/* * IOMMU API for SMMU in Tegra30 * * Copyright (c) 2011-2012, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #define pr_fmt(fmt) "%s(): " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* REVISIT: With new configurations for t114/124/148 passed from DT */ #define SKIP_SWGRP_CHECK /* bitmap of the page sizes currently supported */ #define SMMU_IOMMU_PGSIZES (SZ_4K) #define SMMU_CONFIG 0x10 #define SMMU_CONFIG_DISABLE 0 #define SMMU_CONFIG_ENABLE 1 #define SMMU_TLB_CONFIG 0x14 #define SMMU_TLB_CONFIG_STATS__MASK (1 << 31) #define SMMU_TLB_CONFIG_STATS__ENABLE (1 << 31) #define SMMU_TLB_CONFIG_HIT_UNDER_MISS__ENABLE (1 << 29) #define SMMU_TLB_CONFIG_ACTIVE_LINES__VALUE 0x10 #define SMMU_TLB_CONFIG_RESET_VAL 0x20000010 #define SMMU_PTC_CONFIG 0x18 #define SMMU_PTC_CONFIG_STATS__MASK (1 << 31) #define SMMU_PTC_CONFIG_STATS__ENABLE (1 << 31) #define SMMU_PTC_CONFIG_CACHE__ENABLE (1 << 29) #define SMMU_PTC_CONFIG_INDEX_MAP__PATTERN 0x3f #define SMMU_PTC_CONFIG_RESET_VAL 0x2000003f #define SMMU_PTB_ASID 0x1c #define SMMU_PTB_ASID_CURRENT_SHIFT 0 #define SMMU_PTB_DATA 0x20 #define SMMU_PTB_DATA_RESET_VAL 0 #define SMMU_PTB_DATA_ASID_NONSECURE_SHIFT 29 #define SMMU_PTB_DATA_ASID_WRITABLE_SHIFT 30 #define SMMU_PTB_DATA_ASID_READABLE_SHIFT 31 #define SMMU_TLB_FLUSH 0x30 #define SMMU_TLB_FLUSH_VA_MATCH_ALL 0 #define SMMU_TLB_FLUSH_VA_MATCH_SECTION 2 #define SMMU_TLB_FLUSH_VA_MATCH_GROUP 3 #define SMMU_TLB_FLUSH_ASID_SHIFT 29 #define SMMU_TLB_FLUSH_ASID_MATCH_DISABLE 0 #define SMMU_TLB_FLUSH_ASID_MATCH_ENABLE 1 #define SMMU_TLB_FLUSH_ASID_MATCH_SHIFT 31 #define SMMU_PTC_FLUSH 0x34 #define SMMU_PTC_FLUSH_TYPE_ALL 0 #define SMMU_PTC_FLUSH_TYPE_ADR 1 #define SMMU_PTC_FLUSH_ADR_SHIFT 4 #define SMMU_ASID_SECURITY 0x38 #define SMMU_STATS_TLB_HIT_COUNT 0x1f0 #define SMMU_STATS_TLB_MISS_COUNT 0x1f4 #define SMMU_STATS_PTC_HIT_COUNT 0x1f8 #define SMMU_STATS_PTC_MISS_COUNT 0x1fc #define SMMU_TRANSLATION_ENABLE_0 0x228 #define SMMU_TRANSLATION_ENABLE_1 0x22c #define SMMU_TRANSLATION_ENABLE_2 0x230 #define SMMU_AFI_ASID 0x238 /* PCIE */ #define SMMU_AVPC_ASID 0x23c /* AVP */ #define SMMU_DC_ASID 0x240 /* Display controller */ #define SMMU_DCB_ASID 0x244 /* Display controller B */ #define SMMU_EPP_ASID 0x248 /* Encoder pre-processor */ #define SMMU_G2_ASID 0x24c /* 2D engine */ #define SMMU_HC_ASID 0x250 /* Host1x */ #define SMMU_HDA_ASID 0x254 /* High-def audio */ #define SMMU_ISP_ASID 0x258 /* Image signal processor */ #define SMMU_MPE_ASID 0x264 /* MPEG encoder */ #define SMMU_NV_ASID 0x268 /* (3D) */ #define SMMU_NV2_ASID 0x26c /* (3D) */ #define SMMU_PPCS_ASID 0x270 /* AHB */ #define SMMU_SATA_ASID 0x278 /* SATA */ #define SMMU_VDE_ASID 0x27c /* Video decoder */ #define SMMU_VI_ASID 0x280 /* Video input */ #define SMMU_PDE_NEXT_SHIFT 28 /* AHB Arbiter Registers */ #define AHB_XBAR_CTRL 0xe0 #define AHB_XBAR_CTRL_SMMU_INIT_DONE_DONE 1 #define AHB_XBAR_CTRL_SMMU_INIT_DONE_SHIFT 17 #define SMMU_NUM_ASIDS 4 #define SMMU_TLB_FLUSH_VA_SECTION__MASK 0xffc00000 #define SMMU_TLB_FLUSH_VA_SECTION__SHIFT 12 /* right shift */ #define SMMU_TLB_FLUSH_VA_GROUP__MASK 0xffffc000 #define SMMU_TLB_FLUSH_VA_GROUP__SHIFT 12 /* right shift */ #define