/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2008 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include #include #include #include #include #include #include "net_driver.h" #include "tx.h" #include "efx.h" #include "falcon.h" #include "workarounds.h" /* * TX descriptor ring full threshold * * The tx_queue descriptor ring fill-level must fall below this value * before we restart the netif queue */ #define EFX_NETDEV_TX_THRESHOLD(_tx_queue) \ (_tx_queue->efx->type->txd_ring_mask / 2u) /* We want to be able to nest calls to netif_stop_queue(), since each * channel can have an individual stop on the queue. */ void efx_stop_queue(struct efx_nic *efx) { spin_lock_bh(&efx->netif_stop_lock); EFX_TRACE(efx, "stop TX queue\n"); atomic_inc(&efx->netif_stop_count); netif_stop_queue(efx->net_dev); spin_unlock_bh(&efx->netif_stop_lock); } /* Wake netif's TX queue * We want to be able to nest calls to netif_stop_queue(), since each * channel can have an individual stop on the queue. */ inline void efx_wake_queue(struct efx_nic *efx) { local_bh_disable(); if (atomic_dec_and_lock(&efx->netif_stop_count, &efx->netif_stop_lock)) { EFX_TRACE(efx, "waking TX queue\n"); netif_wake_queue(efx->net_dev); spin_unlock(&efx->netif_stop_lock); } local_bh_enable(); } static inline void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, struct efx_tx_buffer *buffer) { if (buffer->unmap_len) { struct pci_dev *pci_dev = tx_queue->efx->pci_dev; if (buffer->unmap_single) pci_unmap_single(pci_dev, buffer->unmap_addr, buffer->unmap_len, PCI_DMA_TODEVICE); else pci_unmap_page(pci_dev, buffer->unmap_addr, buffer->unmap_len, PCI_DMA_TODEVICE); buffer->unmap_len = 0; buffer->unmap_single = 0; } if (buffer->skb) { dev_kfree_skb_any((struct sk_buff *) buffer->skb); buffer->skb = NULL; EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x " "complete\n", tx_queue->queue, read_ptr); } } /* * Add a socket buffer to a TX queue * * This maps all fragments of a socket buffer for DMA and adds them to * the TX queue. The queue's insert pointer will be incremented by * the number of fragments in the socket buffer. * * If any DMA mapping fails, any mapped fragments will be unmapped, * the queue's insert pointer will be restored to its original value. * * Returns NETDEV_TX_OK or NETDEV_TX_BUSY * You must hold netif_tx_lock() to call this function. */ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, const struct sk_buff *skb) { struct efx_nic *efx = tx_queue->efx; struct pci_dev *pci_dev = efx->pci_dev; struct efx_tx_buffer *buffer; skb_frag_t *fragment; struct page *page; int page_offset; unsigned int len, unmap_len = 0, fill_level, insert_ptr, misalign; dma_addr_t dma_addr, unmap_addr = 0; unsigned int dma_len; unsigned unmap_single; int q_space, i = 0; int rc = NETDEV_TX_OK; EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); /* Get size of the initial fragment */ len = skb_headlen(skb); fill_level = tx_queue->insert_count - tx_queue->old_read_count; q_space = efx->type->txd_ring_mask - 1 - fill_level; /* Map for DMA. Use pci_map_single rather than pci_map_page * since this is more efficient on machines with sparse * memory. */ unmap_single = 1; dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE); /* Process all fragments */ while (1) { if (unlikely(pci_dma_mapping_error(dma_addr))) goto pci_err; /* Store fields for marking in the per-fragment final * descriptor */ unmap_len = len; unmap_addr = dma_addr; /* Add to TX queue, splitting across DMA boundaries */ do { if (unlikely(q_space-- <= 0)) { /* It might be that completions have * happened since the xmit path last * checked. Update the xmit path's * copy of read_count. */ ++tx_queue->stopped; /* This memory barrier protects the * change of stopped from the access * of read_count. */ smp_mb(); tx_queue->old_read_count = *(volatile unsigned *) &tx_queue->read_count; fill_level = (tx_queue->insert_count - tx_queue->old_read_count); q_space = (efx->type->txd_ring_mask - 1 - fill_level); if (unlikely(q_space-- <= 0)) goto stop; smp_mb(); --tx_queue->stopped; } insert_ptr = (tx_queue->insert_count & efx->type->txd_ring_mask); buffer = &tx_queue->buffer[insert_ptr]; EFX_BUG_ON_PARANOID(buffer->skb); EFX_BUG_ON_PARANOID(buffer->len); EFX_BUG_ON_PARANOID(buffer->continuation != 1); EFX_BUG_ON_PARANOID(buffer->unmap_len); dma_len = (((~dma_addr) & efx->type->tx_dma_mask) + 1); if (likely(dma_len > len)) dma_len = len; misalign = (unsigned)dma_addr & efx->type->bug5391_mask; if (misalign && dma_len + misalign > 512) dma_len = 512 - misalign; /* Fill out per descriptor fields */ buffer->len = dma_len; buffer->dma_addr = dma_addr; len -= dma_len; dma_addr += dma_len; ++tx_queue->insert_count; } while (len); /* Transfer ownership of the unmapping to the final buffer */ buffer->unmap_addr = unmap_addr; buffer->unmap_single = unmap_single; buffer->unmap_len = unmap_len; unmap_len = 0; /* Get address and size of next fragment */ if (i >= skb_shinfo(skb)->nr_frags) break; fragment = &skb_shinfo(skb)->frags[i]; len = fragment->size; page = fragment->page; page_offset = fragment->page_offset; i++; /* Map for DMA */ unmap_single = 0; dma_addr = pci_map_page(pci_dev, page, page_offset, len, PCI_DMA_TODEVICE); } /* Transfer ownership of the skb to the final buffer */ buffer->skb = skb; buffer->continuation = 0; /* Pass off to hardware */ falcon_push_buffers(tx_queue); return NETDEV_TX_OK; pci_err: EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d " "fragments for DMA\n", tx_queue->queue, skb->len, skb_shinfo(skb)->nr_frags + 1); /* Mark the packet as transmitted, and free the SKB ourselves */ dev_kfree_skb_any((struct sk_buff *)skb); goto unwind; stop: rc = NETDEV_TX_BUSY; if (tx_queue->stopped == 1) efx_stop_queue(efx); unwind: /* Work backwards until we hit the original insert pointer value */ while (tx_queue->insert_count != tx_queue->write_count) { --tx_queue->insert_count; insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask; buffer = &tx_queue->buffer[insert_ptr]; efx_dequeue_buffer(tx_queue, buffer); buffer->len = 0; } /* Free the fragment we were mid-way through pushing */ if (unmap_len) pci_unmap_page(pci_dev, unmap_addr, unmap_len, PCI_DMA_TODEVICE); return rc; } /* Remove packets from the TX queue * * This removes packets from the TX queue, up to and including the * specified index. */ static inline void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, unsigned int index) { struct efx_nic *efx = tx_queue->efx; unsigned int stop_index, read_ptr; unsigned int mask = tx_queue->efx->type->txd_ring_mask; stop_index = (index + 1) & mask; read_ptr = tx_queue->read_count & mask; while (read_ptr != stop_index) { struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; if (unlikely(buffer->len == 0)) { EFX_ERR(tx_queue->efx, "TX queue %d spurious TX " "completion id %x\n", tx_queue->queue, read_ptr); efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); return; } efx_dequeue_buffer(tx_queue, buffer); buffer->continuation = 1; buffer->len = 0; ++tx_queue->read_count; read_ptr = tx_queue->read_count & mask; } } /* Initiate a packet transmission on the specified TX queue. * Note that returning anything other than NETDEV_TX_OK will cause the * OS to free the skb. * * This function is split out from efx_hard_start_xmit to allow the * loopback test to direct packets via specific