/* * Intel PCH/PCU SPI flash driver. * * Copyright (C) 2016, Intel Corporation * Author: Mika Westerberg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include "intel-spi.h" /* Offsets are from @ispi->base */ #define BFPREG 0x00 #define HSFSTS_CTL 0x04 #define HSFSTS_CTL_FSMIE BIT(31) #define HSFSTS_CTL_FDBC_SHIFT 24 #define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT) #define HSFSTS_CTL_FCYCLE_SHIFT 17 #define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT) /* HW sequencer opcodes */ #define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FGO BIT(16) #define HSFSTS_CTL_FLOCKDN BIT(15) #define HSFSTS_CTL_FDV BIT(14) #define HSFSTS_CTL_SCIP BIT(5) #define HSFSTS_CTL_AEL BIT(2) #define HSFSTS_CTL_FCERR BIT(1) #define HSFSTS_CTL_FDONE BIT(0) #define FADDR 0x08 #define DLOCK 0x0c #define FDATA(n) (0x10 + ((n) * 4)) #define FRACC 0x50 #define FREG(n) (0x54 + ((n) * 4)) #define FREG_BASE_MASK 0x3fff #define FREG_LIMIT_SHIFT 16 #define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT) /* Offset is from @ispi->pregs */ #define PR(n) ((n) * 4) #define PR_WPE BIT(31) #define PR_LIMIT_SHIFT 16 #define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT) #define PR_RPE BIT(15) #define PR_BASE_MASK 0x3fff /* Offsets are from @ispi->sregs */ #define SSFSTS_CTL 0x00 #define SSFSTS_CTL_FSMIE BIT(23) #define SSFSTS_CTL_DS BIT(22) #define SSFSTS_CTL_DBC_SHIFT 16 #define SSFSTS_CTL_SPOP BIT(11) #define SSFSTS_CTL_ACS BIT(10) #define SSFSTS_CTL_SCGO BIT(9) #define SSFSTS_CTL_COP_SHIFT 12 #define SSFSTS_CTL_FRS BIT(7) #define SSFSTS_CTL_DOFRS BIT(6) #define SSFSTS_CTL_AEL BIT(4) #define SSFSTS_CTL_FCERR BIT(3) #define SSFSTS_CTL_FDONE BIT(2) #define SSFSTS_CTL_SCIP BIT(0) #define PREOP_OPTYPE 0x04 #define OPMENU0 0x08 #define OPMENU1 0x0c #define OPTYPE_READ_NO_ADDR 0 #define OPTYPE_WRITE_NO_ADDR 1 #define OPTYPE_READ_WITH_ADDR 2 #define OPTYPE_WRITE_WITH_ADDR 3 /* CPU specifics */ #define BYT_PR 0x74 #define BYT_SSFSTS_CTL 0x90 #define BYT_BCR 0xfc #define BYT_BCR_WPD BIT(0) #define BYT_FREG_NUM 5 #define BYT_PR_NUM 5 #define LPT_PR 0x74 #define LPT_SSFSTS_CTL 0x90 #define LPT_FREG_NUM 5 #define LPT_PR_NUM 5 #define BXT_PR 0x84 #define BXT_SSFSTS_CTL 0xa0 #define BXT_FREG_NUM 12 #define BXT_PR_NUM 6 #define LVSCC 0xc4 #define UVSCC 0xc8 #define ERASE_OPCODE_SHIFT 8 #define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT) #define ERASE_64K_OPCODE_SHIFT 16 #define ERASE_64K_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT) #define INTEL_SPI_TIMEOUT 5000 /* ms */ #define INTEL_SPI_FIFO_SZ 64 /** * struct intel_spi - Driver private data * @dev: Device pointer * @info: Pointer to board specific info * @nor: SPI NOR layer structure * @base: Beginning of MMIO space * @pregs: Start of protection registers * @sregs: Start of software sequencer registers * @nregions: Maximum number of regions * @pr_num: Maximum number of protected range registers * @writeable: Is the chip writeable * @locked: Is SPI setting locked * @swseq_reg: Use SW sequencer in register reads/writes * @swseq_erase: Use SW sequencer in erase operation * @erase_64k: 64k erase supported * @atomic_preopcode: Holds preopcode when atomic sequence is requested * @opcodes: Opcodes which are supported. This are programmed by BIOS * before it locks down the controller. */ struct intel_spi { struct device *dev; const struct intel_spi_boardinfo *info; struct spi_nor nor; void __iomem *base; void __iomem *pregs; void __iomem *sregs; size_t nregions; size_t pr_num; bool writeable; bool locked; bool swseq_reg; bool swseq_erase; bool erase_64k; u8 atomic_preopcode; u8 opcodes[8]; }; static bool writeable; module_param(writeable, bool, 0); MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)"); static void intel_spi_dump_regs(struct intel_spi *ispi) { u32 value; int i; dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG)); value = readl(ispi->base + HSFSTS_CTL); dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value); if (value & HSFSTS_CTL_FLOCKDN) dev_dbg(ispi->dev, "-> Locked\n"); dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR)); dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK)); for (i = 0; i < 16; i++) dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n", i, readl(ispi->base + FDATA(i))); dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC)); for (i = 0; i < ispi->nregions; i++) dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i, readl(ispi->base + FREG(i))); for (i = 0; i < ispi->pr_num; i++) dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i, readl(ispi->pregs + PR(i))); value = readl(ispi->sregs + SSFSTS_CTL); dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value); dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n", readl(ispi->sregs + PREOP_OPTYPE)); dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0)); dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1)); if (ispi->info->type == INTEL_SPI_BYT) dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR)); dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC)); dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC)); dev_dbg(ispi->dev, "Protected regions:\n"); for (i = 0; i < ispi->pr_num; i++) { u32 base, limit; value = readl(ispi->pregs + PR(i)); if (!(value & (PR_WPE | PR_RPE))) continue; limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; base = value & PR_BASE_MASK; dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n", i, base << 12, (limit << 12) | 0xfff, value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.'); } dev_dbg(ispi->dev, "Flash regions:\n"); for (i = 0; i < ispi->nregions; i++) { u32 region, base, limit; region = readl(ispi->base + FREG(i)); base = region & FREG_BASE_MASK; limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; if (base >= limit || (i > 0 && limit == 0)) dev_dbg(ispi->dev, " %02d disabled\n", i); else dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n", i, base << 12, (limit << 12) | 0xfff); } dev_dbg(ispi->dev, "Using %cW sequencer for register access\n", ispi->swseq_reg ? 'S' : 'H'); dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n", ispi->swseq_erase ? 'S' : 'H'); } /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */ static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size) { size_t bytes; int i = 0; if (size > INTEL_SPI_FIFO_SZ) return -EINVAL; while (size > 0) { bytes = min_t(size_t, size, 4); memcpy_fromio(buf, ispi->base + FDATA(i), bytes); size -= bytes; buf += bytes; i++; } return 0; } /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */ static int intel_spi_write_block(struct intel_spi *ispi, const void *buf, size_t size) { size_t bytes; int i = 0; if (size > INTEL_SPI_FIFO_SZ) return -EINVAL; while (size > 0) { bytes = min_t(size_t, size, 4); memcpy_toio(ispi->base + FDATA(i), buf, bytes); size -= bytes; buf += bytes; i++; } return 0; } static int intel_spi_wait_hw_busy(struct intel_spi *ispi) { u32 val; return readl_poll_timeout(ispi->base + HSFSTS_CTL, val, !