SMMU_TLB_FLUSH_VA(iova, which) \ ((((iova) & SMMU_TLB_FLUSH_VA_##which##__MASK) >> \ SMMU_TLB_FLUSH_VA_##which##__SHIFT) | \ SMMU_TLB_FLUSH_VA_MATCH_##which) #define SMMU_PTB_ASID_CUR(n) \ ((n) << SMMU_PTB_ASID_CURRENT_SHIFT) #define SMMU_TLB_FLUSH_ASID_MATCH_disable \ (SMMU_TLB_FLUSH_ASID_MATCH_DISABLE << \ SMMU_TLB_FLUSH_ASID_MATCH_SHIFT) #define SMMU_TLB_FLUSH_ASID_MATCH__ENABLE \ (SMMU_TLB_FLUSH_ASID_MATCH_ENABLE << \ SMMU_TLB_FLUSH_ASID_MATCH_SHIFT) #define SMMU_PAGE_SHIFT 12 #define SMMU_PAGE_SIZE (1 << SMMU_PAGE_SHIFT) #define SMMU_PDIR_COUNT 1024 #define SMMU_PDIR_SIZE (sizeof(unsigned long) * SMMU_PDIR_COUNT) #define SMMU_PTBL_COUNT 1024 #define SMMU_PTBL_SIZE (sizeof(unsigned long) * SMMU_PTBL_COUNT) #define SMMU_PDIR_SHIFT 12 #define SMMU_PDE_SHIFT 12 #define SMMU_PTE_SHIFT 12 #define SMMU_PFN_MASK 0x000fffff #define SMMU_ADDR_TO_PFN(addr) ((addr) >> 12) #define SMMU_ADDR_TO_PDN(addr) ((addr) >> 22) #define SMMU_PDN_TO_ADDR(addr) ((pdn) << 22) #define _READABLE (1 << SMMU_PTB_DATA_ASID_READABLE_SHIFT) #define _WRITABLE (1 << SMMU_PTB_DATA_ASID_WRITABLE_SHIFT) #define _NONSECURE (1 << SMMU_PTB_DATA_ASID_NONSECURE_SHIFT) #define _PDE_NEXT (1 << SMMU_PDE_NEXT_SHIFT) #define _MASK_ATTR (_READABLE | _WRITABLE | _NONSECURE) #define _PDIR_ATTR (_READABLE | _WRITABLE | _NONSECURE) #define _PDE_ATTR (_READABLE | _WRITABLE | _NONSECURE) #define _PDE_ATTR_N (_PDE_ATTR | _PDE_NEXT) #define _PDE_VACANT(pdn) (((pdn) << 10) | _PDE_ATTR) #define _PTE_ATTR (_READABLE | _WRITABLE | _NONSECURE) #define _PTE_VACANT(addr) (((addr) >> SMMU_PAGE_SHIFT) | _PTE_ATTR) #define SMMU_MK_PDIR(page, attr) \ ((page_to_phys(page) >> SMMU_PDIR_SHIFT) | (attr)) #define SMMU_MK_PDE(page, attr) \ (unsigned long)((page_to_phys(page) >> SMMU_PDE_SHIFT) | (attr)) #define SMMU_EX_PTBL_PAGE(pde) \ pfn_to_page((unsigned long)(pde) & SMMU_PFN_MASK) #define SMMU_PFN_TO_PTE(pfn, attr) (unsigned long)((pfn) | (attr)) #define SMMU_ASID_ENABLE(asid) ((asid) | (1 << 31)) #define SMMU_ASID_DISABLE 0 #define SMMU_ASID_ASID(n) ((n) & ~SMMU_ASID_ENABLE(0)) #define smmu_client_enable_hwgrp(c, m) smmu_client_set_hwgrp(c, m, 1) #define smmu_client_disable_hwgrp(c) smmu_client_set_hwgrp(c, 0, 0) #define __smmu_client_enable_hwgrp(c, m) __smmu_client_set_hwgrp(c, m, 1) #define __smmu_client_disable_hwgrp(c) __smmu_client_set_hwgrp(c, 0, 0) #define HWGRP_INIT(client) [HWGRP_##client] = SMMU_##client##_ASID static const u32 smmu_hwgrp_asid_reg[] = { HWGRP_INIT(AFI), HWGRP_INIT(AVPC), HWGRP_INIT(DC), HWGRP_INIT(DCB), HWGRP_INIT(EPP), HWGRP_INIT(G2), HWGRP_INIT(HC), HWGRP_INIT(HDA), HWGRP_INIT(ISP), HWGRP_INIT(MPE), HWGRP_INIT(NV), HWGRP_INIT(NV2), HWGRP_INIT(PPCS), HWGRP_INIT(SATA), HWGRP_INIT(VDE), HWGRP_INIT(VI), }; #define HWGRP_ASID_REG(x) (smmu_hwgrp_asid_reg[x]) /* * Per client for address space */ struct smmu_client { struct device *dev; struct list_head list; struct smmu_as *as; u32 hwgrp; }; /* * Per address space */ struct smmu_as { struct smmu_device *smmu; /* back pointer to container */ unsigned int asid; spinlock_t lock; /* for pagetable */ struct page *pdir_page; unsigned long pdir_attr; unsigned long pde_attr; unsigned long pte_attr; unsigned int *pte_count; struct