/* * * Copyright (c) 2004-2010 Atheros Communications Inc. * All rights reserved. * * // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License version 2 as // published by the Free Software Foundation; // // Software distributed under the License is distributed on an "AS // IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or // implied. See the License for the specific language governing // rights and limitations under the License. // // * */ /* * This driver is a pseudo ethernet driver to access the Atheros AR6000 * WLAN Device */ #include "ar6000_drv.h" #ifdef ATH6K_CONFIG_CFG80211 #include "cfg80211.h" #endif /* ATH6K_CONFIG_CFG80211 */ #include "htc.h" #include "wmi_filter_linux.h" #include "epping_test.h" #include "wlan_config.h" #include "ar3kconfig.h" /* LINUX_HACK_FUDGE_FACTOR -- this is used to provide a workaround for linux behavior. When * the meta data was added to the header it was found that linux did not correctly provide * enough headroom. However when more headroom was requested beyond what was truly needed * Linux gave the requested headroom. Therefore to get the necessary headroom from Linux * the driver requests more than is needed by the amount = LINUX_HACK_FUDGE_FACTOR */ #define LINUX_HACK_FUDGE_FACTOR 16 A_UINT8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; A_UINT8 null_mac[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0}; #ifdef DEBUG #define ATH_DEBUG_DBG_LOG ATH_DEBUG_MAKE_MODULE_MASK(0) #define ATH_DEBUG_WLAN_CONNECT ATH_DEBUG_MAKE_MODULE_MASK(1) #define ATH_DEBUG_WLAN_SCAN ATH_DEBUG_MAKE_MODULE_MASK(2) #define ATH_DEBUG_WLAN_TX ATH_DEBUG_MAKE_MODULE_MASK(3) #define ATH_DEBUG_WLAN_RX ATH_DEBUG_MAKE_MODULE_MASK(4) #define ATH_DEBUG_HTC_RAW ATH_DEBUG_MAKE_MODULE_MASK(5) #define ATH_DEBUG_HCI_BRIDGE ATH_DEBUG_MAKE_MODULE_MASK(6) static ATH_DEBUG_MASK_DESCRIPTION driver_debug_desc[] = { { ATH_DEBUG_DBG_LOG , "Target Debug Logs"}, { ATH_DEBUG_WLAN_CONNECT , "WLAN connect"}, { ATH_DEBUG_WLAN_SCAN , "WLAN scan"}, { ATH_DEBUG_WLAN_TX , "WLAN Tx"}, { ATH_DEBUG_WLAN_RX , "WLAN Rx"}, { ATH_DEBUG_HTC_RAW , "HTC Raw IF tracing"}, { ATH_DEBUG_HCI_BRIDGE , "HCI Bridge Setup"}, { ATH_DEBUG_HCI_RECV , "HCI Recv tracing"}, { ATH_DEBUG_HCI_SEND , "HCI Send tracing"}, { ATH_DEBUG_HCI_DUMP , "HCI Packet dumps"}, }; ATH_DEBUG_INSTANTIATE_MODULE_VAR(driver, "driver", "Linux Driver Interface", ATH_DEBUG_MASK_DEFAULTS | ATH_DEBUG_WLAN_SCAN | ATH_DEBUG_HCI_BRIDGE, ATH_DEBUG_DESCRIPTION_COUNT(driver_debug_desc), driver_debug_desc); #endif #define IS_MAC_NULL(mac) (mac[0]==0 && mac[1]==0 && mac[2]==0 && mac[3]==0 && mac[4]==0 && mac[5]==0) #define IS_MAC_BCAST(mac) (*mac==0xff) MODULE_LICENSE("GPL and additional rights"); #ifndef REORG_APTC_HEURISTICS #undef ADAPTIVE_POWER_THROUGHPUT_CONTROL #endif /* REORG_APTC_HEURISTICS */ #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL #define APTC_TRAFFIC_SAMPLING_INTERVAL 100 /* msec */ #define APTC_UPPER_THROUGHPUT_THRESHOLD 3000 /* Kbps */ #define APTC_LOWER_THROUGHPUT_THRESHOLD 2000 /* Kbps */ typedef struct aptc_traffic_record { A_BOOL timerScheduled; struct timeval samplingTS; unsigned long bytesReceived; unsigned long bytesTransmitted; } APTC_TRAFFIC_RECORD; A_TIMER aptcTimer; APTC_TRAFFIC_RECORD aptcTR; #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ #ifdef EXPORT_HCI_BRIDGE_INTERFACE // callbacks registered by HCI transport driver HCI_TRANSPORT_CALLBACKS ar6kHciTransCallbacks = { NULL }; #endif unsigned int processDot11Hdr = 0; int bmienable = BMIENABLE_DEFAULT; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) char ifname[IFNAMSIZ] = {0,}; #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) */ int wlaninitmode = WLAN_INIT_MODE_DEFAULT; unsigned int bypasswmi = 0; unsigned int debuglevel = 0; int tspecCompliance = ATHEROS_COMPLIANCE; unsigned int busspeedlow = 0; unsigned int onebitmode = 0; unsigned int skipflash = 0; unsigned int wmitimeout = 2; unsigned int wlanNodeCaching = 1; unsigned int enableuartprint = ENABLEUARTPRINT_DEFAULT; unsigned int logWmiRawMsgs = 0; unsigned int enabletimerwar = 0; unsigned int fwmode = 1; unsigned int mbox_yield_limit = 99; unsigned int enablerssicompensation = 0; int reduce_credit_dribble = 1 + HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_ONE_HALF; int allow_trace_signal = 0; #ifdef CONFIG_HOST_TCMD_SUPPORT unsigned int testmode =0; #endif unsigned int irqprocmode = HIF_DEVICE_IRQ_SYNC_ONLY;//HIF_DEVICE_IRQ_ASYNC_SYNC; unsigned int panic_on_assert = 1; unsigned int nohifscattersupport = NOHIFSCATTERSUPPORT_DEFAULT; unsigned int setuphci = SETUPHCI_DEFAULT; unsigned int loghci = 0; unsigned int setupbtdev = SETUPBTDEV_DEFAULT; #ifndef EXPORT_HCI_BRIDGE_INTERFACE unsigned int ar3khcibaud = AR3KHCIBAUD_DEFAULT; unsigned int hciuartscale = HCIUARTSCALE_DEFAULT; unsigned int hciuartstep = HCIUARTSTEP_DEFAULT; #endif #ifdef CONFIG_CHECKSUM_OFFLOAD unsigned int csumOffload=0; unsigned int csumOffloadTest=0; #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) module_param_string(ifname, ifname, sizeof(ifname), 0644); module_param(wlaninitmode, int, 0644); module_param(bmienable, int, 0644); module_param(bypasswmi, uint, 0644); module_param(debuglevel, uint, 0644); module_param(tspecCompliance, int, 0644); module_param(onebitmode, uint, 0644); module_param(busspeedlow, uint, 0644); module_param(skipflash, uint, 0644); module_param(wmitimeout, uint, 0644); module_param(wlanNodeCaching, uint, 0644); module_param(logWmiRawMsgs, uint, 0644); module_param(enableuartprint, uint, 0644); module_param(enabletimerwar, uint, 0644); module_param(fwmode, uint, 0644); module_param(mbox_yield_limit, uint, 0644); module_param(reduce_credit_dribble, int, 0644); module_param(allow_trace_signal, int, 0644); module_param(enablerssicompensation, uint, 0644); module_param(processDot11Hdr, uint, 0644); #ifdef CONFIG_CHECKSUM_OFFLOAD module_param(csumOffload, uint, 0644); #endif #ifdef CONFIG_HOST_TCMD_SUPPORT module_param(testmode, uint, 0644); #endif module_param(irqprocmode, uint, 0644); module_param(nohifscattersupport, uint, 0644); module_param(panic_on_assert, uint, 0644); module_param(setuphci, uint, 0644); module_param(loghci, uint, 0644); module_param(setupbtdev, uint, 0644); #ifndef EXPORT_HCI_BRIDGE_INTERFACE module_param(ar3khcibaud, uint, 0644); module_param(hciuartscale, uint, 0644); module_param(hciuartstep, uint, 0644); #endif #else #define __user /* for linux 2.4 and lower */ MODULE_PARM(bmienable,"i"); MODULE_PARM(wlaninitmode,"i"); MODULE_PARM(bypasswmi,"i"); MODULE_PARM(debuglevel, "i"); MODULE_PARM(onebitmode,"i"); MODULE_PARM(busspeedlow, "i"); MODULE_PARM(skipflash, "i"); MODULE_PARM(wmitimeout, "i"); MODULE_PARM(wlanNodeCaching, "i"); MODULE_PARM(enableuartprint,"i"); MODULE_PARM(logWmiRawMsgs, "i"); MODULE_PARM(enabletimerwar,"i"); MODULE_PARM(fwmode,"i"); MODULE_PARM(mbox_yield_limit,"i"); MODULE_PARM(reduce_credit_dribble,"i"); MODULE_PARM(allow_trace_signal,"i"); MODULE_PARM(enablerssicompensation,"i"); MODULE_PARM(processDot11Hdr,"i"); #ifdef CONFIG_CHECKSUM_OFFLOAD MODULE_PARM(csumOffload,"i"); #endif #ifdef CONFIG_HOST_TCMD_SUPPORT MODULE_PARM(testmode, "i"); #endif MODULE_PARM(irqprocmode, "i"); MODULE_PARM(nohifscattersupport, "i"); MODULE_PARM(panic_on_assert, "i"); MODULE_PARM(setuphci, "i"); MODULE_PARM(loghci, "i"); #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,10) /* in 2.6.10 and later this is now a pointer to a uint */ unsigned int _mboxnum = HTC_MAILBOX_NUM_MAX; #define mboxnum &_mboxnum #else unsigned int mboxnum = HTC_MAILBOX_NUM_MAX; #endif #ifdef DEBUG A_UINT32 g_dbg_flags = DBG_DEFAULTS; unsigned int debugflags = 0; int debugdriver = 0; unsigned int debughtc = 0; unsigned int debugbmi = 0; unsigned int