(val & HSFSTS_CTL_SCIP), 40, INTEL_SPI_TIMEOUT * 1000); } static int intel_spi_wait_sw_busy(struct intel_spi *ispi) { u32 val; return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val, !(val & SSFSTS_CTL_SCIP), 40, INTEL_SPI_TIMEOUT * 1000); } static int intel_spi_init(struct intel_spi *ispi) { u32 opmenu0, opmenu1, lvscc, uvscc, val; int i; switch (ispi->info->type) { case INTEL_SPI_BYT: ispi->sregs = ispi->base + BYT_SSFSTS_CTL; ispi->pregs = ispi->base + BYT_PR; ispi->nregions = BYT_FREG_NUM; ispi->pr_num = BYT_PR_NUM; ispi->swseq_reg = true; if (writeable) { /* Disable write protection */ val = readl(ispi->base + BYT_BCR); if (!(val & BYT_BCR_WPD)) { val |= BYT_BCR_WPD; writel(val, ispi->base + BYT_BCR); val = readl(ispi->base + BYT_BCR); } ispi->writeable = !!(val & BYT_BCR_WPD); } break; case INTEL_SPI_LPT: ispi->sregs = ispi->base + LPT_SSFSTS_CTL; ispi->pregs = ispi->base + LPT_PR; ispi->nregions = LPT_FREG_NUM; ispi->pr_num = LPT_PR_NUM; ispi->swseq_reg = true; break; case INTEL_SPI_BXT: ispi->sregs = ispi->base + BXT_SSFSTS_CTL; ispi->pregs = ispi->base + BXT_PR; ispi->nregions = BXT_FREG_NUM; ispi->pr_num = BXT_PR_NUM; ispi->erase_64k = true; break; default: return -EINVAL; } /* Disable #SMI generation from HW sequencer */ val = readl(ispi->base + HSFSTS_CTL); val &= ~HSFSTS_CTL_FSMIE; writel(val, ispi->base + HSFSTS_CTL); /* * Determine whether erase operation should use HW or SW sequencer. * * The HW sequencer has a predefined list of opcodes, with only the * erase opcode being programmable in LVSCC and UVSCC registers. * If these registers don't contain a valid erase opcode, erase * cannot be done using HW sequencer. */ lvscc = readl(ispi->base + LVSCC); uvscc = readl(ispi->base + UVSCC); if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK)) ispi->swseq_erase = true; /* SPI controller on Intel BXT supports 64K erase opcode */ if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase) if (!(lvscc & ERASE_64K_OPCODE_MASK) || !(uvscc & ERASE_64K_OPCODE_MASK)) ispi->erase_64k = false; /* * Some controllers can only do basic operations using hardware * sequencer. All other operations are supposed to be carried out * using software sequencer. */ if (ispi->swseq_reg) { /* Disable #SMI generation from SW sequencer */ val = readl(ispi->sregs + SSFSTS_CTL); val &= ~SSFSTS_CTL_FSMIE; writel(val, ispi->sregs + SSFSTS_CTL); } /* Check controller's lock status */ val = readl(ispi->base + HSFSTS_CTL); ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN); if (ispi->locked) { /* * BIOS programs allowed opcodes and then locks down the * register. So read back what opcodes it decided to support. * That's the set we are going to support as well. */ opmenu0 = readl(ispi->sregs + OPMENU0); opmenu1 = readl(ispi->sregs + OPMENU1); if (opmenu0 && opmenu1) { for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) { ispi->opcodes[i] = opmenu0 >> i * 8; ispi->opcodes[i + 4] = opmenu1 >> i * 8; } } } intel_spi_dump_regs(ispi); return 0; } static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype) { int i; int preop; if (ispi->locked) { for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) if (ispi->opcodes[i] == opcode) return i; return -EINVAL; } /* The lock is off, so just use index 0 */ writel(opcode, ispi->sregs + OPMENU0); preop = readw(ispi->sregs + PREOP_OPTYPE); writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE); return 