/* * Copyright 2017 ATMEL * Copyright 2017 Free Electrons * * Author: Boris Brezillon * * Derived from the atmel_nand.c driver which contained the following * copyrights: * * Copyright 2003 Rick Bronson * * Derived from drivers/mtd/nand/autcpu12.c * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) * * Derived from drivers/mtd/spia.c * Copyright 2000 Steven J. Hill (sjhill@cotw.com) * * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 * * Derived from Das U-Boot source code * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas * * Add Programmable Multibit ECC support for various AT91 SoC * Copyright 2012 ATMEL, Hong Xu * * Add Nand Flash Controller support for SAMA5 SoC * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * The PMECC is an hardware assisted BCH engine, which means part of the * ECC algorithm is left to the software. The hardware/software repartition * is explained in the "PMECC Controller Functional Description" chapter in * Atmel datasheets, and some of the functions in this file are directly * implementing the algorithms described in the "Software Implementation" * sub-section. * * TODO: it seems that the software BCH implementation in lib/bch.c is already * providing some of the logic we are implementing here. It would be smart * to expose the needed lib/bch.c helpers/functions and re-use them here. */ #include #include #include #include #include #include #include #include #include "pmecc.h" /* Galois field dimension */ #define PMECC_GF_DIMENSION_13 13 #define PMECC_GF_DIMENSION_14 14 /* Primitive Polynomial used by PMECC */ #define PMECC_GF_13_PRIMITIVE_POLY 0x201b #define PMECC_GF_14_PRIMITIVE_POLY 0x4443 #define PMECC_LOOKUP_TABLE_SIZE_512 0x2000 #define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000 /* Time out value for reading PMECC status register */ #define PMECC_MAX_TIMEOUT_MS 100 /* PMECC Register Definitions */ #define ATMEL_PMECC_CFG 0x0 #define PMECC_CFG_BCH_STRENGTH(x) (x) #define PMECC_CFG_BCH_STRENGTH_MASK GENMASK(2, 0) #define PMECC_CFG_SECTOR512 (0 << 4) #define PMECC_CFG_SECTOR1024 (1 << 4) #define PMECC_CFG_NSECTORS(x) ((fls(x) - 1) << 8) #define PMECC_CFG_READ_OP (0 << 12) #define PMECC_CFG_WRITE_OP (1 << 12) #define PMECC_CFG_SPARE_ENABLE BIT(16) #define PMECC_CFG_AUTO_ENABLE BIT(20) #define ATMEL_PMECC_SAREA 0x4 #define ATMEL_PMECC_SADDR 0x8 #define ATMEL_PMECC_EADDR 0xc #define ATMEL_PMECC_CLK 0x10 #define PMECC_CLK_133MHZ (2 << 0) #define ATMEL_PMECC_CTRL 0x14 #define PMECC_CTRL_RST BIT(0) #define PMECC_CTRL_DATA BIT(1) #define PMECC_CTRL_USER BIT(2) #define PMECC_CTRL_ENABLE BIT(4) #define PMECC_CTRL_DISABLE BIT(5) #define ATMEL_PMECC_SR 0x18 #define PMECC_SR_BUSY BIT(0) #define PMECC_SR_ENABLE BIT(4) #define ATMEL_PMECC_IER 0x1c #define ATMEL_PMECC_IDR 0x20 #define ATMEL_PMECC_IMR 0x24 #define ATMEL_PMECC_ISR 0x28 #define PMECC_ERROR_INT BIT(0) #define ATMEL_PMECC_ECC(sector, n) \ ((((sector) + 1) * 0x40) + (n)) #define ATMEL_PMECC_REM(sector, n) \ ((((sector) + 1) * 0x40) + ((n) * 4) + 0x200) /* PMERRLOC Register Definitions */ #define ATMEL_PMERRLOC_ELCFG 0x0 #define PMERRLOC_ELCFG_SECTOR_512 (0 << 0) #define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0) #define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16) #define ATMEL_PMERRLOC_ELPRIM 0x4 #define ATMEL_PMERRLOC_ELEN 0x8 #define ATMEL_PMERRLOC_ELDIS 0xc #define PMERRLOC_DISABLE BIT(0) #define ATMEL_PMERRLOC_ELSR 0x10 #define PMERRLOC_ELSR_BUSY BIT(0) #define ATMEL_PMERRLOC_ELIER 0x14 #define ATMEL_PMERRLOC_ELIDR 0x18 #define ATMEL_PMERRLOC_ELIMR 0x1c #define ATMEL_PMERRLOC_ELISR 0x20 #define PMERRLOC_ERR_NUM_MASK GENMASK(12, 8) #define PMERRLOC_CALC_DONE BIT(0) #define ATMEL_PMERRLOC_SIGMA(x) (((x) * 0x4) + 0x28) #define ATMEL_PMERRLOC_EL(offs, x) (((x) * 0x4) + (offs)) struct atmel_pmecc_gf_tables { u16 *alpha_to; u16 *index_of; }; struct atmel_pmecc_caps { const int *strengths; int nstrengths; int