end of an existing block */ if (size < p->size) { struct mem_block *newblock = kmalloc(sizeof(*newblock), GFP_KERNEL); if (!newblock) goto out; newblock->start = start + size; newblock->size = p->size - size; newblock->file_priv = NULL; newblock->next = p->next; newblock->prev = p; p->next->prev = newblock; p->next = newblock; p->size = size; } out: /* Our block is in the middle */ p->file_priv = file_priv; return p; } struct mem_block * nouveau_mem_alloc_block(struct mem_block *heap, uint64_t size, int align2, struct drm_file *file_priv, int tail) { struct mem_block *p; uint64_t mask = (1 << align2) - 1; if (!heap) return NULL; if (tail) { list_for_each_prev(p, heap) { uint64_t start = ((p->start + p->size) - size) & ~mask; if (p->file_priv == NULL && start >= p->start && start + size <= p->start + p->size) return split_block(p, start, size, file_priv); } } else { list_for_each(p, heap) { uint64_t start = (p->start + mask) & ~mask; if (p->file_priv == NULL && start + size <= p->start + p->size) return split_block(p, start, size, file_priv); } } return NULL; } void nouveau_mem_free_block(struct mem_block *p) { p->file_priv = NULL; /* Assumes a single contiguous range. Needs a special file_priv in * 'heap' to stop it being subsumed. */ if (p->next->file_priv == NULL) { struct mem_block *q = p->next; p->size += q->size; p->next = q->next; p->next->prev = p; kfree(q); } if (p->prev->file_priv == NULL) { struct mem_block *q = p->prev; q->size += p->size; q->next = p->next; q->next->prev = q; kfree(p); } } /* Initialize. How to check for an uninitialized heap? */ int nouveau_mem_init_heap(struct mem_block **heap, uint64_t start, uint64_t size) { struct mem_block *blocks = kmalloc(sizeof(*blocks), GFP_KERNEL); if (!blocks) return -ENOMEM; *heap = kmalloc(sizeof(**heap), GFP_KERNEL); if (!*heap) { kfree(blocks); return -ENOMEM; } blocks->start = start; blocks->size = size; blocks->file_priv = NULL; blocks->next = blocks->prev = *heap; memset(*heap, 0, sizeof(**heap)); (*heap)->file_priv = (struct drm_file *) -1; (*heap)->next = (*heap)->prev = blocks; return 0; } /* * Free all blocks associated with the releasing file_priv */ void nouveau_mem_release(struct drm_file *file_priv, struct mem_block *heap) { struct mem_block *p; if (!heap || !heap->next) return; list_for_each(p, heap) { if (p->file_priv == file_priv) p->file_priv = NULL; } /* Assumes a single contiguous range. Needs a special file_priv in * 'heap' to stop it being subsumed. */ list_for_each(p, heap) { while ((p->file_priv == NULL) && (p->next->file_priv == NULL) && (p->next != heap)) { struct mem_block *q = p->next; p->size += q->size; p->next = q->next; p->next->prev = p; kfree(q); } } } /* * NV10-NV40 tiling helpers */ static void nv10_mem_set_region_tiling(struct drm_device *dev, int i, uint32_t addr, uint32_t size, uint32_t pitch) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fifo_engine *pfifo = &dev_priv->engine.fifo; struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph; struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i]; tile->addr = addr; tile->size = size; tile->used = !!pitch; nouveau_fence_unref((void **)&tile->fence); if (!pfifo->cache_flush(dev)) return; pfifo->reassign(dev, false); pfifo->cache_flush(dev); pfifo->cache_pull(dev, false); nouveau_wait_for_idle(dev); pgraph->set_region_tiling(dev, i, addr, size, pitch); pfb->set_region_tiling(dev, i, addr, size, pitch); pfifo->cache_pull(dev, true); pfifo->reassign(dev, true); } struct