debughif = 0; unsigned int txcreditsavailable[HTC_MAILBOX_NUM_MAX] = {0}; unsigned int txcreditsconsumed[HTC_MAILBOX_NUM_MAX] = {0}; unsigned int txcreditintrenable[HTC_MAILBOX_NUM_MAX] = {0}; unsigned int txcreditintrenableaggregate[HTC_MAILBOX_NUM_MAX] = {0}; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) module_param(debugflags, uint, 0644); module_param(debugdriver, int, 0644); module_param(debughtc, uint, 0644); module_param(debugbmi, uint, 0644); module_param(debughif, uint, 0644); module_param_array(txcreditsavailable, uint, mboxnum, 0644); module_param_array(txcreditsconsumed, uint, mboxnum, 0644); module_param_array(txcreditintrenable, uint, mboxnum, 0644); module_param_array(txcreditintrenableaggregate, uint, mboxnum, 0644); #else /* linux 2.4 and lower */ MODULE_PARM(debugflags,"i"); MODULE_PARM(debugdriver, "i"); MODULE_PARM(debughtc, "i"); MODULE_PARM(debugbmi, "i"); MODULE_PARM(debughif, "i"); MODULE_PARM(txcreditsavailable, "0-3i"); MODULE_PARM(txcreditsconsumed, "0-3i"); MODULE_PARM(txcreditintrenable, "0-3i"); MODULE_PARM(txcreditintrenableaggregate, "0-3i"); #endif #endif /* DEBUG */ unsigned int resetok = 1; unsigned int tx_attempt[HTC_MAILBOX_NUM_MAX] = {0}; unsigned int tx_post[HTC_MAILBOX_NUM_MAX] = {0}; unsigned int tx_complete[HTC_MAILBOX_NUM_MAX] = {0}; unsigned int hifBusRequestNumMax = 40; unsigned int war23838_disabled = 0; #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL unsigned int enableAPTCHeuristics = 1; #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) module_param_array(tx_attempt, uint, mboxnum, 0644); module_param_array(tx_post, uint, mboxnum, 0644); module_param_array(tx_complete, uint, mboxnum, 0644); module_param(hifBusRequestNumMax, uint, 0644); module_param(war23838_disabled, uint, 0644); module_param(resetok, uint, 0644); #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL module_param(enableAPTCHeuristics, uint, 0644); #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ #else MODULE_PARM(tx_attempt, "0-3i"); MODULE_PARM(tx_post, "0-3i"); MODULE_PARM(tx_complete, "0-3i"); MODULE_PARM(hifBusRequestNumMax, "i"); MODULE_PARM(war23838_disabled, "i"); MODULE_PARM(resetok, "i"); #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL MODULE_PARM(enableAPTCHeuristics, "i"); #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ #endif #ifdef BLOCK_TX_PATH_FLAG int blocktx = 0; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) module_param(blocktx, int, 0644); #else MODULE_PARM(blocktx, "i"); #endif #endif /* BLOCK_TX_PATH_FLAG */ typedef struct user_rssi_compensation_t { A_UINT16 a_enable; A_INT16 a_param_a; A_INT16 a_param_b; A_UINT16 bg_enable; A_INT16 bg_param_a; A_INT16 bg_param_b; } USER_RSSI_CPENSATION; static USER_RSSI_CPENSATION rssi_compensation_param; static A_INT16 rssi_compensation_table[96]; int reconnect_flag = 0; /* Function declarations */ static int ar6000_init_module(void); static void ar6000_cleanup_module(void); int ar6000_init(struct net_device *dev); static int ar6000_open(struct net_device *dev); static int ar6000_close(struct net_device *dev); static void ar6000_init_control_info(AR_SOFTC_T *ar); static int ar6000_data_tx(struct sk_buff *skb, struct net_device *dev); void ar6000_destroy(struct net_device *dev, unsigned int unregister); static void ar6000_detect_error(unsigned long ptr); static struct net_device_stats *ar6000_get_stats(struct net_device *dev); static struct iw_statistics *ar6000_get_iwstats(struct net_device * dev); static void disconnect_timer_handler(unsigned long ptr); void read_rssi_compensation_param(AR_SOFTC_T *ar); /* for android builds we call external APIs that handle firmware download and configuration */ #ifdef ANDROID_ENV /* !!!! Interim android support to make it easier to patch the default driver for * android use. You must define an external source file ar6000_android.c that handles the following * APIs */ extern A_STATUS android_ar6k_start(AR_SOFTC_T *ar); extern void android_module_init(OSDRV_CALLBACKS *osdrvCallbacks); extern void android_module_exit(void); extern A_BOOL android_ar6k_endpoint_is_stop(AR_SOFTC_T *ar); extern void android_ar6k_check_wow_status(AR_SOFTC_T *ar); #endif /* * HTC service connection handlers */ static A_STATUS ar6000_avail_ev(void *context, void *hif_handle); static A_STATUS ar6000_unavail_ev(void *context, void *hif_handle); A_STATUS ar6000_configure_target(AR_SOFTC_T *ar); void ar6000_stop_endpoint(struct net_device *dev, A_BOOL keepprofile); static void ar6000_target_failure(void *Instance, A_STATUS Status); static void ar6000_rx(void *Context, HTC_PACKET *pPacket); static void ar6000_rx_refill(void *Context,HTC_ENDPOINT_ID Endpoint); static void ar6000_tx_complete(void *Context, HTC_PACKET_QUEUE *pPackets); static HTC_SEND_FULL_ACTION ar6000_tx_queue_full(void *Context, HTC_PACKET *pPacket); #ifdef ATH_AR6K_11N_SUPPORT static void ar6000_alloc_netbufs(A_NETBUF_QUEUE_T *q, A_UINT16 num); #endif static void ar6000_deliver_frames_to_nw_stack(void * dev, void *osbuf); //static void ar6000_deliver_frames_to_bt_stack(void * dev, void *osbuf); static HTC_PACKET *ar6000_alloc_amsdu_rxbuf(void *Context, HTC_ENDPOINT_ID Endpoint, int Length); static void ar6000_refill_amsdu_rxbufs(AR_SOFTC_T *ar, int Count); static void ar6000_cleanup_amsdu_rxbufs(AR_SOFTC_T *ar); static ssize_t ar6000_sysfs_bmi_read(struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t pos, size_t count); static ssize_t ar6000_sysfs_bmi_write(struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t pos, size_t count); static A_STATUS ar6000_sysfs_bmi_init(AR_SOFTC_T *ar); static void ar6000_sysfs_bmi_deinit(AR_SOFTC_T *ar); A_STATUS ar6000_sysfs_bmi_get_config(AR_SOFTC_T *ar, A_UINT32 mode); /* * Static variables */ struct net_device *ar6000_devices[MAX_AR6000]; extern struct iw_handler_def ath_iw_handler_def; DECLARE_WAIT_QUEUE_HEAD(arEvent); static void ar6000_cookie_init(AR_SOFTC_T *ar); static void ar6000_cookie_cleanup(AR_SOFTC_T *ar); static void ar6000_free_cookie(AR_SOFTC_T *ar, struct ar_cookie * cookie); static struct ar_cookie *ar6000_alloc_cookie(AR_SOFTC_T *ar); #ifdef USER_KEYS static A_STATUS ar6000_reinstall_keys(AR_SOFTC_T *ar,A_UINT8 key_op_ctrl); #endif static struct ar_cookie s_ar_cookie_mem[MAX_COOKIE_NUM]; #define HOST_INTEREST_ITEM_ADDRESS(ar, item) \ (((ar)->arTargetType == TARGET_TYPE_AR6001) ? AR6001_HOST_INTEREST_ITEM_ADDRESS(item) : \ (((ar)->arTargetType == TARGET_TYPE_AR6002) ? AR6002_HOST_INTEREST_ITEM_ADDRESS(item) : \ (((ar)->arTargetType == TARGET_TYPE_AR6003) ? AR6003_HOST_INTEREST_ITEM_ADDRESS(item) : 0))) #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29) static struct net_device_ops ar6000_netdev_ops = { .ndo_init = NULL, .ndo_open = ar6000_open, .ndo_stop = ar6000_close, .ndo_get_stats = ar6000_get_stats, .ndo_do_ioctl = ar6000_ioctl, .ndo_start_xmit = ar6000_data_tx, }; #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29) */ /* Debug log support */ /* * Flag to govern whether the debug logs should be parsed in the kernel * or reported to the application. */ #define REPORT_DEBUG_LOGS_TO_APP A_STATUS ar6000_set_host_app_area(AR_SOFTC_T *ar) { A_UINT32 address, data; struct host_app_area_s host_app_area; /* Fetch the address of the host_app_area_s instance in the host interest area */ address = TARG_VTOP(ar->arTargetType, HOST_INTEREST_ITEM_ADDRESS(ar, hi_app_host_interest)); if (ar6000_ReadRegDiag(ar->arHifDevice, &address, &data) != A_OK) { return A_ERROR; } address = TARG_VTOP(ar->arTargetType, data); host_app_area.wmi_protocol_ver = WMI_PROTOCOL_VERSION; if (ar6000_WriteDataDiag(ar->arHifDevice, address, (A_UCHAR *)&host_app_area, sizeof(struct host_app_area_s)) != A_OK) { return A_ERROR; } return