el_offset; bool correct_erased_chunks; }; struct atmel_pmecc { struct device *dev; const struct atmel_pmecc_caps *caps; struct { void __iomem *base; void __iomem *errloc; } regs; struct mutex lock; }; struct atmel_pmecc_user_conf_cache { u32 cfg; u32 sarea; u32 saddr; u32 eaddr; }; struct atmel_pmecc_user { struct atmel_pmecc_user_conf_cache cache; struct atmel_pmecc *pmecc; const struct atmel_pmecc_gf_tables *gf_tables; int eccbytes; s16 *partial_syn; s16 *si; s16 *lmu; s16 *smu; s32 *mu; s32 *dmu; s32 *delta; u32 isr; }; static DEFINE_MUTEX(pmecc_gf_tables_lock); static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512; static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024; static inline int deg(unsigned int poly) { /* polynomial degree is the most-significant bit index */ return fls(poly) - 1; } static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly, struct atmel_pmecc_gf_tables *gf_tables) { unsigned int i, x = 1; const unsigned int k = BIT(deg(poly)); unsigned int nn = BIT(mm) - 1; /* primitive polynomial must be of degree m */ if (k != (1u << mm)) return -EINVAL; for (i = 0; i < nn; i++) { gf_tables->alpha_to[i] = x; gf_tables->index_of[x] = i; if (i && (x == 1)) /* polynomial is not primitive (a^i=1 with 0alpha_to[nn] = 1; gf_tables->index_of[0] = 0; return 0; } static const struct atmel_pmecc_gf_tables * atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req) { struct atmel_pmecc_gf_tables *gf_tables; unsigned int poly, degree, table_size; int ret; if (req->ecc.sectorsize == 512) { degree = PMECC_GF_DIMENSION_13; poly = PMECC_GF_13_PRIMITIVE_POLY; table_size = PMECC_LOOKUP_TABLE_SIZE_512; } else { degree = PMECC_GF_DIMENSION_14; poly = PMECC_GF_14_PRIMITIVE_POLY; table_size = PMECC_LOOKUP_TABLE_SIZE_1024; } gf_tables = kzalloc(sizeof(*gf_tables) + (2 * table_size * sizeof(u16)), GFP_KERNEL); if (!gf_tables) return ERR_PTR(-ENOMEM); gf_tables->alpha_to = (void *)(gf_tables + 1); gf_tables->index_of = gf_tables->alpha_to + table_size; ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables); if (ret) { kfree(gf_tables); return ERR_PTR(ret); } return gf_tables; } static const struct atmel_pmecc_gf_tables * atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req) { const struct atmel_pmecc_gf_tables **gf_tables, *ret; mutex_lock(&pmecc_gf_tables_lock); if (req->ecc.sectorsize == 512) gf_tables = &pmecc_gf_tables_512; else gf_tables = &pmecc_gf_tables_1024; ret = *gf_tables; if (!ret) { ret = atmel_pmecc_create_gf_tables(req); if (!IS_ERR(ret)) *gf_tables = ret; } mutex_unlock(&pmecc_gf_tables_lock); return ret; } static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc, struct atmel_pmecc_user_req *req) { int i, max_eccbytes, eccbytes = 0, eccstrength = 0; if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0) return -EINVAL; if (req->ecc.ooboffset >= 0 && req->ecc.ooboffset + req->ecc.bytes > req->oobsize) return -EINVAL; if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) { if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) return -EINVAL; if (req->pagesize > 512) req->ecc.sectorsize = 1024; else req->ecc.sectorsize = 512; } if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024) return -EINVAL; if (req->pagesize % req->ecc.sectorsize) return -EINVAL; req->ecc.nsectors = req->pagesize / req->ecc.sectorsize; max_eccbytes = req->ecc.bytes; for (i = 0; i < pmecc->caps->nstrengths; i++) { int nbytes, strength = pmecc->caps->strengths[i]; if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH && strength < req->ecc.strength) continue; nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize), 8); nbytes *= req->ecc.nsectors; if (nbytes > max_eccbytes) break; eccstrength = strength; eccbytes = nbytes; if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) break; } if (!eccstrength) return -EINVAL; req->ecc.bytes = eccbytes; req->ecc.strength = eccstrength; if (req->ecc.ooboffset < 0) req->ecc.ooboffset = req->oobsize - eccbytes; return 0; } struct atmel_pmecc_user * atmel_pmecc_create_user(struct atmel_pmecc *pmecc, struct atmel_pmecc_user_req *req) { struct atmel_pmecc_user *user; const struct atmel_pmecc_gf_tables *gf_tables; int strength, size, ret; ret = atmel_pmecc_prepare_user_req(pmecc, req); if (ret) return ERR_PTR(ret); size = sizeof(*user); size = ALIGN(size, sizeof(u16)); /* Reserve space for partial_syn, si and smu */ size += ((2 * req->ecc.strength) + 1) * sizeof(u16) * (2 + req->ecc.strength + 2); /* Reserve space for lmu. */ size += (req->ecc.strength + 1) * sizeof(u16); /* Reserve space for mu, dmu and delta. */ size = ALIGN(size, sizeof(s32)); size += (req->ecc.strength + 1) * sizeof(s32) * 3; user = kzalloc(size, GFP_KERNEL); if (!user) return ERR_PTR(-ENOMEM); user->pmecc = pmecc; user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16)); user->si = user->partial_syn + ((2 * req->ecc.strength) + 1); user->lmu = user->si + ((2 * req->ecc.strength) + 1); user->smu = user->lmu + (req->ecc.strength + 1); user->mu = (s32 *)PTR_ALIGN(user->smu + (((2 * req->ecc.strength) + 1) * (req->ecc.strength + 2)), sizeof(s32)); user->dmu = user->mu + req->ecc.strength + 1; user->delta = user->dmu + req->ecc.strength + 1; gf_tables = atmel_pmecc_get_gf_tables(req); if (IS_ERR(gf_tables)) { kfree(user); return ERR_CAST(gf_tables); } user->gf_tables = gf_tables; user->eccbytes = req->ecc.bytes / req->ecc.nsectors; for (strength = 0; strength < pmecc->caps->nstrengths; strength++) { if (pmecc->caps->strengths[strength] == req->ecc.strength) break; } user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) | PMECC_CFG_NSECTORS(req->ecc.nsectors); if (req->ecc.sectorsize == 1024) user->cache.cfg |= PMECC_CFG_SECTOR1024; user->cache.sarea = req->oobsize - 1; user->cache.saddr = req->ecc.ooboffset; user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1; return user; } EXPORT_SYMBOL_GPL(atmel_pmecc_create_user); void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user) { kfree(user); } EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user); static int get_strength(struct atmel_pmecc_user *user) { const int *strengths = user->pmecc->caps->strengths; return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK]; } static int get_sectorsize(struct atmel_pmecc_user *user) { return user->cache.cfg & PMECC_CFG_SECTOR1024 ? 1024 : 512; } static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector) { int strength = get_strength(user); u32 value; int i; /* Fill odd syndromes */ for (i = 0; i < strength; i++) { value = readl_relaxed(user->pmecc->regs.base + ATMEL_PMECC_REM(sector, i / 2)); if (i & 1) value >>= 16; user->partial_syn[(2 * i) + 1] = value; } } static void atmel_pmecc_substitute(struct atmel_pmecc_user *user) { int degree = get_sectorsize(user) == 512 ? 13 : 14; int cw_len = BIT(degree) - 1; int strength = get_strength(user); s16 *alpha_to = user->gf_tables->alpha_to; s16 *index_of = user->gf_tables->index_of; s16 *partial_syn = user->partial_syn; s16 *si; int i, j; /* * si[] is a table that holds the current syndrome value, * an element of that table belongs to the field */ si = user->si; memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1)); /* Computation 2t syndromes based on S(x) */ /* Odd syndromes */ for (i = 1; i < 2 * strength; i += 2) { for (j = 0; j < degree; j++) { if (partial_syn[i] & BIT(j)) si[i] = alpha_to[i * j] ^ si[i]; } } /* Even syndrome = (Odd syndrome) ** 2 */ for (i = 2, j = 1; j <= strength; i = ++j << 1) { if (si[j] == 0) { si[i] = 0; } else { s16 tmp; tmp = index_of[si[j]]; tmp = (tmp * 2) % cw_len; si[i] = alpha_to[tmp]; } } } static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user) { s16 *lmu = user->lmu; s16 *si = user->si; s32 *mu = user->mu; s32 *dmu = user->dmu; s32 *delta = user->delta; int degree = get_sectorsize(user) == 512 ? 