nouveau_tile_reg * nv10_mem_set_tiling(struct drm_device *dev, uint32_t addr, uint32_t size, uint32_t pitch) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; struct nouveau_tile_reg *tile = dev_priv->tile.reg, *found = NULL; int i; spin_lock(&dev_priv->tile.lock); for (i = 0; i < pfb->num_tiles; i++) { if (tile[i].used) /* Tile region in use. */ continue; if (tile[i].fence && !nouveau_fence_signalled(tile[i].fence, NULL)) /* Pending tile region. */ continue; if (max(tile[i].addr, addr) < min(tile[i].addr + tile[i].size, addr + size)) /* Kill an intersecting tile region. */ nv10_mem_set_region_tiling(dev, i, 0, 0, 0); if (pitch && !found) { /* Free tile region. */ nv10_mem_set_region_tiling(dev, i, addr, size, pitch); found = &tile[i]; } } spin_unlock(&dev_priv->tile.lock); return found; } void nv10_mem_expire_tiling(struct drm_device *dev, struct nouveau_tile_reg *tile, struct nouveau_fence *fence) { if (fence) { /* Mark it as pending. */ tile->fence = fence; nouveau_fence_ref(fence); } tile->used = false; } /* * NV50 VM helpers */ int nv50_mem_vm_bind_linear(struct drm_device *dev, uint64_t virt, uint32_t size, uint32_t flags, uint64_t phys) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj **pgt; unsigned psz, pfl, pages; if (virt >= dev_priv->vm_gart_base && (virt + size) < (dev_priv->vm_gart_base + dev_priv->vm_gart_size)) { psz = 12; pgt = &dev_priv->gart_info.sg_ctxdma; pfl = 0x21; virt -= dev_priv->vm_gart_base; } else if (virt >= dev_priv->vm_vram_base && (virt + size) < (dev_priv->vm_vram_base + dev_priv->vm_vram_size)) { psz = 16; pgt = dev_priv->vm_vram_pt; pfl = 0x01; virt -= dev_priv->vm_vram_base; } else { NV_ERROR(dev, "Invalid address: 0x%16llx-0x%16llx\n", virt, virt + size - 1); return -EINVAL; } pages = size >> psz; dev_priv->engine.instmem.prepare_access(dev, true); if (flags & 0x80000000) { while (pages--) { struct nouveau_gpuobj *pt = pgt[virt >> 29]; unsigned pte = ((virt & 0x1fffffffULL) >> psz) << 1; nv_wo32(dev, pt, pte++, 0x00000000); nv_wo32(dev, pt, pte++, 0x00000000); virt += (1 << psz); } } else { while (pages--) { struct nouveau_gpuobj *pt = pgt[virt >> 29]; unsigned pte = ((virt & 0x1fffffffULL) >> psz) << 1; unsigned offset_h = upper_32_bits(phys) & 0xff; unsigned offset_l = lower_32_bits(phys); nv_wo32(dev, pt, pte++, offset_l | pfl); nv_wo32(dev, pt, pte++, offset_h | flags); phys += (1 << psz); virt += (1 << psz); } } dev_priv->engine.instmem.finish_access(dev); nv_wr32(dev, 0x100c80, 0x00050001); if (!nv_wait(0x100c80, 0x00000001, 0x00000000)) { NV_ERROR(dev, "timeout: (0x100c80 & 1) == 0 (2)\n"); NV_ERROR(dev, "0x100c80 = 0x%08x\n", nv_rd32(dev, 0x100c80)); return -EBUSY; } nv_wr32(dev, 0x100c80, 0x00000001); if (!nv_wait(0x100c80, 0x00000001, 0x00000000)) { NV_ERROR(dev, "timeout: (0x100c80 & 1) == 0 (2)\n"); NV_ERROR(dev, "0x100c80 = 0x%08x\n", nv_rd32(dev, 0x100c80)); return -EBUSY; } return 0; } void nv50_mem_vm_unbind(struct drm_device *dev, uint64_t virt, uint32_t size) { nv50_mem_vm_bind_linear(dev, virt, size, 0x80000000, 0); } /* * Cleanup everything */ void nouveau_mem_takedown(struct mem_block **heap) { struct mem_block *p; if (!