/* * Copyright 2010 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "drmP.h" #include "nouveau_drv.h" #include "nouveau_bios.h" #include "nouveau_pm.h" /* This is actually a lot more complex than it appears here, but hopefully * this should be able to deal with what the VBIOS leaves for us.. * * If not, well, I'll jump off that bridge when I come to it. */ struct nva3_pm_state { enum pll_types type; u32 src0; u32 src1; u32 ctrl; u32 coef; u32 old_pnm; u32 new_pnm; u32 new_div; }; static int nva3_pm_pll_offset(u32 id) { static const u32 pll_map[] = { 0x00, PLL_CORE, 0x01, PLL_SHADER, 0x02, PLL_MEMORY, 0x00, 0x00 }; const u32 *map = pll_map; while (map[1]) { if (id == map[1]) return map[0]; map += 2; } return -ENOENT; } int nva3_pm_clock_get(struct drm_device *dev, u32 id) { u32 src0, src1, ctrl, coef; struct pll_lims pll; int ret, off; int P, N, M; ret = get_pll_limits(dev, id, &pll); if (ret) return ret; off = nva3_pm_pll_offset(id); if (off < 0) return off; src0 = nv_rd32(dev, 0x4120 + (off * 4)); src1 = nv_rd32(dev, 0x4160 + (off * 4)); ctrl = nv_rd32(dev, pll.reg + 0); coef = nv_rd32(dev, pll.reg + 4); NV_DEBUG(dev, "PLL %02x: 0x%08x 0x%08x 0x%08x 0x%08x\n", id, src0, src1, ctrl, coef); if (ctrl & 0x00000008) { u32 div = ((src1 & 0x003c0000) >> 18) + 1; return (pll.refclk * 2) / div; } P = (coef & 0x003f0000) >> 16; N = (coef & 0x0000ff00) >> 8; M = (coef & 0x000000ff); return pll.refclk * N / M / P; } void * nva3_pm_clock_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl, u32 id, int khz) { struct nva3_pm_state *pll; struct pll_lims limits; int N, M, P, diff; int ret, off; ret = get_pll_limits(dev, id, &limits); if (ret < 0) return (ret == -ENOENT) ? NULL : ERR_PTR(ret); off = nva3_pm_pll_offset(id); if (id < 0) return ERR_PTR(-EINVAL); pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); pll->type = id; pll->src0 = 0x004120 + (off * 4); pll->src1 = 0x004160 + (off * 4); pll->ctrl = limits.reg + 0; pll->coef = limits.reg + 4; /* If target clock is within [-2, 3) MHz of a divisor, we'll * use that instead of calculating MNP values */ pll->new_div = min((limits.refclk * 2) / (khz - 2999), 16); if (pll->new_div) { diff = khz - ((limits.refclk * 2) / pll->new_div); if (diff < -2000 || diff >= 3000) pll->new_div = 0; } if (!pll->new_div) { ret = nva3_calc_pll(dev, &limits, khz, &N, NULL, &M, &P); if (ret < 0) return ERR_PTR(ret); pll->new_pnm = (P << 16) | (N << 8) | M; pll->new_div = 2 - 1; } else { pll->new_pnm = 0; pll->new_div--; } if ((nv_rd32(dev, pll->src1) & 0x00000101) != 0x00000101) pll->old_pnm = nv_rd32(dev, pll->coef); return pll; } void nva3_pm_clock_set(struct drm_device *dev, void *pre_state) { struct nva3_pm_state *pll = pre_state; u32 ctrl = 0; /* For the memory clock, NVIDIA will build a "script" describing * the reclocking process and ask PDAEMON to execute it. */ if (pll->type == PLL_MEMORY) { nv_wr32(dev, 0x100210, 0); nv_wr32(dev, 0x1002dc, 1); nv_wr32(dev, 0x004018, 0x00001000); ctrl = 0x18000100; } if (pll->old_pnm || !pll->new_pnm) { nv_mask(dev, pll->src1, 0x003c0101, 0x00000101 | (pll->new_div << 18)); nv_wr32(dev, pll->ctrl, 0x0001001d | ctrl); nv_mask(dev, pll->ctrl, 0x00000001, 0x00000000); } if (pll->new_pnm) { nv_mask(dev, pll->src0, 0x00000101, 0x00000101); nv_wr32(dev, pll->coef, pll->new_pnm); nv_wr32(dev, pll->ctrl, 0x0001001d | ctrl); nv_mask(dev, pll->ctrl, 0x00000010, 0x00000000); nv_mask(dev, pll->ctrl, 0x00020010, 0x00020010); nv_wr32(dev, pll->ctrl, 0x00010015 | ctrl); nv_mask(dev, pll->src1, 0x00000100, 0x00000000); nv_mask(dev, pll->src1, 0x00000001, 0x00000000); if (pll->type == PLL_MEMORY) nv_wr32(dev, 0x4018, 0x10005000); } else { nv_mask(dev, pll->ctrl, 0x00000001, 0x00000000); nv_mask(dev, pll->src0, 0x00000100, 0x00000000); nv_mask(dev, pll->src0, 0x00000001, 0x00000000); if (pll->type == PLL_MEMORY) nv_wr32(dev, 0x4018, 0x1000d000); } if (pll->type == PLL_MEMORY) { nv_wr32(dev, 0x1002dc, 0); nv_wr32(dev, 0x100210, 0x80000000); } kfree(pll); }