0; } static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, int len) { u32 val, status; int ret; val = readl(ispi->base + HSFSTS_CTL); val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK); switch (opcode) { case SPINOR_OP_RDID: val |= HSFSTS_CTL_FCYCLE_RDID; break; case SPINOR_OP_WRSR: val |= HSFSTS_CTL_FCYCLE_WRSR; break; case SPINOR_OP_RDSR: val |= HSFSTS_CTL_FCYCLE_RDSR; break; default: return -EINVAL; } if (len > INTEL_SPI_FIFO_SZ) return -EINVAL; val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT; val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; val |= HSFSTS_CTL_FGO; writel(val, ispi->base + HSFSTS_CTL); ret = intel_spi_wait_hw_busy(ispi); if (ret) return ret; status = readl(ispi->base + HSFSTS_CTL); if (status & HSFSTS_CTL_FCERR) return -EIO; else if (status & HSFSTS_CTL_AEL) return -EACCES; return 0; } static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, int len, int optype) { u32 val = 0, status; u8 atomic_preopcode; int ret; ret = intel_spi_opcode_index(ispi, opcode, optype); if (ret < 0) return ret; if (len > INTEL_SPI_FIFO_SZ) return -EINVAL; /* * Always clear it after each SW sequencer operation regardless * of whether it is successful or not. */ atomic_preopcode = ispi->atomic_preopcode; ispi->atomic_preopcode = 0; /* Only mark 'Data Cycle' bit when there is data to be transferred */ if (len > 0) val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS; val |= ret << SSFSTS_CTL_COP_SHIFT; val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE; val |= SSFSTS_CTL_SCGO; if (atomic_preopcode) { u16 preop; switch (optype) { case OPTYPE_WRITE_NO_ADDR: case OPTYPE_WRITE_WITH_ADDR: /* Pick matching preopcode for the atomic sequence */ preop = readw(ispi->sregs + PREOP_OPTYPE); if ((preop & 0xff) == atomic_preopcode) ; /* Do nothing */ else if ((preop >> 8) == atomic_preopcode) val |= SSFSTS_CTL_SPOP; else return -EINVAL; /* Enable atomic sequence */ val |= SSFSTS_CTL_ACS; break; default: return -EINVAL; } } writel(val, ispi->sregs + SSFSTS_CTL); ret = intel_spi_wait_sw_busy(ispi); if (ret) return ret; status = readl(ispi->sregs + SSFSTS_CTL); if (status & SSFSTS_CTL_FCERR) return -EIO; else if (status & SSFSTS_CTL_AEL) return -EACCES; return 0; } static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) { struct intel_spi *ispi = nor->priv; int ret; /* Address of the first chip */ writel(0, ispi->base + FADDR); if (ispi->swseq_reg) ret = intel_spi_sw_cycle(ispi, opcode, len, OPTYPE_READ_NO_ADDR); else ret = intel_spi_hw_cycle(ispi, opcode, len); if (ret) return ret; return intel_spi_read_block(ispi, buf, len); } static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) { struct intel_spi *ispi = nor->priv; int ret; /* * This is handled with atomic operation and preop code in Intel * controller so we only verify that it is available. If the * controller is not locked, program the opcode to the PREOP * register for later use. * * When hardware sequencer is used there is no need to program * any opcodes (it handles them automatically as part of a command). */ if (opcode == SPINOR_OP_WREN) { u16 preop; if (!ispi->swseq_reg) return 0; preop = readw(ispi->sregs + PREOP_OPTYPE); if ((preop & 0xff) != opcode && (preop >> 8) != opcode) { if (ispi->locked) return -EINVAL; writel(opcode, ispi->sregs + PREOP_OPTYPE); } /* * This enables atomic sequence on next SW sycle. Will * be cleared after next operation. */ ispi->atomic_preopcode = opcode; return 0; } writel(0, ispi->base + FADDR); /* Write the value beforehand */ ret = intel_spi_write_block(ispi, buf, len); if (ret) return ret; if (ispi->swseq_reg) return intel_spi_sw_cycle(ispi, opcode, len, OPTYPE_WRITE_NO_ADDR); return intel_spi_hw_cycle(ispi, opcode, len); } static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len, u_char *read_buf) { struct intel_spi *ispi = nor->priv; size_t block_size, retlen = 0; u32 val, status; ssize_t ret; /* * Atomic sequence is not expected with HW sequencer reads. Make * sure it is cleared regardless. */ if (WARN_ON_ONCE(ispi->atomic_preopcode)) ispi->atomic_preopcode = 0; switch (nor->read_opcode) { case SPINOR_OP_READ: case SPINOR_OP_READ_FAST: break; default: return -EINVAL; } while (len > 0) { block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ); /* Read cannot cross 4K boundary */ block_size = min_t(loff_t, from + block_size, round_up(from + 1, SZ_4K)) - from; writel(from, ispi->base + FADDR); val = readl(ispi->base + HSFSTS_CTL); val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; val |= HSFSTS_CTL_FCYCLE_READ; val |= HSFSTS_CTL_FGO; writel(val, ispi->base + HSFSTS_CTL); ret = intel_spi_wait_hw_busy(ispi); if (ret) return ret; status = readl(ispi->base + HSFSTS_CTL); if (status & HSFSTS_CTL_FCERR) ret = -EIO; else if (status & HSFSTS_CTL_AEL) ret = -EACCES; if (ret < 0) { dev_err(ispi->dev, "read error: %llx: %#x\n", from, status); return ret; } ret = intel_spi_read_block(ispi, read_buf, block_size); if (ret) return ret; len -= block_size; from += block_size; retlen += block_size; read_buf += block_size; } return retlen; } static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len, const u_char *write_buf) { struct intel_spi *ispi = nor->priv; size_t block_size, retlen = 0; u32 val, status; ssize_t ret; /* Not needed with HW sequencer write, make sure it is cleared */ ispi->atomic_preopcode = 0; while (len > 0) { block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ); /* Write cannot cross 4K boundary */ block_size = min_t(loff_t, to + block_size, round_up(to + 1, SZ_4K)) - to; writel(to, ispi->base + FADDR); val = readl(ispi->base + HSFSTS_CTL); val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; val |= HSFSTS_CTL_FCYCLE_WRITE; ret = intel_spi_write_block(ispi, write_buf, block_size); if (ret) { dev_err(ispi->dev, "failed to write block\n"); return ret; } /* Start the write now */ val |= HSFSTS_CTL_FGO; writel(val, ispi->base + HSFSTS_CTL); ret = intel_spi_wait_hw_busy(ispi); if (ret) { dev_err(ispi->dev, "timeout\n"); return ret; } status = readl(ispi->base + HSFSTS_CTL); if (status & HSFSTS_CTL_FCERR) ret = -EIO; else if (status & HSFSTS_CTL_AEL) ret = -EACCES; if (ret < 0) { dev_err(ispi->dev, "write error: %llx: %#x\n", to, status); return ret; } len -= block_size; to += block_size; retlen += block_size; write_buf += block_size; } return retlen; } static int intel_spi_erase(struct spi_nor *nor, loff_t offs) { size_t erase_size, len = nor->mtd.erasesize; struct intel_spi *ispi = nor->priv; u32 val, status, cmd; int ret; /* If the hardware can do 64k erase use that when possible */ if (len >= SZ_64K && ispi->erase_64k) { cmd = HSFSTS_CTL_FCYCLE_ERASE_64K; erase_size = SZ_64K; } else { cmd = HSFSTS_CTL_FCYCLE_ERASE; erase_size = SZ_4K; } if (ispi->swseq_erase) { while (len > 0) { writel(offs, ispi->base + FADDR); ret = intel_spi_sw_cycle(ispi, nor->erase_opcode, 0, OPTYPE_WRITE_WITH_ADDR); if (ret) return ret; offs += erase_size; len -= erase_size; } return 