13 : 14; int cw_len = BIT(degree) - 1; int strength = get_strength(user); int num = 2 * strength + 1; s16 *index_of = user->gf_tables->index_of; s16 *alpha_to = user->gf_tables->alpha_to; int i, j, k; u32 dmu_0_count, tmp; s16 *smu = user->smu; /* index of largest delta */ int ro; int largest; int diff; dmu_0_count = 0; /* First Row */ /* Mu */ mu[0] = -1; memset(smu, 0, sizeof(s16) * num); smu[0] = 1; /* discrepancy set to 1 */ dmu[0] = 1; /* polynom order set to 0 */ lmu[0] = 0; delta[0] = (mu[0] * 2 - lmu[0]) >> 1; /* Second Row */ /* Mu */ mu[1] = 0; /* Sigma(x) set to 1 */ memset(&smu[num], 0, sizeof(s16) * num); smu[num] = 1; /* discrepancy set to S1 */ dmu[1] = si[1]; /* polynom order set to 0 */ lmu[1] = 0; delta[1] = (mu[1] * 2 - lmu[1]) >> 1; /* Init the Sigma(x) last row */ memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num); for (i = 1; i <= strength; i++) { mu[i + 1] = i << 1; /* Begin Computing Sigma (Mu+1) and L(mu) */ /* check if discrepancy is set to 0 */ if (dmu[i] == 0) { dmu_0_count++; tmp = ((strength - (lmu[i] >> 1) - 1) / 2); if ((strength - (lmu[i] >> 1) - 1) & 0x1) tmp += 2; else tmp += 1; if (dmu_0_count == tmp) { for (j = 0; j <= (lmu[i] >> 1) + 1; j++) smu[(strength + 1) * num + j] = smu[i * num + j]; lmu[strength + 1] = lmu[i]; return; } /* copy polynom */ for (j = 0; j <= lmu[i] >> 1; j++) smu[(i + 1) * num + j] = smu[i * num + j]; /* copy previous polynom order to the next */ lmu[i + 1] = lmu[i]; } else { ro = 0; largest = -1; /* find largest delta with dmu != 0 */ for (j = 0; j < i; j++) { if ((dmu[j]) && (delta[j] > largest)) { largest = delta[j]; ro = j; } } /* compute difference */ diff = (mu[i] - mu[ro]); /* Compute degree of the new smu polynomial */ if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) lmu[i + 1] = lmu[i]; else lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; /* Init smu[i+1] with 0 */ for (k = 0; k < num; k++) smu[(i + 1) * num + k] = 0; /* Compute smu[i+1] */ for (k = 0; k <= lmu[ro] >> 1; k++) { s16 a, b, c; if (!(smu[ro * num + k] && dmu[i])) continue; a = index_of[dmu[i]]; b = index_of[dmu[ro]]; c = index_of[smu[ro * num + k]]; tmp = a + (cw_len - b) + c; a = alpha_to[tmp % cw_len]; smu[(i + 1) * num + (k + diff)] = a; } for (k = 0; k <= lmu[i] >> 1; k++) smu[(i + 1) * num + k] ^= smu[i * num + k]; } /* End Computing Sigma (Mu+1) and L(mu) */ /* In either case compute delta */ delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; /* Do not compute discrepancy for the last iteration */ if (i >= strength) continue; for (k = 0; k <= (lmu[i + 1] >> 1); k++) { tmp = 2 * (i - 1); if (k == 0) { dmu[i + 1] = si[tmp + 3]; } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { s16 a, b, c; a = index_of[smu[(i + 1) * num + k]]; b = si[2 * (i - 1) + 3 - k]; c = index_of[b]; tmp = a + c; tmp %= cw_len; dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1]; } } } } static int atmel_pmecc_err_location(struct atmel_pmecc_user *user) { int sector_size = get_sectorsize(user); int degree = sector_size == 512 ? 13 : 14; struct atmel_pmecc *pmecc = user->pmecc; int strength = get_strength(user); int ret, roots_nbr, i, err_nbr = 0; int num = (2 * strength) + 1; s16 *smu = user->smu; u32 val; writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS); for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) { writel_relaxed(smu[(strength + 1) * num + i], pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i)); err_nbr++; } val = (err_nbr - 1) << 16; if (sector_size == 1024) val |= 1; writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG); writel((sector_size * 8) + (degree * strength), pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN); ret = readl_relaxed_poll_timeout(pmecc->regs.errloc + ATMEL_PMERRLOC_ELISR, val, val & PMERRLOC_CALC_DONE, 0, PMECC_MAX_TIMEOUT_MS * 1000); if (ret) { dev_err(pmecc->dev, "PMECC: Timeout to calculate error location.