TX queues. It is * therefore a non-static inline, so as not to penalise performance * for non-loopback transmissions. * * Context: netif_tx_lock held */ inline int efx_xmit(struct efx_nic *efx, struct efx_tx_queue *tx_queue, struct sk_buff *skb) { int rc; /* Map fragments for DMA and add to TX queue */ rc = efx_enqueue_skb(tx_queue, skb); if (unlikely(rc != NETDEV_TX_OK)) goto out; /* Update last TX timer */ efx->net_dev->trans_start = jiffies; out: return rc; } /* Initiate a packet transmission. We use one channel per CPU * (sharing when we have more CPUs than channels). On Falcon, the TX * completion events will be directed back to the CPU that transmitted * the packet, which should be cache-efficient. * * Context: non-blocking. * Note that returning anything other than NETDEV_TX_OK will cause the * OS to free the skb. */ int efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev) { struct efx_nic *efx = net_dev->priv; return efx_xmit(efx, &efx->tx_queue[0], skb); } void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) { unsigned fill_level; struct efx_nic *efx = tx_queue->efx; EFX_BUG_ON_PARANOID(index > efx->type->txd_ring_mask); efx_dequeue_buffers(tx_queue, index); /* See if we need to restart the netif queue. This barrier * separates the update of read_count from the test of * stopped. */ smp_mb(); if (unlikely(tx_queue->stopped)) { fill_level = tx_queue->insert_count - tx_queue->read_count; if (fill_level < EFX_NETDEV_TX_THRESHOLD(tx_queue)) { EFX_BUG_ON_PARANOID(!NET_DEV_REGISTERED(efx)); /* Do this under netif_tx_lock(), to avoid racing * with efx_xmit(). */ netif_tx_lock(efx->net_dev); if (tx_queue->stopped) { tx_queue->stopped = 0; efx_wake_queue(efx); } netif_tx_unlock(efx->net_dev); } } } int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; unsigned int txq_size; int i, rc; EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue); /* Allocate software ring */ txq_size = (efx->type->txd_ring_mask + 1) * sizeof(*tx_queue->buffer); tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL); if (!tx_queue->buffer) { rc = -ENOMEM; goto fail1; } for (i = 0; i <= efx->type->txd_ring_mask; ++i) tx_queue->buffer[i].continuation = 1; /* Allocate hardware ring */ rc = falcon_probe_tx(tx_queue); if (rc) goto fail2; return 0; fail2: kfree(tx_queue->buffer); tx_queue->buffer = NULL; fail1: tx_queue->used = 0; return rc; } int efx_init_tx_queue(struct efx_tx_queue *tx_queue) { EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue); tx_queue->insert_count = 0; tx_queue->write_count = 0; tx_queue->read_count = 0; tx_queue->old_read_count = 0; BUG_ON(tx_queue->stopped); /* Set up TX descriptor ring */ return falcon_init_tx(tx_queue); } void efx_release_tx_buffers(struct efx_tx_queue *tx_queue) { struct efx_tx_buffer *buffer; if (!tx_queue->buffer) return; /* Free any buffers left in the ring */ while (tx_queue->read_count != tx_queue->write_count) { buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->efx->type->txd_ring_mask]; efx_dequeue_buffer(tx_queue, buffer); buffer->continuation = 1; buffer->len = 0; ++tx_queue->read_count; } } void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) { EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue); /* Flush TX queue, remove descriptor ring */ falcon_fini_tx(tx_queue); efx_release_tx_buffers(tx_queue); /* Release queue's stop on port, if any */ if (tx_queue->stopped) { tx_queue->stopped = 0; efx_wake_queue(tx_queue->efx); } } void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) { EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue); falcon_remove_tx(tx_queue); kfree(tx_queue->buffer); tx_queue->buffer = NULL; tx_queue->used = 0; }