A_OK; } A_UINT32 dbglog_get_debug_hdr_ptr(AR_SOFTC_T *ar) { A_UINT32 param; A_UINT32 address; A_STATUS status; address = TARG_VTOP(ar->arTargetType, HOST_INTEREST_ITEM_ADDRESS(ar, hi_dbglog_hdr)); if ((status = ar6000_ReadDataDiag(ar->arHifDevice, address, (A_UCHAR *)¶m, 4)) != A_OK) { param = 0; } return param; } /* * The dbglog module has been initialized. Its ok to access the relevant * data stuctures over the diagnostic window. */ void ar6000_dbglog_init_done(AR_SOFTC_T *ar) { ar->dbglog_init_done = TRUE; } A_UINT32 dbglog_get_debug_fragment(A_INT8 *datap, A_UINT32 len, A_UINT32 limit) { A_INT32 *buffer; A_UINT32 count; A_UINT32 numargs; A_UINT32 length; A_UINT32 fraglen; count = fraglen = 0; buffer = (A_INT32 *)datap; length = (limit >> 2); if (len <= limit) { fraglen = len; } else { while (count < length) { numargs = DBGLOG_GET_NUMARGS(buffer[count]); fraglen = (count << 2); count += numargs + 1; } } return fraglen; } void dbglog_parse_debug_logs(A_INT8 *datap, A_UINT32 len) { A_INT32 *buffer; A_UINT32 count; A_UINT32 timestamp; A_UINT32 debugid; A_UINT32 moduleid; A_UINT32 numargs; A_UINT32 length; count = 0; buffer = (A_INT32 *)datap; length = (len >> 2); while (count < length) { debugid = DBGLOG_GET_DBGID(buffer[count]); moduleid = DBGLOG_GET_MODULEID(buffer[count]); numargs = DBGLOG_GET_NUMARGS(buffer[count]); timestamp = DBGLOG_GET_TIMESTAMP(buffer[count]); switch (numargs) { case 0: AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d)\n", moduleid, debugid, timestamp)); break; case 1: AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d): 0x%x\n", moduleid, debugid, timestamp, buffer[count+1])); break; case 2: AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d): 0x%x, 0x%x\n", moduleid, debugid, timestamp, buffer[count+1], buffer[count+2])); break; default: AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Invalid args: %d\n", numargs)); } count += numargs + 1; } } int ar6000_dbglog_get_debug_logs(AR_SOFTC_T *ar) { struct dbglog_hdr_s debug_hdr; struct dbglog_buf_s debug_buf; A_UINT32 address; A_UINT32 length; A_UINT32 dropped; A_UINT32 firstbuf; A_UINT32 debug_hdr_ptr; if (!ar->dbglog_init_done) return A_ERROR; AR6000_SPIN_LOCK(&ar->arLock, 0); if (ar->dbgLogFetchInProgress) { AR6000_SPIN_UNLOCK(&ar->arLock, 0); return A_EBUSY; } /* block out others */ ar->dbgLogFetchInProgress = TRUE; AR6000_SPIN_UNLOCK(&ar->arLock, 0); debug_hdr_ptr = dbglog_get_debug_hdr_ptr(ar); printk("debug_hdr_ptr: 0x%x\n", debug_hdr_ptr); /* Get the contents of the ring buffer */ if (debug_hdr_ptr) { address = TARG_VTOP(ar->arTargetType, debug_hdr_ptr); length = sizeof(struct dbglog_hdr_s); ar6000_ReadDataDiag(ar->arHifDevice, address, (A_UCHAR *)&debug_hdr, length); address = TARG_VTOP(ar->arTargetType, (A_UINT32)debug_hdr.dbuf); firstbuf = address; dropped = debug_hdr.dropped; length = sizeof(struct dbglog_buf_s); ar6000_ReadDataDiag(ar->arHifDevice, address, (A_UCHAR *)&debug_buf, length); do { address = TARG_VTOP(ar->arTargetType, (A_UINT32)debug_buf.buffer); length = debug_buf.length; if ((length) && (debug_buf.length <= debug_buf.bufsize)) { /* Rewind the index if it is about to overrun the buffer */ if (ar->log_cnt > (DBGLOG_HOST_LOG_BUFFER_SIZE - length)) { ar->log_cnt = 0; } if(A_OK != ar6000_ReadDataDiag(ar->arHifDevice, address, (A_UCHAR *)&ar->log_buffer[ar->log_cnt], length)) { break; } ar6000_dbglog_event(ar, dropped, (A_INT8*)&ar->log_buffer[ar->log_cnt], length); ar->log_cnt += length; } else { AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("Length: %d (Total size: %d)\n", debug_buf.length, debug_buf.bufsize)); } address = TARG_VTOP(ar->arTargetType, (A_UINT32)debug_buf.next); length = sizeof(struct dbglog_buf_s); if(A_OK != ar6000_ReadDataDiag(ar->arHifDevice, address, (A_UCHAR *)&debug_buf, length)) { break; } } while (address != firstbuf); } ar->dbgLogFetchInProgress = FALSE; return A_OK; } void ar6000_dbglog_event(AR_SOFTC_T *ar, A_UINT32 dropped, A_INT8 *buffer, A_UINT32 length) { #ifdef REPORT_DEBUG_LOGS_TO_APP #define MAX_WIRELESS_EVENT_SIZE 252 /* * Break it up into chunks of MAX_WIRELESS_EVENT_SIZE bytes of messages. * There seems to be a limitation on the length of message that could be * transmitted to the user app via this mechanism. */ A_UINT32 send, sent; sent = 0; send = dbglog_get_debug_fragment(&buffer[sent], length - sent, MAX_WIRELESS_EVENT_SIZE); while (send) { ar6000_send_event_to_app(ar, WMIX_DBGLOG_EVENTID, (A_UINT8*)&buffer[sent], send); sent += send; send = dbglog_get_debug_fragment(&buffer[sent], length - sent, MAX_WIRELESS_EVENT_SIZE); } #else AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Dropped logs: 0x%x\nDebug info length: %d\n", dropped, length)); /* Interpret the debug logs */ dbglog_parse_debug_logs((A_INT8*)buffer, length); #endif /* REPORT_DEBUG_LOGS_TO_APP */ } static int __init ar6000_init_module(void) { static int probed = 0; A_STATUS status; OSDRV_CALLBACKS osdrvCallbacks; a_module_debug_support_init(); #ifdef DEBUG /* check for debug mask overrides */ if (debughtc != 0) { ATH_DEBUG_SET_DEBUG_MASK(htc,debughtc); } if (debugbmi != 0) { ATH_DEBUG_SET_DEBUG_MASK(bmi,debugbmi); } if (debughif != 0) { ATH_DEBUG_SET_DEBUG_MASK(hif,debughif); } if (debugdriver != 0) { ATH_DEBUG_SET_DEBUG_MASK(driver,debugdriver); } #endif A_REGISTER_MODULE_DEBUG_INFO(driver); A_MEMZERO(&osdrvCallbacks,sizeof(osdrvCallbacks)); osdrvCallbacks.deviceInsertedHandler = ar6000_avail_ev; osdrvCallbacks.deviceRemovedHandler = ar6000_unavail_ev; #ifdef ANDROID_ENV android_module_init(&osdrvCallbacks); #endif #ifdef DEBUG /* Set the debug flags if specified at load time */ if(debugflags != 0) { g_dbg_flags = debugflags; } #endif if (probed) { return -ENODEV; } probed++; #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL memset(&aptcTR, 0, sizeof(APTC_TRAFFIC_RECORD)); #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ #ifdef CONFIG_HOST_GPIO_SUPPORT ar6000_gpio_init(); #endif /* CONFIG_HOST_GPIO_SUPPORT */ status = HIFInit(&osdrvCallbacks); if(status != A_OK) return -ENODEV; return 0; } static void __exit ar6000_cleanup_module(void) { int i = 0; struct net_device *ar6000_netdev; #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL /* Delete the Adaptive Power Control timer */ if (timer_pending(&aptcTimer)) { del_timer_sync(&aptcTimer); } #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ for (i=0; i < MAX_AR6000; i++) { if (ar6000_devices[i] != NULL) { ar6000_netdev = ar6000_devices[i]; ar6000_devices[i] = NULL; ar6000_destroy(ar6000_netdev, 1); } } HIFShutDownDevice(NULL); a_module_debug_support_cleanup(); #ifdef ANDROID_ENV android_module_exit(); #endif AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_cleanup: success\n")); } #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL void aptcTimerHandler(unsigned long arg) { A_UINT32 numbytes; A_UINT32 throughput; AR_SOFTC_T *ar; A_STATUS status; ar = (AR_SOFTC_T *)arg; A_ASSERT(ar != NULL); A_ASSERT(!timer_pending(&aptcTimer)); AR6000_SPIN_LOCK(&ar->arLock, 0); /* Get the number of bytes transferred */ numbytes = aptcTR.bytesTransmitted + aptcTR.bytesReceived; aptcTR.bytesTransmitted = aptcTR.bytesReceived = 0; /* Calculate and decide based on throughput thresholds */ throughput = ((numbytes * 8)/APTC_TRAFFIC_SAMPLING_INTERVAL); /* Kbps */ if (throughput < APTC_LOWER_THROUGHPUT_THRESHOLD) { /* Enable Sleep and delete the timer */ A_ASSERT(ar->arWmiReady == TRUE); AR6000_SPIN_UNLOCK(&ar->arLock, 0); status = wmi_powermode_cmd(ar->arWmi, REC_POWER); AR6000_SPIN_LOCK(&ar->arLock, 0); A_ASSERT(status == A_OK); aptcTR.timerScheduled = FALSE; } else { A_TIMEOUT_MS(&aptcTimer, APTC_TRAFFIC_SAMPLING_INTERVAL, 0); } AR6000_SPIN_UNLOCK(&ar->arLock, 