list_head client; spinlock_t client_lock; /* for client list */ }; /* * Per SMMU device - IOMMU device */ struct smmu_device { void __iomem *regs, *regs_ahbarb; unsigned long iovmm_base; /* remappable base address */ unsigned long page_count; /* total remappable size */ spinlock_t lock; char *name; struct device *dev; int num_as; struct smmu_as *as; /* Run-time allocated array */ struct page *avp_vector_page; /* dummy page shared by all AS's */ /* * Register image savers for suspend/resume */ unsigned long translation_enable_0; unsigned long translation_enable_1; unsigned long translation_enable_2; unsigned long asid_security; }; static struct smmu_device *smmu_handle; /* unique for a system */ /* * SMMU/AHB register accessors */ static inline u32 smmu_read(struct smmu_device *smmu, size_t offs) { return readl(smmu->regs + offs); } static inline void smmu_write(struct smmu_device *smmu, u32 val, size_t offs) { writel(val, smmu->regs + offs); } static inline u32 ahb_read(struct smmu_device *smmu, size_t offs) { return readl(smmu->regs_ahbarb + offs); } static inline void ahb_write(struct smmu_device *smmu, u32 val, size_t offs) { writel(val, smmu->regs_ahbarb + offs); } #define VA_PAGE_TO_PA(va, page) \ (page_to_phys(page) + ((unsigned long)(va) & ~PAGE_MASK)) #define FLUSH_CPU_DCACHE(va, page, size) \ do { \ unsigned long _pa_ = VA_PAGE_TO_PA(va, page); \ __cpuc_flush_dcache_area((void *)(va), (size_t)(size)); \ outer_flush_range(_pa_, _pa_+(size_t)(size)); \ } while (0) /* * Any interaction between any block on PPSB and a block on APB or AHB * must have these read-back barriers to ensure the APB/AHB bus * transaction is complete before initiating activity on the PPSB * block. */ #define FLUSH_SMMU_REGS(smmu) smmu_read(smmu, SMMU_CONFIG) #define smmu_client_hwgrp(c) (u32)((c)->dev->platform_data) static int __smmu_client_set_hwgrp(struct smmu_client *c, unsigned long map, int on) { int i; struct smmu_as *as = c->as; u32 val, offs, mask = SMMU_ASID_ENABLE(as->asid); struct smmu_device *smmu = as->smmu; WARN_ON(!on && map); if (on && !map) return -EINVAL; if (!on) map = smmu_client_hwgrp(c); for_each_set_bit(i, &map, HWGRP_COUNT) { offs = HWGRP_ASID_REG(i); val = smmu_read(smmu, offs); if (on) { #if !defined(SKIP_SWGRP_CHECK) if (WARN_ON(val & mask)) { for_each_set_bit(i, &map, HWGRP_COUNT) { offs = HWGRP_ASID_REG(i); val = smmu_read(smmu, offs); val &= ~mask; smmu_write(smmu, val, offs); } return -EBUSY; } #endif val |= mask; } else { #if !defined(SKIP_SWGRP_CHECK) WARN_ON((val & mask) == mask); #endif val &= ~mask; } smmu_write(smmu, val, offs); } FLUSH_SMMU_REGS(smmu); c->hwgrp = map; return 0; } static int smmu_client_set_hwgrp(struct smmu_client *c, u32 map, int on) { u32 val; unsigned long flags; struct smmu_as *as = c->as; struct smmu_device *smmu = as->smmu; spin_lock_irqsave(&smmu->lock, flags); val = __smmu_client_set_hwgrp(c, map, on); spin_unlock_irqrestore(&smmu->lock, flags); return val; } /* * Flush all TLB entries and all PTC entries * Caller must lock smmu */ static void smmu_flush_regs(struct smmu_device *smmu, int enable) { u32 val; smmu_write(smmu, SMMU_PTC_FLUSH_TYPE_ALL, SMMU_PTC_FLUSH); FLUSH_SMMU_REGS(smmu); val = SMMU_TLB_FLUSH_VA_MATCH_ALL | SMMU_TLB_FLUSH_ASID_MATCH_disable; smmu_write(smmu, val, SMMU_TLB_FLUSH); if (enable) smmu_write(smmu, SMMU_CONFIG_ENABLE, SMMU_CONFIG); FLUSH_SMMU_REGS(smmu); } static void smmu_setup_regs(struct smmu_device *smmu) { int i; u32 val; for (i = 0; i < smmu->num_as; i++) { struct smmu_as *as = &smmu->as[i]; struct smmu_client *c; smmu_write(smmu, SMMU_PTB_ASID_CUR(as->asid), SMMU_PTB_ASID); val = as->pdir_page ? SMMU_MK_PDIR(as->pdir_page, as->pdir_attr) : SMMU_PTB_DATA_RESET_VAL; smmu_write(smmu, val, SMMU_PTB_DATA); list_for_each_entry(c, &as->client, list) __smmu_client_set_hwgrp(c, c->hwgrp, 1); } smmu_write(smmu, smmu->translation_enable_0, SMMU_TRANSLATION_ENABLE_0); smmu_write(smmu, smmu->translation_enable_1, SMMU_TRANSLATION_ENABLE_1); smmu_write(smmu, smmu->translation_enable_2, SMMU_TRANSLATION_ENABLE_2); smmu_write(smmu, smmu->asid_security, SMMU_ASID_SECURITY); smmu_write(smmu, SMMU_TLB_CONFIG_RESET_VAL, SMMU_TLB_CONFIG); smmu_write(smmu, SMMU_PTC_CONFIG_RESET_VAL, SMMU_PTC_CONFIG); smmu_flush_regs(smmu, 1); val = ahb_read(smmu, AHB_XBAR_CTRL); val |= AHB_XBAR_CTRL_SMMU_INIT_DONE_DONE << AHB_XBAR_CTRL_SMMU_INIT_DONE_SHIFT; ahb_write(smmu, val, AHB_XBAR_CTRL); } static void flush_ptc_and_tlb(struct smmu_device *smmu, struct smmu_as *as, dma_addr_t iova, unsigned long *pte, struct page *page, int is_pde) { u32 val; unsigned long tlb_flush_va = is_pde ? SMMU_TLB_FLUSH_VA(iova, SECTION) : SMMU_TLB_FLUSH_VA(iova, GROUP); val = SMMU_PTC_FLUSH_TYPE_ADR | VA_PAGE_TO_PA(pte, page); smmu_write(smmu, val, SMMU_PTC_FLUSH); FLUSH_SMMU_REGS(smmu); val = tlb_flush_va | SMMU_TLB_FLUSH_ASID_MATCH__ENABLE | (as->asid << SMMU_TLB_FLUSH_ASID_SHIFT); smmu_write(smmu, val, SMMU_TLB_FLUSH); FLUSH_SMMU_REGS(smmu); } static void free_ptbl(struct smmu_as *as, dma_addr_t iova) { unsigned long pdn = SMMU_ADDR_TO_PDN(iova); unsigned long *pdir = (unsigned long *)page_address(as->pdir_page); if (pdir[pdn] != _PDE_VACANT(pdn)) { dev_dbg(as->smmu->dev, "pdn: %lx\n", pdn); ClearPageReserved(SMMU_EX_PTBL_PAGE(pdir[pdn])); __free_page(SMMU_EX_PTBL_PAGE(pdir[pdn])); pdir[pdn] = _PDE_VACANT(pdn); FLUSH_CPU_DCACHE(&pdir[pdn], as->pdir_page, sizeof pdir[pdn]); flush_ptc_and_tlb(as->smmu, as, iova, &pdir[pdn], as->pdir_page, 1); } } static void free_pdir(struct smmu_as *as) { unsigned addr; int count; struct device *dev = as->smmu->dev; if (!as->pdir_page) return; addr = as->smmu->iovmm_base; count = as->smmu->page_count; while (count-- > 0) { free_ptbl(as, addr); addr += SMMU_PAGE_SIZE * SMMU_PTBL_COUNT; } ClearPageReserved(as->pdir_page); __free_page(as->pdir_page); as->pdir_page = NULL; devm_kfree(dev, as->pte_count); as->pte_count = NULL; } /* * Maps PTBL for given iova and returns the PTE address * Caller must unmap the mapped PTBL returned in *ptbl_page_p */ static unsigned long *locate_pte(struct smmu_as *as, dma_addr_t iova, bool allocate, struct page **ptbl_page_p, unsigned int **count) { unsigned long ptn = SMMU_ADDR_TO_PFN(iova); unsigned long pdn = SMMU_ADDR_TO_PDN(iova); unsigned long *pdir = page_address(as->pdir_page); unsigned long *ptbl; if (pdir[pdn] != _PDE_VACANT(pdn)) { /* Mapped entry table already exists */ *ptbl_page_p = SMMU_EX_PTBL_PAGE(pdir[pdn]); ptbl = page_address(*ptbl_page_p); } else if (!allocate) { return NULL; } else { int pn; unsigned long addr = SMMU_PDN_TO_ADDR(pdn); /* Vacant - allocate a new page table */ dev_dbg(as->smmu->dev, "New PTBL pdn: %lx\n", pdn); *ptbl_page_p = alloc_page(GFP_ATOMIC); if (!