*heap) return; for (p = (*heap)->next; p != *heap;) { struct mem_block *q = p; p = p->next; kfree(q); } kfree(*heap); *heap = NULL; } void nouveau_mem_close(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; nouveau_bo_unpin(dev_priv->vga_ram); nouveau_bo_ref(NULL, &dev_priv->vga_ram); ttm_bo_device_release(&dev_priv->ttm.bdev); nouveau_ttm_global_release(dev_priv); if (drm_core_has_AGP(dev) && dev->agp && drm_core_check_feature(dev, DRIVER_MODESET)) { struct drm_agp_mem *entry, *tempe; /* Remove AGP resources, but leave dev->agp intact until drv_cleanup is called. */ list_for_each_entry_safe(entry, tempe, &dev->agp->memory, head) { if (entry->bound) drm_unbind_agp(entry->memory); drm_free_agp(entry->memory, entry->pages); kfree(entry); } INIT_LIST_HEAD(&dev->agp->memory); if (dev->agp->acquired) drm_agp_release(dev); dev->agp->acquired = 0; dev->agp->enabled = 0; } if (dev_priv->fb_mtrr) { drm_mtrr_del(dev_priv->fb_mtrr, drm_get_resource_start(dev, 1), drm_get_resource_len(dev, 1), DRM_MTRR_WC); dev_priv->fb_mtrr = 0; } } /*XXX won't work on BSD because of pci_read_config_dword */ static uint32_t nouveau_mem_fb_amount_igp(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct pci_dev *bridge; uint32_t mem; bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0, 1)); if (!bridge) { NV_ERROR(dev, "no bridge device\n"); return 0; } if (dev_priv->flags&NV_NFORCE) { pci_read_config_dword(bridge, 0x7C, &mem); return (uint64_t)(((mem >> 6) & 31) + 1)*1024*1024; } else if (dev_priv->flags&NV_NFORCE2) { pci_read_config_dword(bridge, 0x84, &mem); return (uint64_t)(((mem >> 4) & 127) + 1)*1024*1024; } NV_ERROR(dev, "impossible!\n"); return 0; } /* returns the amount of FB ram in bytes */ uint64_t nouveau_mem_fb_amount(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; uint32_t boot0; switch (dev_priv->card_type) { case NV_04: boot0 = nv_rd32(dev, NV03_BOOT_0); if (boot0 & 0x00000100) return (((boot0 >> 12) & 0xf) * 2 + 2) * 1024 * 1024; switch (boot0 & NV03_BOOT_0_RAM_AMOUNT) { case NV04_BOOT_0_RAM_AMOUNT_32MB: return 32 * 1024 * 1024; case NV04_BOOT_0_RAM_AMOUNT_16MB: return 16 * 1024 * 1024; case NV04_BOOT_0_RAM_AMOUNT_8MB: return 8 * 1024 * 1024; case NV04_BOOT_0_RAM_AMOUNT_4MB: return 4 * 1024 * 1024; } break; case NV_10: case NV_20: case NV_30: case NV_40: case NV_50: default: if (dev_priv->flags & (NV_NFORCE | NV_NFORCE2)) { return nouveau_mem_fb_amount_igp(dev); } else { uint64_t mem; mem = (nv_rd32(dev, NV04_FIFO_DATA) & NV10_FIFO_DATA_RAM_AMOUNT_MB_MASK) >> NV10_FIFO_DATA_RAM_AMOUNT_MB_SHIFT; return mem * 1024 * 1024; } break; } NV_ERROR(dev, "Unable to detect video ram size. Please report your setup to " DRIVER_EMAIL "\n"); return 0; } #if __OS_HAS_AGP static void nouveau_mem_reset_agp(struct drm_device *dev) { uint32_t saved_pci_nv_1, saved_pci_nv_19, pmc_enable; saved_pci_nv_1 = nv_rd32(dev, NV04_PBUS_PCI_NV_1); saved_pci_nv_19 = nv_rd32(dev, NV04_PBUS_PCI_NV_19); /* clear busmaster bit */ nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4); /* clear SBA and AGP bits */ nv_wr32(dev, NV04_PBUS_PCI_NV_19, saved_pci_nv_19 & 0xfffff0ff); /* power cycle pgraph, if enabled */ pmc_enable = nv_rd32(dev, NV03_PMC_ENABLE); if (pmc_enable & NV_PMC_ENABLE_PGRAPH) { nv_wr32(dev, NV03_PMC_ENABLE, pmc_enable & ~NV_PMC_ENABLE_PGRAPH); nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) | NV_PMC_ENABLE_PGRAPH); } /* and restore (gives effect of resetting AGP) */ nv_wr32(dev, NV04_PBUS_PCI_NV_19, saved_pci_nv_19); nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1); } #endif int nouveau_mem_init_agp(struct drm_device *dev) { #if __OS_HAS_AGP struct drm_nouveau_private *dev_priv = dev->dev_private; struct drm_agp_info info; struct drm_agp_mode mode; int ret; if (nouveau_noagp) return 0; nouveau_mem_reset_agp(dev); if (!dev->agp->acquired) { ret = drm_agp_acquire(dev); if (ret) { NV_ERROR(dev, "Unable to acquire AGP: %d\n", ret); return ret; } } ret = drm_agp_info(dev, &info); if (ret) { NV_ERROR(dev, "Unable to get AGP info: %d\n", ret); return ret; } /* see agp.h for the AGPSTAT_* modes available */ mode.mode = info.mode; ret = drm_agp_enable(dev, mode); if (ret) { NV_ERROR(dev, "Unable to enable AGP: %d\n", ret); return ret; } dev_priv->gart_info.type = NOUVEAU_GART_AGP; dev_priv->gart_info.aper_base = info.aperture_base; dev_priv->gart_info.aper_size = info.aperture_size; #endif return 0; } int nouveau_mem_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct ttm_bo_device *bdev = &dev_priv->ttm.bdev; int ret, dma_bits = 32; dev_priv->fb_phys = drm_get_resource_start(dev, 1); dev_priv->gart_info.type = NOUVEAU_GART_NONE; if (dev_priv->card_type >= NV_50 && pci_dma_supported(dev->pdev, DMA_BIT_MASK(40))) dma_bits = 40; ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits)); if (ret) { NV_ERROR(dev, "Error setting DMA mask: %d\n", ret); return ret; } ret = nouveau_ttm_global_init(dev_priv); if (ret) return ret; ret = ttm_bo_device_init(&dev_priv->ttm.bdev, dev_priv->ttm.bo_global_ref.ref.object, &nouveau_bo_driver, DRM_FILE_PAGE_OFFSET, dma_bits <= 32 ? true : false); if (ret) { NV_ERROR(dev, "Error initialising bo driver: %d\n", ret); return ret; } INIT_LIST_HEAD(&dev_priv->ttm.bo_list); spin_lock_init(&dev_priv->ttm.bo_list_lock); spin_lock_init(&dev_priv->tile.lock); dev_priv->fb_available_size = nouveau_mem_fb_amount(dev); dev_priv->fb_mappable_pages = dev_priv->fb_available_size; if (dev_priv->fb_mappable_pages > drm_get_resource_len(dev, 1)) dev_priv->fb_mappable_pages = drm_get_resource_len(dev, 1); dev_priv->fb_mappable_pages >>= PAGE_SHIFT; NV_INFO(dev, "%d MiB VRAM\n", (int)(dev_priv->fb_available_size >> 20)); /* remove reserved space at end of vram from available amount */ dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram; dev_priv->fb_aper_free = dev_priv->fb_available_size; /* mappable vram */ ret = ttm_bo_init_mm(bdev, TTM_PL_VRAM, dev_priv->fb_available_size >> PAGE_SHIFT); if (ret) { NV_ERROR(dev, "Failed VRAM mm init: %d\n", ret); return ret; } ret = nouveau_bo_new(dev, NULL, 256*1024, 0, TTM_PL_FLAG_VRAM, 0, 0, true, true, &dev_priv->vga_ram); if (ret == 0) ret = nouveau_bo_pin(dev_priv->vga_ram, TTM_PL_FLAG_VRAM); if (ret) { NV_WARN(dev, "failed to reserve VGA memory\n"); nouveau_bo_ref(NULL, &dev_priv->vga_ram); } /* GART */ #if !defined(__powerpc__) && !defined(__ia64__) if (drm_device_is_agp(dev) && dev->agp) { ret = nouveau_mem_init_agp(dev); if (ret) NV_ERROR(dev, "Error initialising AGP: %d\n", ret); } #endif if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) { ret = nouveau_sgdma_init(dev); if (ret) { NV_ERROR(dev, "Error initialising PCI(E): %d\n", ret); return ret; } } NV_INFO(dev, "%d MiB GART (aperture)\n", (int)(dev_priv->gart_info.aper_size >> 20)); dev_priv->gart_info.aper_free = dev_priv->gart_info.aper_size; ret = ttm_bo_init_mm(bdev, TTM_PL_TT, dev_priv->gart_info.aper_size >> PAGE_SHIFT); if (ret) { NV_ERROR(dev, "Failed TT mm init: %d\n", ret); return ret; } dev_priv->fb_mtrr = drm_mtrr_add(drm_get_resource_start(dev, 1), drm_get_resource_len(dev, 1), DRM_MTRR_WC); return 0; }