0); } #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ #ifdef ATH_AR6K_11N_SUPPORT static void ar6000_alloc_netbufs(A_NETBUF_QUEUE_T *q, A_UINT16 num) { void * osbuf; while(num) { if((osbuf = A_NETBUF_ALLOC(AR6000_BUFFER_SIZE))) { A_NETBUF_ENQUEUE(q, osbuf); } else { break; } num--; } if(num) { A_PRINTF("%s(), allocation of netbuf failed", __func__); } } #endif static struct bin_attribute bmi_attr = { .attr = {.name = "bmi", .mode = 0600}, .read = ar6000_sysfs_bmi_read, .write = ar6000_sysfs_bmi_write, }; static ssize_t ar6000_sysfs_bmi_read(struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t pos, size_t count) { int index; AR_SOFTC_T *ar; HIF_DEVICE_OS_DEVICE_INFO *osDevInfo; AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Read %d bytes\n", count)); for (index=0; index < MAX_AR6000; index++) { ar = (AR_SOFTC_T *)ar6k_priv(ar6000_devices[index]); osDevInfo = &ar->osDevInfo; if (kobj == (&(((struct device *)osDevInfo->pOSDevice)->kobj))) { break; } } if (index == MAX_AR6000) return 0; if ((BMIRawRead(ar->arHifDevice, (A_UCHAR*)buf, count, TRUE)) != A_OK) { return 0; } return count; } static ssize_t ar6000_sysfs_bmi_write(struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t pos, size_t count) { int index; AR_SOFTC_T *ar; HIF_DEVICE_OS_DEVICE_INFO *osDevInfo; AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Write %d bytes\n", count)); for (index=0; index < MAX_AR6000; index++) { ar = (AR_SOFTC_T *)ar6k_priv(ar6000_devices[index]); osDevInfo = &ar->osDevInfo; if (kobj == (&(((struct device *)osDevInfo->pOSDevice)->kobj))) { break; } } if (index == MAX_AR6000) return 0; if ((BMIRawWrite(ar->arHifDevice, (A_UCHAR*)buf, count)) != A_OK) { return 0; } return count; } static A_STATUS ar6000_sysfs_bmi_init(AR_SOFTC_T *ar) { A_STATUS status; AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Creating sysfs entry\n")); A_MEMZERO(&ar->osDevInfo, sizeof(HIF_DEVICE_OS_DEVICE_INFO)); /* Get the underlying OS device */ status = HIFConfigureDevice(ar->arHifDevice, HIF_DEVICE_GET_OS_DEVICE, &ar->osDevInfo, sizeof(HIF_DEVICE_OS_DEVICE_INFO)); if (A_FAILED(status)) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI: Failed to get OS device info from HIF\n")); return A_ERROR; } /* Create a bmi entry in the sysfs filesystem */ if ((sysfs_create_bin_file(&(((struct device *)ar->osDevInfo.pOSDevice)->kobj), &bmi_attr)) < 0) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMI: Failed to create entry for bmi in sysfs filesystem\n")); return A_ERROR; } return A_OK; } static void ar6000_sysfs_bmi_deinit(AR_SOFTC_T *ar) { AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Deleting sysfs entry\n")); sysfs_remove_bin_file(&(((struct device *)ar->osDevInfo.pOSDevice)->kobj), &bmi_attr); } #define bmifn(fn) do { \ if ((fn) < A_OK) { \ AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI operation failed: %d\n", __LINE__)); \ return A_ERROR; \ } \ } while(0) #ifdef INIT_MODE_DRV_ENABLED #ifdef SOFTMAC_FILE_USED #define AR6001_MAC_ADDRESS_OFFSET 0x06 #define AR6002_MAC_ADDRESS_OFFSET 0x0A #define AR6003_MAC_ADDRESS_OFFSET 0x16 static void calculate_crc(A_UINT32 TargetType, A_UCHAR *eeprom_data) { A_UINT16 *ptr_crc; A_UINT16 *ptr16_eeprom; A_UINT16 checksum; A_UINT32 i; A_UINT32 eeprom_size; if (TargetType == TARGET_TYPE_AR6001) { eeprom_size = 512; ptr_crc = (A_UINT16 *)eeprom_data; } else if (TargetType == TARGET_TYPE_AR6003) { eeprom_size = 1024; ptr_crc = (A_UINT16 *)((A_UCHAR *)eeprom_data + 0x04); } else { eeprom_size = 768; ptr_crc = (A_UINT16 *)((A_UCHAR *)eeprom_data + 0x04); } // Clear the crc *ptr_crc = 0; // Recalculate new CRC checksum = 0; ptr16_eeprom = (A_UINT16 *)eeprom_data; for (i = 0;i < eeprom_size; i += 2) { checksum = checksum ^ (*ptr16_eeprom); ptr16_eeprom++; } checksum = 0xFFFF ^ checksum; *ptr_crc = checksum; } static void ar6000_softmac_update(AR_SOFTC_T *ar, A_UCHAR *eeprom_data, size_t size) { const char *source = "random generated"; const struct firmware *softmac_entry; A_UCHAR *ptr_mac; switch (ar->arTargetType) { case TARGET_TYPE_AR6001: ptr_mac = (A_UINT8 *)((A_UCHAR *)eeprom_data + AR6001_MAC_ADDRESS_OFFSET); break; case TARGET_TYPE_AR6002: ptr_mac = (A_UINT8 *)((A_UCHAR *)eeprom_data + AR6002_MAC_ADDRESS_OFFSET); break; case TARGET_TYPE_AR6003: ptr_mac = (A_UINT8 *)((A_UCHAR *)eeprom_data + AR6003_MAC_ADDRESS_OFFSET); break; default: AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Invalid Target Type \n")); return; } printk("MAC from EEPROM %02X:%02X:%02X:%02X:%02X:%02X\n", ptr_mac[0], ptr_mac[1], ptr_mac[2], ptr_mac[3], ptr_mac[4], ptr_mac[5]); /* create a random MAC in case we cannot read file from system */ ptr_mac[0] = 0; ptr_mac[1] = 0x03; ptr_mac[2] = 0x7F; ptr_mac[3] = random32() & 0xff; ptr_mac[4] = random32() & 0xff; ptr_mac[5] = random32() & 0xff; if ((A_REQUEST_FIRMWARE(&softmac_entry, "softmac", ((struct device *)ar->osDevInfo.pOSDevice))) == 0) { A_CHAR *macbuf = A_MALLOC_NOWAIT(softmac_entry->size+1); if (macbuf) { unsigned int softmac[6]; memcpy(macbuf, softmac_entry->data, softmac_entry->size); macbuf[softmac_entry->size] = '\0'; if (sscanf(macbuf, "%02x:%02x:%02x:%02x:%02x:%02x", &softmac[0], &softmac[1], &softmac[2], &softmac[3], &softmac[4], &softmac[5])==6) { int i; for (i=0; i<6; ++i) { ptr_mac[i] = softmac[i] & 0xff; } source = "softmac file"; } A_FREE(macbuf); } A_RELEASE_FIRMWARE(softmac_entry); } printk("MAC from %s %02X:%02X:%02X:%02X:%02X:%02X\n", source, ptr_mac[0], ptr_mac[1], ptr_mac[2], ptr_mac[3], ptr_mac[4], ptr_mac[5]); calculate_crc(ar->arTargetType, eeprom_data); } #endif /* SOFTMAC_FILE_USED */ static A_STATUS ar6000_transfer_bin_file(AR_SOFTC_T *ar, AR6K_BIN_FILE file, A_UINT32 address, A_BOOL compressed) { A_STATUS status; const char *filename; const struct firmware *fw_entry; switch (file) { case AR6K_OTP_FILE: if (ar->arVersion.target_ver == AR6003_REV1_VERSION) { filename = AR6003_REV1_OTP_FILE; } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) { filename = AR6003_REV2_OTP_FILE; } else { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver)); return A_ERROR; } break; case AR6K_FIRMWARE_FILE: if (ar->arVersion.target_ver == AR6003_REV1_VERSION) { filename = AR6003_REV1_FIRMWARE_FILE; } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) { filename = AR6003_REV2_FIRMWARE_FILE; } else { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver)); return A_ERROR; } #ifdef CONFIG_HOST_TCMD_SUPPORT if(testmode) { if (ar->arVersion.target_ver == AR6003_REV1_VERSION) { filename = AR6003_REV1_TCMD_FIRMWARE_FILE; } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) { filename = AR6003_REV2_TCMD_FIRMWARE_FILE; } else { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver)); return A_ERROR; } compressed = 0; } #endif #ifdef HTC_RAW_INTERFACE if (bypasswmi) { if (ar->arVersion.target_ver == AR6003_REV1_VERSION) { filename = AR6003_REV1_ART_FIRMWARE_FILE; } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) { filename = AR6003_REV2_ART_FIRMWARE_FILE; } else { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver)); return A_ERROR; } compressed = 0; } #endif break; case AR6K_PATCH_FILE: if (ar->arVersion.target_ver == AR6003_REV1_VERSION) { filename = AR6003_REV1_PATCH_FILE; } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) { filename = AR6003_REV2_PATCH_FILE; } else { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver)); return A_ERROR; } break; case AR6K_BOARD_DATA_FILE: if (ar->arVersion.target_ver == AR6003_REV1_VERSION) { filename = AR6003_REV1_BOARD_DATA_FILE; } else if (ar->arVersion.target_ver == AR6003_REV2_VERSION) { filename = AR6003_REV2_BOARD_DATA_FILE; } else { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver)); return A_ERROR; } break; default: AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown file type: %d\n", file)); return A_ERROR; } if ((A_REQUEST_FIRMWARE(&fw_entry, filename, ((struct device *)ar->osDevInfo.pOSDevice))) != 0) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to get %s\n", filename)); return A_ENOENT; } #ifdef SOFTMAC_FILE_USED if (file==AR6K_BOARD_DATA_FILE && fw_entry->data) { ar6000_softmac_update(ar, (A_UCHAR *)fw_entry->data, fw_entry->size); } #endif if (compressed) { status = BMIFastDownload(ar->arHifDevice, address, (A_UCHAR *)fw_entry->data, fw_entry->size); } else { status = BMIWriteMemory(ar->arHifDevice, address, (A_UCHAR *)fw_entry->data, fw_entry->size); } if (status != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI operation failed: %d\n", __LINE__)); A_RELEASE_FIRMWARE(fw_entry); return A_ERROR; } A_RELEASE_FIRMWARE(fw_entry); return A_OK; } #endif /* INIT_MODE_DRV_ENABLED */ A_STATUS ar6000_sysfs_bmi_get_config(AR_SOFTC_T *ar, A_UINT32 mode) { AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Requesting device specific configuration\n")); if (mode == WLAN_INIT_MODE_UDEV) { A_CHAR version[16]; const struct firmware *fw_entry; /* Get config using udev through a script in user space */ sprintf(version, "%2.2x", ar->arVersion.target_ver); if ((A_REQUEST_FIRMWARE(&fw_entry, version, ((struct device *)ar->osDevInfo.pOSDevice))) != 0) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI: Failure to get configuration for target version: %s\n", version)); return A_ERROR; } A_RELEASE_FIRMWARE(fw_entry); #ifdef INIT_MODE_DRV_ENABLED } else { /* The config is contained within the driver itself */ A_STATUS status; A_UINT32 param, options, sleep, address; /* Temporarily disable system sleep */ address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_ADDRESS; bmifn(BMIReadSOCRegister(ar->arHifDevice, address, ¶m)); options = param; param |= AR6K_OPTION_SLEEP_DISABLE; bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param)); address = RTC_BASE_ADDRESS + SYSTEM_SLEEP_ADDRESS; bmifn(BMIReadSOCRegister(ar->arHifDevice, address, ¶m)); sleep = param; param |= WLAN_SYSTEM_SLEEP_DISABLE_SET(1); bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param)); AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("old options: %d, old sleep: %d\n", options, sleep)); if (ar->arTargetType == TARGET_TYPE_AR6003) { /* Run at 80/88MHz by default */ param = CPU_CLOCK_STANDARD_SET(1); } else { /* Run at 40/44MHz by default */ param = CPU_CLOCK_STANDARD_SET(0); } address = RTC_BASE_ADDRESS + CPU_CLOCK_ADDRESS; bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param)); param = 0; if (ar->arTargetType == TARGET_TYPE_AR6002) { bmifn(BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_ext_clk_detected), (A_UCHAR *)¶m, 4)); } /* LPO_CAL.ENABLE = 1 if no external clk is detected */ if (param != 1) { address = RTC_BASE_ADDRESS + LPO_CAL_ADDRESS; param = LPO_CAL_ENABLE_SET(1); bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param)); } /* Venus2.0: Lower SDIO pad drive strength, * temporary WAR to avoid SDIO CRC error */ if (ar->arVersion.target_ver == AR6003_REV2_VERSION) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("AR6K: Temporary WAR to avoid SDIO CRC error\n")); param = 0x20; address = GPIO_BASE_ADDRESS + GPIO_PIN10_ADDRESS; bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param)); address = GPIO_BASE_ADDRESS + GPIO_PIN11_ADDRESS; bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param)); address = GPIO_BASE_ADDRESS + GPIO_PIN12_ADDRESS; bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param)); address = GPIO_BASE_ADDRESS + GPIO_PIN13_ADDRESS; bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param)); } #ifdef FORCE_INTERNAL_CLOCK /* Ignore external clock, if any, and force use of internal clock */ if (ar->arTargetType == TARGET_TYPE_AR6003) { /* hi_ext_clk_detected = 0 */ param = 0; bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_ext_clk_detected), (A_UCHAR *)¶m, 4)); /* CLOCK_CONTROL &= ~LF_CLK32 */ address = RTC_BASE_ADDRESS + CLOCK_CONTROL_ADDRESS; bmifn(BMIReadSOCRegister(ar->arHifDevice, address, ¶m)); param &= (~CLOCK_CONTROL_LF_CLK32_SET(1)); bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param)); } #endif /* FORCE_INTERNAL_CLOCK */ /* Transfer Board Data from Target EEPROM to Target RAM */ if (ar->arTargetType == TARGET_TYPE_AR6003) { /* Determine where in Target RAM to write Board Data */ bmifn(BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_data), (A_UCHAR *)&address, 4)); AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("Board Data download address: 0x%x\n", address)); /* Write EEPROM data to Target RAM */ if ((ar6000_transfer_bin_file(ar, AR6K_BOARD_DATA_FILE, address, FALSE)) != A_OK) { return A_ERROR; } /* Record the fact that Board Data IS initialized */ param = 1; bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_data_initialized), (A_UCHAR *)¶m, 4)); /* Transfer One time Programmable data */ AR6K_DATA_DOWNLOAD_ADDRESS(address, ar->arVersion.target_ver); status = ar6000_transfer_bin_file(ar, AR6K_OTP_FILE, address, TRUE); if (status == A_OK) { /* Execute the OTP code */ param = 0; AR6K_APP_START_OVERRIDE_ADDRESS(address, ar->arVersion.target_ver); bmifn(BMIExecute(ar->arHifDevice, address, ¶m)); } else if (status != A_ENOENT) { return A_ERROR; } } else { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Programming of board data for chip %d not supported\n", ar->arTargetType)); return A_ERROR; } /* Download Target firmware */ AR6K_DATA_DOWNLOAD_ADDRESS(address, ar->arVersion.target_ver); if ((ar6000_transfer_bin_file(ar, AR6K_FIRMWARE_FILE, address, TRUE)) != A_OK) { return A_ERROR; } /* Set starting address for firmware */ AR6K_APP_START_OVERRIDE_ADDRESS(address, ar->arVersion.target_ver); bmifn(BMISetAppStart(ar->arHifDevice, address)); /* Apply the patches */ AR6K_PATCH_DOWNLOAD_ADDRESS(address, ar->arVersion.target_ver); if ((ar6000_transfer_bin_file(ar, AR6K_PATCH_FILE, address, FALSE)) != A_OK) { return A_ERROR; } param = address; bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_dset_list_head), (A_UCHAR *)¶m, 4)); if (ar->arTargetType == TARGET_TYPE_AR6003) { if (ar->arVersion.target_ver == AR6003_REV1_VERSION) { /* Reserve 5.5K of RAM */ param = 5632; } else { /* AR6003_REV2_VERSION */ /* Reserve 6K of RAM */ param = 6144; } bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_end_RAM_reserve_sz), (A_UCHAR *)¶m, 4)); } /* Restore system sleep */ address = RTC_BASE_ADDRESS + SYSTEM_SLEEP_ADDRESS; bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, sleep)); address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_ADDRESS; param = options | 0x20; bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param)); if (ar->arTargetType == TARGET_TYPE_AR6003) { /* Configure GPIO AR6003 UART */ #ifndef CONFIG_AR600x_DEBUG_UART_TX_PIN #define CONFIG_AR600x_DEBUG_UART_TX_PIN 8 #endif param = CONFIG_AR600x_DEBUG_UART_TX_PIN; bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_dbg_uart_txpin), (A_UCHAR *)¶m, 4)); #if (CONFIG_AR600x_DEBUG_UART_TX_PIN == 23) { address = GPIO_BASE_ADDRESS + CLOCK_GPIO_ADDRESS; bmifn(BMIReadSOCRegister(ar->arHifDevice, address, ¶m)); param |= CLOCK_GPIO_BT_CLK_OUT_EN_SET(1); bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param)); } #endif /* Configure GPIO for BT Reset */ #ifdef ATH6KL_CONFIG_GPIO_BT_RESET param = CONFIG_AR600x_BT_RESET_PIN; bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_hci_uart_support_pins), (A_UCHAR *)¶m, 4)); #endif /* ATH6KL_CONFIG_GPIO_BT_RESET */ } #ifdef HTC_RAW_INTERFACE if (bypasswmi) { /* Don't run BMIDone for ART mode and force resetok=0 */ resetok = 0; msleep(1000); return A_OK; } #endif /* HTC_RAW_INTERFACE */ /* Tell Target to execute loaded firmware */ bmifn(BMIDone(ar->arHifDevice)); #endif /* INIT_MODE_DRV_ENABLED */ } return A_OK; } A_STATUS ar6000_configure_target(AR_SOFTC_T *ar) { A_UINT32 param; if (enableuartprint) { param = 1; if (BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_serial_enable), (A_UCHAR *)¶m, 4)!