*ptbl_page_p) { dev_err(as->smmu->dev, "failed to allocate smmu_device page table\n"); return NULL; } SetPageReserved(*ptbl_page_p); ptbl = (unsigned long *)page_address(*ptbl_page_p); for (pn = 0; pn < SMMU_PTBL_COUNT; pn++, addr += SMMU_PAGE_SIZE) { ptbl[pn] = _PTE_VACANT(addr); } FLUSH_CPU_DCACHE(ptbl, *ptbl_page_p, SMMU_PTBL_SIZE); pdir[pdn] = SMMU_MK_PDE(*ptbl_page_p, as->pde_attr | _PDE_NEXT); FLUSH_CPU_DCACHE(&pdir[pdn], as->pdir_page, sizeof pdir[pdn]); flush_ptc_and_tlb(as->smmu, as, iova, &pdir[pdn], as->pdir_page, 1); } *count = &as->pte_count[pdn]; return &ptbl[ptn % SMMU_PTBL_COUNT]; } #ifdef CONFIG_SMMU_SIG_DEBUG static void put_signature(struct smmu_as *as, dma_addr_t iova, unsigned long pfn) { struct page *page; unsigned long *vaddr; page = pfn_to_page(pfn); vaddr = page_address(page); if (!vaddr) return; vaddr[0] = iova; vaddr[1] = pfn << PAGE_SHIFT; FLUSH_CPU_DCACHE(vaddr, page, sizeof(vaddr[0]) * 2); } #else static inline void put_signature(struct smmu_as *as, unsigned long addr, unsigned long pfn) { } #endif /* * Caller must lock/unlock as */ static int alloc_pdir(struct smmu_as *as) { unsigned long *pdir; int pdn; u32 val; struct smmu_device *smmu = as->smmu; if (as->pdir_page) return 0; as->pte_count = devm_kzalloc(smmu->dev, sizeof(as->pte_count[0]) * SMMU_PDIR_COUNT, GFP_KERNEL); if (!as->pte_count) { dev_err(smmu->dev, "failed to allocate smmu_device PTE cunters\n"); return -ENOMEM; } as->pdir_page = alloc_page(GFP_KERNEL | __GFP_DMA); if (!as->pdir_page) { dev_err(smmu->dev, "failed to allocate smmu_device page directory\n"); devm_kfree(smmu->dev, as->pte_count); as->pte_count = NULL; return -ENOMEM; } SetPageReserved(as->pdir_page); pdir = page_address(as->pdir_page); for (pdn = 0; pdn < SMMU_PDIR_COUNT; pdn++) pdir[pdn] = _PDE_VACANT(pdn); FLUSH_CPU_DCACHE(pdir, as->pdir_page, SMMU_PDIR_SIZE); val = SMMU_PTC_FLUSH_TYPE_ADR | VA_PAGE_TO_PA(pdir, as->pdir_page); smmu_write(smmu, val, SMMU_PTC_FLUSH); FLUSH_SMMU_REGS(as->smmu); val = SMMU_TLB_FLUSH_VA_MATCH_ALL | SMMU_TLB_FLUSH_ASID_MATCH__ENABLE | (as->asid << SMMU_TLB_FLUSH_ASID_SHIFT); smmu_write(smmu, val, SMMU_TLB_FLUSH); FLUSH_SMMU_REGS(as->smmu); return 0; } static void __smmu_iommu_unmap(struct smmu_as *as, dma_addr_t iova) { unsigned long *pte; struct page *page; unsigned int *count; pte = locate_pte(as, iova, false, &page, &count); if (WARN_ON(!pte)) return; if (WARN_ON(*pte == _PTE_VACANT(iova))) return; *pte = _PTE_VACANT(iova); FLUSH_CPU_DCACHE(pte, page, sizeof(*pte)); flush_ptc_and_tlb(as->smmu, as, iova, pte, page, 0); if (!