\n"); return ret; } roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8; /* Number of roots == degree of smu hence <= cap */ if (roots_nbr == user->lmu[strength + 1] >> 1) return err_nbr - 1; /* * Number of roots does not match the degree of smu * unable to correct error. */ return -EBADMSG; } int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector, void *data, void *ecc) { struct atmel_pmecc *pmecc = user->pmecc; int sectorsize = get_sectorsize(user); int eccbytes = user->eccbytes; int i, nerrors; if (!(user->isr & BIT(sector))) return 0; atmel_pmecc_gen_syndrome(user, sector); atmel_pmecc_substitute(user); atmel_pmecc_get_sigma(user); nerrors = atmel_pmecc_err_location(user); if (nerrors < 0) return nerrors; for (i = 0; i < nerrors; i++) { const char *area; int byte, bit; u32 errpos; u8 *ptr; errpos = readl_relaxed(pmecc->regs.errloc + ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i)); errpos--; byte = errpos / 8; bit = errpos % 8; if (byte < sectorsize) { ptr = data + byte; area = "data"; } else if (byte < sectorsize + eccbytes) { ptr = ecc + byte - sectorsize; area = "ECC"; } else { dev_dbg(pmecc->dev, "Invalid errpos value (%d, max is %d)\n", errpos, (sectorsize + eccbytes) * 8); return -EINVAL; } dev_dbg(pmecc->dev, "Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n", area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit))); *ptr ^= BIT(bit); } return nerrors; } EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector); bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user) { return user->pmecc->caps->correct_erased_chunks; } EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks); void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user, int sector, void *ecc) { struct atmel_pmecc *pmecc = user->pmecc; u8 *ptr = ecc; int i; for (i = 0; i < user->eccbytes; i++) ptr[i] = readb_relaxed(pmecc->regs.base + ATMEL_PMECC_ECC(sector, i)); } EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes); int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op) { struct atmel_pmecc *pmecc = user->pmecc; u32 cfg; if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) { dev_err(pmecc->dev, "Bad ECC operation!"); return -EINVAL; } mutex_lock(&user->pmecc->lock); cfg = user->cache.cfg; if (op == NAND_ECC_WRITE) cfg |= PMECC_CFG_WRITE_OP; else cfg |= PMECC_CFG_AUTO_ENABLE; writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG); writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA); writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR); writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR); writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL); return 0; } EXPORT_SYMBOL_GPL(atmel_pmecc_enable); void atmel_pmecc_disable(struct atmel_pmecc_user *user) { struct atmel_pmecc *pmecc = user->pmecc; writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL); writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); mutex_unlock(&user->pmecc->lock); } EXPORT_SYMBOL_GPL(atmel_pmecc_disable); int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user) { struct atmel_pmecc *pmecc = user->pmecc; u32 status; int ret; ret = readl_relaxed_poll_timeout(pmecc->regs.base + ATMEL_PMECC_SR, status, !(status & PMECC_SR_BUSY), 0, PMECC_MAX_TIMEOUT_MS * 1000); if (ret) { dev_err(pmecc->dev, "Timeout while waiting for PMECC ready.