0; } /* Not needed with HW sequencer erase, make sure it is cleared */ ispi->atomic_preopcode = 0; while (len > 0) { writel(offs, ispi->base + FADDR); val = readl(ispi->base + HSFSTS_CTL); val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; val |= cmd; val |= HSFSTS_CTL_FGO; writel(val, ispi->base + HSFSTS_CTL); ret = intel_spi_wait_hw_busy(ispi); if (ret) return ret; status = readl(ispi->base + HSFSTS_CTL); if (status & HSFSTS_CTL_FCERR) return -EIO; else if (status & HSFSTS_CTL_AEL) return -EACCES; offs += erase_size; len -= erase_size; } return 0; } static bool intel_spi_is_protected(const struct intel_spi *ispi, unsigned int base, unsigned int limit) { int i; for (i = 0; i < ispi->pr_num; i++) { u32 pr_base, pr_limit, pr_value; pr_value = readl(ispi->pregs + PR(i)); if (!(pr_value & (PR_WPE | PR_RPE))) continue; pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; pr_base = pr_value & PR_BASE_MASK; if (pr_base >= base && pr_limit <= limit) return true; } return false; } /* * There will be a single partition holding all enabled flash regions. We * call this "BIOS". */ static void intel_spi_fill_partition(struct intel_spi *ispi, struct mtd_partition *part) { u64 end; int i; memset(part, 0, sizeof(*part)); /* Start from the mandatory descriptor region */ part->size = 4096; part->name = "BIOS"; /* * Now try to find where this partition ends based on the flash * region registers. */ for (i = 1; i < ispi->nregions; i++) { u32 region, base, limit; region = readl(ispi->base + FREG(i)); base = region & FREG_BASE_MASK; limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; if (base >= limit || limit == 0) continue; /* * If any of the regions have protection bits set, make the * whole partition read-only to be on the safe side. */ if (intel_spi_is_protected(ispi, base, limit)) ispi->writeable = false; end = (limit << 12) + 4096; if (end > part->size) part->size = end; } } struct intel_spi *intel_spi_probe(struct device *dev, struct resource *mem, const struct intel_spi_boardinfo *info) { const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST | SNOR_HWCAPS_PP, }; struct mtd_partition part; struct intel_spi *ispi; int ret; if (!info || !mem) return ERR_PTR(-EINVAL); ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL); if (!ispi) return ERR_PTR(-ENOMEM); ispi->base = devm_ioremap_resource(dev, mem); if (IS_ERR(ispi->base)) return ERR_CAST(ispi->base); ispi->dev = dev; ispi->info = info; ispi->writeable = info->writeable; ret = intel_spi_init(ispi); if (ret) return ERR_PTR(ret); ispi->nor.dev = ispi->dev; ispi->nor.priv = ispi; ispi->nor.read_reg = intel_spi_read_reg; ispi->nor.write_reg = intel_spi_write_reg; ispi->nor.read = intel_spi_read; ispi->nor.write = intel_spi_write; ispi->nor.erase = intel_spi_erase; ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps); if (ret) { dev_info(dev, "failed to locate the chip\n"); return ERR_PTR(ret); } intel_spi_fill_partition(ispi, &part); /* Prevent writes if not explicitly enabled */ if (!ispi->writeable || !writeable) ispi->nor.mtd.flags &= ~MTD_WRITEABLE; ret = mtd_device_register(&ispi->nor.mtd, &part, 1); if (ret) return ERR_PTR(ret); return ispi; } EXPORT_SYMBOL_GPL(intel_spi_probe); int intel_spi_remove(struct intel_spi *ispi) { return mtd_device_unregister(&ispi->nor.mtd); } EXPORT_SYMBOL_GPL(intel_spi_remove); MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver"); MODULE_AUTHOR("Mika Westerberg "); MODULE_LICENSE("GPL v2");