--(*count)) { free_ptbl(as, iova); smmu_flush_regs(as->smmu, 0); } } static void __smmu_iommu_map_pfn(struct smmu_as *as, dma_addr_t iova, unsigned long pfn) { struct smmu_device *smmu = as->smmu; unsigned long *pte; unsigned int *count; struct page *page; pte = locate_pte(as, iova, true, &page, &count); if (WARN_ON(!pte)) return; if (*pte == _PTE_VACANT(iova)) (*count)++; *pte = SMMU_PFN_TO_PTE(pfn, as->pte_attr); if (unlikely((*pte == _PTE_VACANT(iova)))) (*count)--; FLUSH_CPU_DCACHE(pte, page, sizeof(*pte)); flush_ptc_and_tlb(smmu, as, iova, pte, page, 0); put_signature(as, iova, pfn); } static int smmu_iommu_map(struct iommu_domain *domain, unsigned long iova, phys_addr_t pa, size_t bytes, int prot) { struct smmu_as *as = domain->priv; unsigned long pfn = __phys_to_pfn(pa); unsigned long flags; dev_dbg(as->smmu->dev, "[%d] %08lx:%08x\n", as->asid, iova, pa); if (!pfn_valid(pfn)) return -ENOMEM; spin_lock_irqsave(&as->lock, flags); __smmu_iommu_map_pfn(as, iova, pfn); spin_unlock_irqrestore(&as->lock, flags); return 0; } static size_t smmu_iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t bytes) { struct smmu_as *as = domain->priv; unsigned long flags; dev_dbg(as->smmu->dev, "[%d] %08lx\n", as->asid, iova); spin_lock_irqsave(&as->lock, flags); __smmu_iommu_unmap(as, iova); spin_unlock_irqrestore(&as->lock, flags); return SMMU_PAGE_SIZE; } static phys_addr_t smmu_iommu_iova_to_phys(struct iommu_domain *domain, unsigned long iova) { struct smmu_as *as = domain->priv; unsigned long *pte; unsigned int *count; struct page *page; unsigned long pfn; unsigned long flags; spin_lock_irqsave(&as->lock, flags); pte = locate_pte(as, iova, true, &page, &count); pfn = *pte & SMMU_PFN_MASK; WARN_ON(!pfn_valid(pfn)); dev_dbg(as->smmu->dev, "iova:%08lx pfn:%08lx asid:%d\n", iova, pfn, as->asid); spin_unlock_irqrestore(&as->lock, flags); return PFN_PHYS(pfn); } static int smmu_iommu_domain_has_cap(struct iommu_domain *domain, unsigned long cap) { return 0; } static int smmu_iommu_attach_dev(struct iommu_domain *domain, struct device *dev) { struct smmu_as *as = domain->priv; struct smmu_device *smmu = as->smmu; struct smmu_client *client, *c; u32 map; int err; client = devm_kzalloc(smmu->dev, sizeof(*c), GFP_KERNEL); if (!client) return -ENOMEM; client->dev = dev; client->as = as; #ifdef SKIP_SWGRP_CHECK /* Enable all SWGRP blindly by default */ map = (1 << HWGRP_COUNT) - 1; #else map = (unsigned long)dev->platform_data; if (!map) return -EINVAL; #endif err = smmu_client_enable_hwgrp(client, map); if (err) goto err_hwgrp; spin_lock(&as->client_lock); list_for_each_entry(c, &as->client, list) { if (c->dev == dev) { dev_err(smmu->dev, "%s is already attached\n", dev_name(c->dev)); err = -EINVAL; goto err_client; } } list_add(&client->list, &as->client); spin_unlock(&as->client_lock); /* * Reserve "page zero" for AVP vectors using a common dummy * page. */ if (map & HWG_AVPC) { struct page *page; page = as->smmu->avp_vector_page; __smmu_iommu_map_pfn(as, 0, page_to_pfn(page)); pr_info("Reserve \"page zero\" for AVP vectors using a common dummy\n"); } dev_dbg(smmu->dev, "%s is attached\n", dev_name(dev)); return 0; err_client: smmu_client_disable_hwgrp(client); spin_unlock(&as->client_lock); err_hwgrp: devm_kfree(smmu->dev, client); return err; } static void smmu_iommu_detach_dev(struct iommu_domain *domain, struct device *dev) { struct smmu_as *as = domain->priv; struct smmu_device *smmu = as->smmu; struct smmu_client *c; spin_lock(&as->client_lock); list_for_each_entry(c, &as->client, list) { if (c->dev == dev) { smmu_client_disable_hwgrp(c); list_del(&c->list); devm_kfree(smmu->dev, c); c->as = NULL; dev_dbg(smmu->dev, "%s is detached\n", dev_name(c->dev)); goto out; } } dev_err(smmu->dev, "Couldn't find %s\n", dev_name(c->dev)); out: spin_unlock(&as->client_lock); } static int smmu_iommu_domain_init(struct iommu_domain *domain) { int i; unsigned long flags; struct smmu_as *as; struct smmu_device *smmu = smmu_handle; /* Look for a free AS with lock held */ for (i = 0; i < smmu->num_as; i++) { struct smmu_as *tmp = &smmu->as[i]; spin_lock_irqsave(&tmp->lock, flags); if (!tmp->pdir_page) { as = tmp; goto found; } spin_unlock_irqrestore(&tmp->lock, flags); } dev_err(smmu->dev, "no free AS\n"); return -ENODEV; found: if (alloc_pdir(as) < 0) goto err_alloc_pdir; spin_lock(&smmu->lock); /* Update PDIR register */ smmu_write(smmu, SMMU_PTB_ASID_CUR(as->asid), SMMU_PTB_ASID); smmu_write(smmu, SMMU_MK_PDIR(as->pdir_page, as->pdir_attr), SMMU_PTB_DATA); FLUSH_SMMU_REGS(smmu); spin_unlock(&smmu->lock); spin_unlock_irqrestore(&as->lock, flags); domain->priv = as; dev_dbg(smmu->dev, "smmu_as@%p\n", as); return 0; err_alloc_pdir: spin_unlock_irqrestore(&as->lock, flags); return -ENODEV; } static void smmu_iommu_domain_destroy(struct iommu_domain *domain) { struct smmu_as *as = domain->priv; struct smmu_device *smmu = as->smmu; unsigned long flags; spin_lock_irqsave(&as->lock, flags); if (as->pdir_page) { spin_lock(&smmu->lock); smmu_write(smmu, SMMU_PTB_ASID_CUR(as->asid), SMMU_PTB_ASID); smmu_write(smmu, SMMU_PTB_DATA_RESET_VAL, SMMU_PTB_DATA); FLUSH_SMMU_REGS(smmu); spin_unlock(&smmu->lock); free_pdir(as); } if (!list_empty(&as->client)) { struct smmu_client *c; list_for_each_entry(c, &as->client, list) smmu_iommu_detach_dev(domain, c->dev); } spin_unlock_irqrestore(&as->lock, flags); domain->priv = NULL; dev_dbg(smmu->dev, "smmu_as@%p\n", as); } static struct iommu_ops smmu_iommu_ops = { .domain_init = smmu_iommu_domain_init, .domain_destroy = smmu_iommu_domain_destroy, .attach_dev = smmu_iommu_attach_dev, .detach_dev = smmu_iommu_detach_dev, .map = smmu_iommu_map, .unmap = smmu_iommu_unmap, .iova_to_phys = smmu_iommu_iova_to_phys, .domain_has_cap = smmu_iommu_domain_has_cap, .pgsize_bitmap = SMMU_IOMMU_PGSIZES, }; static int tegra_smmu_suspend(struct device *dev) { struct smmu_device *smmu = dev_get_drvdata(dev); smmu->translation_enable_0 = smmu_read(smmu, SMMU_TRANSLATION_ENABLE_0); smmu->translation_enable_1 = smmu_read(smmu, SMMU_TRANSLATION_ENABLE_1); smmu->translation_enable_2 = smmu_read(smmu, SMMU_TRANSLATION_ENABLE_2); smmu->asid_security = smmu_read(smmu, SMMU_ASID_SECURITY); return 0; } static int tegra_smmu_resume(struct device *dev) { struct smmu_device *smmu = dev_get_drvdata(dev); unsigned long flags; spin_lock_irqsave(&smmu->lock, flags); smmu_setup_regs(smmu); spin_unlock_irqrestore(&smmu->lock, flags); return 0; } static int tegra_smmu_probe(struct platform_device *pdev) { struct smmu_device *smmu; struct resource *regs, *regs2; struct tegra_smmu_window *window; struct device *dev = &pdev->dev; int i, err = 0; if (smmu_handle) return -EIO; BUILD_BUG_ON(PAGE_SHIFT != SMMU_PAGE_SHIFT); regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); regs2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); window = tegra_smmu_window(0); if (!regs || !regs2 || !window) { dev_err(dev, "No SMMU resources\n"); return -ENODEV; } smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL); if (!smmu) { dev_err(dev, "failed to allocate smmu_device\n"); return -ENOMEM; } smmu->dev = dev; smmu->num_as = SMMU_NUM_ASIDS; smmu->iovmm_base = (unsigned long)window->start; smmu->page_count = (window->end + 1 - window->start) >> SMMU_PAGE_SHIFT; smmu->regs = devm_ioremap(dev, regs->start, resource_size(regs)); smmu->regs_ahbarb = devm_ioremap(dev, regs2->start, resource_size(regs2)); if (!smmu->regs || !smmu->regs_ahbarb) { dev_err(dev, "failed to remap SMMU registers\n"); err = -ENXIO; goto fail; } smmu->translation_enable_0 = ~0; smmu->translation_enable_1 = ~0; smmu->translation_enable_2 = ~0; smmu->asid_security = 0; smmu->as = devm_kzalloc(dev, sizeof(smmu->as[0]) * smmu->num_as, GFP_KERNEL); if (!smmu->as) { dev_err(dev, "failed to allocate smmu_as\n"); err = -ENOMEM; goto fail; } for (i = 0; i < smmu->num_as; i++) { struct smmu_as *as = &smmu->as[i]; as->smmu = smmu; as->asid = i; as->pdir_attr = _PDIR_ATTR; as->pde_attr = _PDE_ATTR; as->pte_attr = _PTE_ATTR; spin_lock_init(&as->lock); INIT_LIST_HEAD(&as->client); } spin_lock_init(&smmu->lock); smmu_setup_regs(smmu); platform_set_drvdata(pdev, smmu); smmu->avp_vector_page = alloc_page(GFP_KERNEL); if (!smmu->avp_vector_page) goto fail; smmu_handle = smmu; return 0; fail: if (smmu->avp_vector_page) __free_page(smmu->avp_vector_page); if (smmu->regs) devm_iounmap(dev, smmu->regs); if (smmu->regs_ahbarb) devm_iounmap(dev, smmu->regs_ahbarb); if (smmu && smmu->as) { for (i = 0; i < smmu->num_as; i++) { if (smmu->as[i].pdir_page) { ClearPageReserved(smmu->as[i].pdir_page); __free_page(smmu->as[i].pdir_page); } } devm_kfree(dev, smmu->as); } devm_kfree(dev, smmu); return err; } static int tegra_smmu_remove(struct platform_device *pdev) { struct smmu_device *smmu = platform_get_drvdata(pdev); struct device *dev = smmu->dev; smmu_write(smmu, SMMU_CONFIG_DISABLE, SMMU_CONFIG); platform_set_drvdata(pdev, NULL); if (smmu->as) { int i; for (i = 0; i < smmu->num_as; i++) free_pdir(&smmu->as[i]); devm_kfree(dev, smmu->as); } if (smmu->avp_vector_page) __free_page(smmu->avp_vector_page); if (smmu->regs) devm_iounmap(dev, smmu->regs); if (smmu->regs_ahbarb) devm_iounmap(dev, smmu->regs_ahbarb); devm_kfree(dev, smmu); smmu_handle = NULL; return 0; } const struct dev_pm_ops tegra_smmu_pm_ops = { .suspend = tegra_smmu_suspend, .resume = tegra_smmu_resume, }; static struct platform_driver tegra_smmu_driver = { .probe = tegra_smmu_probe, .remove = tegra_smmu_remove, .driver = { .owner = THIS_MODULE, .name = "tegra_smmu", .pm = &tegra_smmu_pm_ops, }, }; static int __devinit tegra_smmu_init(void) { bus_set_iommu(&platform_bus_type, &smmu_iommu_ops); return platform_driver_register(&tegra_smmu_driver); } static void __exit tegra_smmu_exit(void) { platform_driver_unregister(&tegra_smmu_driver); } core_initcall(tegra_smmu_init); module_exit(tegra_smmu_exit);