\n"); return ret; } user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR); return 0; } EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy); static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev, const struct atmel_pmecc_caps *caps, int pmecc_res_idx, int errloc_res_idx) { struct device *dev = &pdev->dev; struct atmel_pmecc *pmecc; struct resource *res; pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL); if (!pmecc) return ERR_PTR(-ENOMEM); pmecc->caps = caps; pmecc->dev = dev; mutex_init(&pmecc->lock); res = platform_get_resource(pdev, IORESOURCE_MEM, pmecc_res_idx); pmecc->regs.base = devm_ioremap_resource(dev, res); if (IS_ERR(pmecc->regs.base)) return ERR_CAST(pmecc->regs.base); res = platform_get_resource(pdev, IORESOURCE_MEM, errloc_res_idx); pmecc->regs.errloc = devm_ioremap_resource(dev, res); if (IS_ERR(pmecc->regs.errloc)) return ERR_CAST(pmecc->regs.errloc); /* Disable all interrupts before registering the PMECC handler. */ writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR); /* Reset the ECC engine */ writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL); writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); return pmecc; } static void devm_atmel_pmecc_put(struct device *dev, void *res) { struct atmel_pmecc **pmecc = res; put_device((*pmecc)->dev); } static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev, struct device_node *np) { struct platform_device *pdev; struct atmel_pmecc *pmecc, **ptr; pdev = of_find_device_by_node(np); if (!pdev || !platform_get_drvdata(pdev)) return ERR_PTR(-EPROBE_DEFER); ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); get_device(&pdev->dev); pmecc = platform_get_drvdata(pdev); *ptr = pmecc; devres_add(userdev, ptr); return pmecc; } static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 }; static struct atmel_pmecc_caps at91sam9g45_caps = { .strengths = atmel_pmecc_strengths, .nstrengths = 5, .el_offset = 0x8c, }; static struct atmel_pmecc_caps sama5d4_caps = { .strengths = atmel_pmecc_strengths, .nstrengths = 5, .el_offset = 0x8c, .correct_erased_chunks = true, }; static struct atmel_pmecc_caps sama5d2_caps = { .strengths = atmel_pmecc_strengths, .nstrengths = 6, .el_offset = 0xac, .correct_erased_chunks = true, }; static const struct of_device_id atmel_pmecc_legacy_match[] = { { .compatible = "atmel,sama5d4-nand", &sama5d4_caps }, { .compatible = "atmel,sama5d2-nand", &sama5d2_caps }, { /* sentinel */ } }; struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev) { struct atmel_pmecc *pmecc; struct device_node *np; if (!userdev) return ERR_PTR(-EINVAL); if (!userdev->of_node) return NULL; np = of_parse_phandle(userdev->of_node, "ecc-engine", 0); if (np) { pmecc = atmel_pmecc_get_by_node(userdev, np); of_node_put(np); } else { /* * Support old DT bindings: in this case the PMECC iomem * resources are directly defined in the user pdev at position * 1 and 2. Extract all relevant information from there. */ struct platform_device *pdev = to_platform_device(userdev); const struct atmel_pmecc_caps *caps; const struct of_device_id *match; /* No PMECC engine available. */ if (!of_property_read_bool(userdev->of_node, "atmel,has-pmecc")) return NULL; caps = &at91sam9g45_caps; /* Find the caps associated to the NAND dev node. */ match = of_match_node(atmel_pmecc_legacy_match, userdev->of_node); if (match && match->data) caps = match->data; pmecc = atmel_pmecc_create(pdev, caps, 1, 2); } return pmecc; } EXPORT_SYMBOL(devm_atmel_pmecc_get); static const struct of_device_id atmel_pmecc_match[] = { { .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps }, { .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps }, { .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_pmecc_match); static int atmel_pmecc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct atmel_pmecc_caps *caps; struct atmel_pmecc *pmecc; caps = of_device_get_match_data(&pdev->dev); if (!caps) { dev_err(dev, "Invalid caps\n"); return -EINVAL; } pmecc = atmel_pmecc_create(pdev, caps, 0, 1); if (IS_ERR(pmecc)) return PTR_ERR(pmecc); platform_set_drvdata(pdev, pmecc); return 0; } static struct platform_driver atmel_pmecc_driver = { .driver = { .name = "atmel-pmecc", .of_match_table = of_match_ptr(atmel_pmecc_match), }, .probe = atmel_pmecc_probe, }; module_platform_driver(atmel_pmecc_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Boris Brezillon "); MODULE_DESCRIPTION("PMECC engine driver"); MODULE_ALIAS("platform:atmel_pmecc");