= A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for enableuartprint failed \n")); return A_ERROR; } AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Serial console prints enabled\n")); } /* Tell target which HTC version it is used*/ param = HTC_PROTOCOL_VERSION; if (BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_app_host_interest), (A_UCHAR *)¶m, 4)!= A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for htc version failed \n")); return A_ERROR; } #ifdef CONFIG_HOST_TCMD_SUPPORT if(testmode) { ar->arTargetMode = AR6000_TCMD_MODE; }else { ar->arTargetMode = AR6000_WLAN_MODE; } #endif if (enabletimerwar) { A_UINT32 param; if (BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag), (A_UCHAR *)¶m, 4)!= A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for enabletimerwar failed \n")); return A_ERROR; } param |= HI_OPTION_TIMER_WAR; if (BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag), (A_UCHAR *)¶m, 4) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for enabletimerwar failed \n")); return A_ERROR; } AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Timer WAR enabled\n")); } /* set the firmware mode to STA/IBSS/AP */ { A_UINT32 param; if (BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag), (A_UCHAR *)¶m, 4)!= A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for setting fwmode failed \n")); return A_ERROR; } param |= (fwmode << HI_OPTION_FW_MODE_SHIFT); if (BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag), (A_UCHAR *)¶m, 4) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for setting fwmode failed \n")); return A_ERROR; } AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Firmware mode set\n")); } #if 0 /* HOST_INTEREST is no longer used to configure dot11 processing rule */ if (processDot11Hdr) { A_UINT32 param; if (BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag), (A_UCHAR *)¶m, 4)!= A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for processDot11Hdr failed \n")); return A_ERROR; } param |= HI_OPTION_RELAY_DOT11_HDR; if (BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag), (A_UCHAR *)¶m, 4) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for processDot11Hdr failed \n")); return A_ERROR; } AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("processDot11Hdr enabled\n")); } #endif #ifdef ATH6KL_DISABLE_TARGET_DBGLOGS { A_UINT32 param; if (BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag), (A_UCHAR *)¶m, 4)!= A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for disabling debug logs failed\n")); return A_ERROR; } param |= HI_OPTION_DISABLE_DBGLOG; if (BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_option_flag), (A_UCHAR *)¶m, 4) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for HI_OPTION_DISABLE_DBGLOG\n")); return A_ERROR; } AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Firmware mode set\n")); } #endif /* ATH6KL_DISABLE_TARGET_DBGLOGS */ // No need to reserve RAM space for patch as AR6001 is flash based if (ar->arTargetType == TARGET_TYPE_AR6001) { param = 0; if (BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_end_RAM_reserve_sz), (A_UCHAR *)¶m, 4) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for hi_end_RAM_reserve_sz failed \n")); return A_ERROR; } } /* since BMIInit is called in the driver layer, we have to set the block * size here for the target */ if (A_FAILED(ar6000_set_htc_params(ar->arHifDevice, ar->arTargetType, mbox_yield_limit, 0 /* use default number of control buffers */ ))) { return A_ERROR; } if (setupbtdev != 0) { if (A_FAILED(ar6000_set_hci_bridge_flags(ar->arHifDevice, ar->arTargetType, setupbtdev))) { return A_ERROR; } } return A_OK; } /* * HTC Event handlers */ static A_STATUS ar6000_avail_ev(void *context, void *hif_handle) { int i; struct net_device *dev; void *ar_netif; AR_SOFTC_T *ar; int device_index = 0; HTC_INIT_INFO htcInfo; #ifdef ATH6K_CONFIG_CFG80211 struct wireless_dev *wdev; #endif /* ATH6K_CONFIG_CFG80211 */ A_STATUS init_status = A_OK; AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_available\n")); for (i=0; i < MAX_AR6000; i++) { if (ar6000_devices[i] == NULL) { break; } } if (i == MAX_AR6000) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_available: max devices reached\n")); return A_ERROR; } /* Save this. It gives a bit better readability especially since */ /* we use another local "i" variable below. */ device_index = i; #ifdef ATH6K_CONFIG_CFG80211 wdev = ar6k_cfg80211_init(NULL); if (IS_ERR(wdev)) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("%s: ar6k_cfg80211_init failed\n", __func__)); return A_ERROR; } ar_netif = wdev_priv(wdev); #else dev = alloc_etherdev(sizeof(AR_SOFTC_T)); if (dev == NULL) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_available: can't alloc etherdev\n")); return A_ERROR; } ether_setup(dev); ar_netif = ar6k_priv(dev); #endif /* ATH6K_CONFIG_CFG80211 */ if (ar_netif == NULL) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("%s: Can't allocate ar6k priv memory\n", __func__)); return A_ERROR; } A_MEMZERO(ar_netif, sizeof(AR_SOFTC_T)); ar = (AR_SOFTC_T *)ar_netif; #ifdef ATH6K_CONFIG_CFG80211 ar->wdev = wdev; wdev->iftype = NL80211_IFTYPE_STATION; dev = alloc_netdev_mq(0, "wlan%d", ether_setup, 1); if (!dev) { printk(KERN_CRIT "AR6K: no memory for network device instance\n"); ar6k_cfg80211_deinit(ar); return A_ERROR; } dev->ieee80211_ptr = wdev; SET_NETDEV_DEV(dev, wiphy_dev(wdev->wiphy)); wdev->netdev = dev; ar->arNetworkType = INFRA_NETWORK; #endif /* ATH6K_CONFIG_CFG80211 */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) if (ifname[0]) { strcpy(dev->name, ifname); } #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) */ #ifdef SET_MODULE_OWNER SET_MODULE_OWNER(dev); #endif #ifdef SET_NETDEV_DEV if (ar_netif) { HIF_DEVICE_OS_DEVICE_INFO osDevInfo; A_MEMZERO(&osDevInfo, sizeof(osDevInfo)); if ( A_SUCCESS( HIFConfigureDevice(hif_handle, HIF_DEVICE_GET_OS_DEVICE, &osDevInfo, sizeof(osDevInfo))) ) { SET_NETDEV_DEV(dev, osDevInfo.pOSDevice); } } #endif ar->arNetDev = dev; ar->arHifDevice = hif_handle; ar->arWlanState = WLAN_ENABLED; ar->arDeviceIndex = device_index; A_INIT_TIMER(&ar->arHBChallengeResp.timer, ar6000_detect_error, dev); ar->arHBChallengeResp.seqNum = 0; ar->arHBChallengeResp.outstanding = FALSE; ar->arHBChallengeResp.missCnt = 0; ar->arHBChallengeResp.frequency = AR6000_HB_CHALLENGE_RESP_FREQ_DEFAULT; ar->arHBChallengeResp.missThres = AR6000_HB_CHALLENGE_RESP_MISS_THRES_DEFAULT; ar6000_init_control_info(ar); init_waitqueue_head(&arEvent); sema_init(&ar->arSem, 1); ar->bIsDestroyProgress = FALSE; INIT_HTC_PACKET_QUEUE(&ar->amsdu_rx_buffer_queue); #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL A_INIT_TIMER(&aptcTimer, aptcTimerHandler, ar); #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ A_INIT_TIMER(&ar->disconnect_timer, disconnect_timer_handler, dev); /* * If requested, perform some magic which requires no cooperation from * the Target. It causes the Target to ignore flash and execute to the * OS from ROM. * * This is intended to support recovery from a corrupted flash on Targets * that support flash. */ if (skipflash) { //ar6000_reset_device_skipflash(ar->arHifDevice); } BMIInit(); if (bmienable) { ar6000_sysfs_bmi_init(ar); } { struct bmi_target_info targ_info; if (BMIGetTargetInfo(ar->arHifDevice, &targ_info) != A_OK) { init_status = A_ERROR; goto avail_ev_failed; } ar->arVersion.target_ver = targ_info.target_ver; ar->arTargetType = targ_info.target_type; /* do any target-specific preparation that can be done through BMI */ if (ar6000_prepare_target(ar->arHifDevice, targ_info.target_type, targ_info.target_ver) != A_OK) { init_status = A_ERROR; goto avail_ev_failed; } } if (ar6000_configure_target(ar) != A_OK) { init_status = A_ERROR; goto avail_ev_failed; } A_MEMZERO(&htcInfo,sizeof(htcInfo)); htcInfo.pContext = ar; htcInfo.TargetFailure = ar6000_target_failure; ar->arHtcTarget = HTCCreate(ar->arHifDevice,&htcInfo); if (ar->arHtcTarget == NULL) { init_status = A_ERROR; goto avail_ev_failed; } spin_lock_init(&ar->arLock); #ifdef WAPI_ENABLE ar->arWapiEnable = 0; #endif #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,29) dev->open = &ar6000_open; dev->stop = &ar6000_close; dev->hard_start_xmit = &ar6000_data_tx; dev->get_stats = &ar6000_get_stats; /* dev->tx_timeout = ar6000_tx_timeout; */ dev->do_ioctl = &ar6000_ioctl; #else dev->netdev_ops = &ar6000_netdev_ops; #endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2,6,29) */ dev->watchdog_timeo = AR6000_TX_TIMEOUT; dev->wireless_handlers = &ath_iw_handler_def; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) dev->get_wireless_stats = ar6000_get_iwstats; /*Displayed via proc fs */ #else ath_iw_handler_def.get_wireless_stats = ar6000_get_iwstats; /*Displayed via proc fs */ #endif #ifdef CONFIG_CHECKSUM_OFFLOAD if(csumOffload){ dev->features |= NETIF_F_IP_CSUM;/*advertise kernel capability to do TCP/UDP CSUM offload for IPV4*/ ar->rxMetaVersion=WMI_META_VERSION_2;/*if external frame work is also needed, change and use an extended rxMetaVerion*/ } #endif if (processDot11Hdr) { dev->hard_header_len = sizeof(struct ieee80211_qosframe) + sizeof(ATH_LLC_SNAP_HDR) + sizeof(WMI_DATA_HDR) + HTC_HEADER_LEN + WMI_MAX_TX_META_SZ + LINUX_HACK_FUDGE_FACTOR; } else { /* * We need the OS to provide us with more headroom in order to * perform dix to 802.3, WMI header encap, and the HTC header */ dev->hard_header_len = ETH_HLEN + sizeof(ATH_LLC_SNAP_HDR) + sizeof(WMI_DATA_HDR) + HTC_HEADER_LEN + WMI_MAX_TX_META_SZ + LINUX_HACK_FUDGE_FACTOR; } #ifdef ATH_AR6K_11N_SUPPORT if((ar->aggr_cntxt = aggr_init(ar6000_alloc_netbufs)) == NULL) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Failed to initialize aggr.\n", __func__)); init_status = A_ERROR; goto avail_ev_failed; } aggr_register_rx_dispatcher(ar->aggr_cntxt, (void *)dev, ar6000_deliver_frames_to_nw_stack); #endif HIFClaimDevice(ar->arHifDevice, ar); /* We only register the device in the global list if we succeed. */ /* If the device is in the global list, it will be destroyed */ /* when the module is unloaded. */ ar6000_devices[device_index] = dev; /* Don't install the init function if BMI is requested */ if (!bmienable) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,29) dev->init = ar6000_init; #else ar6000_netdev_ops.ndo_init = ar6000_init; #endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2,6,29) */ } else { AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("BMI enabled: %d\n", wlaninitmode)); if ((wlaninitmode == WLAN_INIT_MODE_UDEV) || (wlaninitmode == WLAN_INIT_MODE_DRV)) { A_STATUS status = A_OK; do { A_BOOL rtnl_lock_grabbed; if ((status = ar6000_sysfs_bmi_get_config(ar, wlaninitmode)) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: ar6000_sysfs_bmi_get_config failed\n")); break; } #ifdef HTC_RAW_INTERFACE if (bypasswmi) { A_UINT32 param = 1; status = BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_data_initialized), (A_UCHAR *)¶m, 4); break; } #endif rtnl_lock_grabbed = rtnl_trylock(); status = (ar6000_init(dev)==0) ? A_OK : A_ERROR; if (rtnl_lock_grabbed) { rtnl_unlock(); /* we locked it above, so unlock it here */ } if (status != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: ar6000_init\n")); } } while (FALSE); if (status != A_OK) { init_status = status; goto avail_ev_failed; } } } /* This runs the init function if registered */ if (register_netdev(dev)) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: register_netdev failed\n")); ar6000_destroy(dev, 0); return A_ERROR; } AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_avail: name=%s hifdevice=0x%x, dev=0x%x (%d), ar=0x%x\n", dev->name, (A_UINT32)ar->arHifDevice, (A_UINT32)dev, device_index, (A_UINT32)ar)); avail_ev_failed : if (A_FAILED(init_status)) { if (bmienable) { ar6000_sysfs_bmi_deinit(ar); } } return init_status; } static void ar6000_target_failure(void *Instance, A_STATUS Status) { AR_SOFTC_T *ar = (AR_SOFTC_T *)Instance; WMI_TARGET_ERROR_REPORT_EVENT errEvent; static A_BOOL sip = FALSE; if (Status != A_OK) { printk(KERN_ERR "ar6000_target_failure: target asserted \n"); if (timer_pending(&ar->arHBChallengeResp.timer)) { A_UNTIMEOUT(&ar->arHBChallengeResp.timer); } /* try dumping target assertion information (if any) */ ar6000_dump_target_assert_info(ar->arHifDevice,ar->arTargetType); /* * Fetch the logs from the target via the diagnostic * window. */ ar6000_dbglog_get_debug_logs(ar); /* Report the error only once */ if (!sip) { sip = TRUE; errEvent.errorVal = WMI_TARGET_COM_ERR | WMI_TARGET_FATAL_ERR; ar6000_send_event_to_app(ar, WMI_ERROR_REPORT_EVENTID, (A_UINT8 *)&errEvent, sizeof(WMI_TARGET_ERROR_REPORT_EVENT)); } } } static A_STATUS ar6000_unavail_ev(void *context, void *hif_handle) { AR_SOFTC_T *ar = (AR_SOFTC_T *)context; /* NULL out it's entry in the global list */ ar6000_devices[ar->arDeviceIndex] = NULL; ar6000_destroy(ar->arNetDev, 1); return A_OK; } void ar6000_stop_endpoint(struct net_device *dev, A_BOOL keepprofile) { AR_SOFTC_T *ar = (AR_SOFTC_T*)netdev_priv(dev); /* Stop the transmit queues */ netif_stop_queue(dev); /* Disable the target and the interrupts associated with it */ if (ar->arWmiReady == TRUE) { if (!bypasswmi) { if (ar->arConnected == TRUE || ar->arConnectPending == TRUE) { AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): Disconnect\n", __func__)); #ifdef ANDROID_ENV if (keepprofile) { wmi_disconnect_cmd(ar->arWmi); } else #endif /* ANDROID_ENV */ { AR6000_SPIN_LOCK(&ar->arLock, 0); ar6000_init_profile_info(ar); AR6000_SPIN_UNLOCK(&ar->arLock, 0); wmi_disconnect_cmd(ar->arWmi); } } A_UNTIMEOUT(&ar->disconnect_timer); ar->arWmiReady = FALSE; ar->arConnected = FALSE; ar->arConnectPending = FALSE; wmi_shutdown(ar->arWmi); ar->arWmiEnabled = FALSE; ar->arWmi = NULL; ar->arWlanState = WLAN_ENABLED; #ifdef USER_KEYS ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT; ar->user_key_ctrl = 0; #endif } AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): WMI stopped\n", __func__)); } else { AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): WMI not ready 0x%08x 0x%08x\n", __func__, (unsigned int) ar, (unsigned int) ar->arWmi)); /* Shut down WMI if we have started it */ if(ar->arWmiEnabled == TRUE) { AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): Shut down WMI\n", __func__)); wmi_shutdown(ar->arWmi); ar->arWmiEnabled = FALSE; ar->arWmi = NULL; } } if (ar->arHtcTarget != NULL) { #ifdef EXPORT_HCI_BRIDGE_INTERFACE if (NULL != ar6kHciTransCallbacks.cleanupTransport) { ar6kHciTransCallbacks.cleanupTransport(NULL); } #else // FIXME: workaround to reset BT's UART baud rate to default if (NULL != ar->exitCallback) { AR3K_CONFIG_INFO ar3kconfig; A_STATUS status; A_MEMZERO(&ar3kconfig,sizeof(ar3kconfig)); ar6000_set_default_ar3kconfig(ar, (void *)&ar3kconfig); status = ar->exitCallback(&ar3kconfig); if (A_OK != status) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Failed to reset AR3K baud rate! \n")); } } // END workaround ar6000_cleanup_hci(ar); #endif AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" Shutting down HTC .... \n")); /* stop HTC */ HTCStop(ar->arHtcTarget); } if (resetok) { /* try to reset the device if we can * The driver may have been configure NOT to reset the target during * a debug session */ AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" Attempting to reset target on instance destroy.... \n")); if (ar->arHifDevice != NULL) { /* WAR for AR6003 cannot do without cold reset */ A_BOOL coldReset = (ar->arTargetType==TARGET_TYPE_AR6003) ? TRUE : FALSE; ar6000_reset_device(ar->arHifDevice, ar->arTargetType, TRUE, coldReset); } } else { AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" Host does not want target reset. \n")); } /* Done with cookies */ ar6000_cookie_cleanup(ar); } /* * We need to differentiate between the surprise and planned removal of the * device because of the following consideration: * - In case of surprise removal, the hcd already frees up the pending * for the device and hence there is no need to unregister the function * driver inorder to get these requests. For planned removal, the function * driver has to explictly unregister itself to have the hcd return all the * pending requests before the data structures for the devices are freed up. * Note that as per the current implementation, the function driver will * end up releasing all the devices since there is no API to selectively * release a particular device. * - Certain commands issued to the target can be skipped for surprise * removal since they will anyway not go through. */ void ar6000_destroy(struct net_device *dev, unsigned int unregister) { AR_SOFTC_T *ar; AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("+ar6000_destroy \n")); if((dev == NULL) || ((ar = ar6k_priv(dev)) == NULL)) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s(): Failed to get device structure.\n", __func__)); return; } ar->bIsDestroyProgress = TRUE; if (down_interruptible(&ar->arSem)) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s(): down_interruptible failed \n", __func__)); return; } if (ar->arWmiReady && !bypasswmi) { ar6000_dbglog_get_debug_logs(ar); } #ifdef ANDROID_ENV if (!android_ar6k_endpoint_is_stop(ar)) { #else if (1) { #endif /* only stop endpoint if we are not stop it in suspend_ev */ ar6000_stop_endpoint(dev, FALSE); } if (ar->arHtcTarget != NULL) { /* destroy HTC */ HTCDestroy(ar->arHtcTarget); } if (ar->arHifDevice != NULL) { /*release the device so we do not get called back on remove incase we * we're explicity destroyed by module unload */ HIFReleaseDevice(ar->arHifDevice); HIFShutDownDevice(ar->arHifDevice); } #ifdef ATH_AR6K_11N_SUPPORT aggr_module_destroy(ar->aggr_cntxt); #endif /* Done with cookies */ ar6000_cookie_cleanup(ar); /* cleanup any allocated AMSDU buffers */ ar6000_cleanup_amsdu_rxbufs(ar); if (bmienable) { ar6000_sysfs_bmi_deinit(ar); } /* Cleanup BMI */ BMIInit(); /* Clear the tx counters */ memset(tx_attempt, 0, sizeof(tx_attempt)); memset(tx_post, 0, sizeof(tx_post)); memset(tx_complete, 0, sizeof(tx_complete)); #ifdef HTC_RAW_INTERFACE if (ar->arRawHtc) { A_FREE(ar->arRawHtc); ar->arRawHtc = NULL; } #endif /* Free up the device data structure */ if( unregister ) unregister_netdev(dev); #ifndef free_netdev kfree(dev); #else free_netdev(dev); #endif #ifdef ATH6K_CONFIG_CFG80211 ar6k_cfg80211_deinit(ar); #endif /* ATH6K_CONFIG_CFG80211 */ AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("-ar6000_destroy \n")); } static void disconnect_timer_handler(unsigned long ptr) { struct net_device *dev = (struct net_device *)ptr; AR_SOFTC_T *ar = (AR_SOFTC_T *)ar6k_priv(dev); A_UNTIMEOUT(&ar->disconnect_timer); ar6000_init_profile_info(ar); wmi_disconnect_cmd(ar->arWmi); } static void ar6000_detect_error(unsigned long ptr) { struct net_device *dev = (struct net_device *)ptr; AR_SOFTC_T *ar = (AR_SOFTC_T *)ar6k_priv(dev); WMI_TARGET_ERROR_REPORT_EVENT errEvent; AR6000_SPIN_LOCK(&ar->arLock, 0); if (ar->arHBChallengeResp.outstanding) { ar->arHBChallengeResp.missCnt++; } else { ar->arHBChallengeResp.missCnt = 0; } if (ar->arHBChallengeResp.missCnt > ar->arHBChallengeResp.missThres) { /* Send Error Detect event to the application layer and do not reschedule the error detection module timer */ ar->arHBChallengeResp.missCnt = 0; ar->arHBChallengeResp.seqNum = 0; errEvent.errorVal = WMI_TARGET_COM_ERR | WMI_TARGET_FATAL_ERR; AR6000_SPIN_UNLOCK(&ar->arLock, 0); ar6000_send_event_to_app(ar, WMI_ERROR_REPORT_EVENTID, (A_UINT8 *)&errEvent, sizeof(WMI_TARGET_ERROR_REPORT_EVENT)); return; } /* Generate the sequence number for the next challenge */ ar->arHBChallengeResp.seqNum++; ar->arHBChallengeResp.outstanding = TRUE; AR6000_SPIN_UNLOCK(&ar->arLock, 0); /* Send the challenge on the control channel */ if (wmi_get_challenge_resp_cmd(ar->arWmi, ar->arHBChallengeResp.seqNum, DRV_HB_CHALLENGE) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to send heart beat challenge\n")); } /* Reschedule the timer for the next challenge */ A_TIMEOUT_MS(&ar->arHBChallengeResp.timer, ar->arHBChallengeResp.frequency * 1000, 0); } void ar6000_init_profile_info(AR_SOFTC_T *ar) { ar->arSsidLen = 0; A_MEMZERO(ar->arSsid, sizeof(ar->arSsid)); switch(fwmode) { case HI_OPTION_FW_MODE_IBSS: ar->arNetworkType = ar->arNextMode = ADHOC_NETWORK; break; case HI_OPTION_FW_MODE_BSS_STA: ar->arNetworkType = ar->arNextMode = INFRA_NETWORK; break; case HI_OPTION_FW_MODE_AP: ar->arNetworkType = ar->arNextMode = AP_NETWORK; break; } ar->arDot11AuthMode = OPEN_AUTH; ar->arAuthMode = NONE_AUTH; ar->arPairwiseCrypto = NONE_CRYPT; ar->arPairwiseCryptoLen = 0; ar->arGroupCrypto = NONE_CRYPT; ar->arGroupCryptoLen = 0; A_MEMZERO(ar->arWepKeyList, sizeof(ar->arWepKeyList)); A_MEMZERO(ar->arReqBssid, sizeof(ar->arReqBssid)); A_MEMZERO(ar->arBssid, sizeof(ar->arBssid)); ar->arBssChannel = 0; ar->arConnected = FALSE; } static void ar6000_init_control_info(AR_SOFTC_T *ar) { ar->arWmiEnabled = FALSE; ar6000_init_profile_info(ar); ar->arDefTxKeyIndex = 0; A_MEMZERO(ar->arWepKeyList, sizeof(ar->arWepKeyList)); ar->arChannelHint = 0; ar->arListenInterval = A_DEFAULT_LISTEN_INTERVAL; ar->arVersion.host_ver = AR6K_SW_VERSION; ar->arRssi = 0; ar->arTxPwr = 0; ar->arTxPwrSet = FALSE; ar->arSkipScan = 0; ar->arBeaconInterval = 0; ar->arBitRate = 0; ar->arMaxRetries = 0; ar->arWmmEnabled = TRUE; ar->intra_bss = 1; ar->scan_complete = 1; A_MEMZERO(&ar->scParams, sizeof(ar->scParams)); ar->scParams.shortScanRatio = WMI_SHORTSCANRATIO_DEFAULT; ar->scParams.scanCtrlFlags = DEFAULT_SCAN_CTRL_FLAGS; /* Initialize the AP mode state info */ { A_UINT8 ctr; A_MEMZERO((A_UINT8 *)ar->sta_list, AP_MAX_NUM_STA * sizeof(sta_t)); /* init the Mutexes */ A_MUTEX_INIT(&ar->mcastpsqLock); /* Init the PS queues */ for (ctr=0; ctr < AP_MAX_NUM_STA ; ctr++) { A_MUTEX_INIT(&ar->sta_list[ctr].psqLock); A_NETBUF_QUEUE_INIT(&ar->sta_list[ctr].psq); } ar->ap_profile_flag = 0; A_NETBUF_QUEUE_INIT(&ar->mcastpsq); A_MEMCPY(ar->ap_country_code, DEF_AP_COUNTRY_CODE, 3); ar->ap_wmode = DEF_AP_WMODE_G; ar->ap_dtim_period = DEF_AP_DTIM; ar->ap_beacon_interval = DEF_BEACON_INTERVAL; } } static int ar6000_open(struct net_device *dev) { unsigned long flags; AR_SOFTC_T *ar = (AR_SOFTC_T *)ar6k_priv(dev); spin_lock_irqsave(&ar->arLock, flags); #ifndef ANDROID_ENV if(ar->arWlanState == WLAN_DISABLED) { ar->arWlanState = WLAN_ENABLED; } #endif if( ar->arConnected || bypasswmi) { netif_carrier_on(dev); /* Wake up the queues */ netif_wake_queue(dev); } else netif_carrier_off(dev); spin_unlock_irqrestore(&ar->arLock, flags); return 0; } static int ar6000_close(struct net_device *dev) { AR_SOFTC_T *ar = (AR_SOFTC_T *)ar6k_priv(dev); netif_stop_queue(dev); #ifdef ANDROID_ENV (void)ar; /* do nothing. Android SDK will handle it */ #else AR6000_SPIN_LOCK(&ar->arLock, 0); if (ar->arConnected == TRUE || ar->arConnectPending == TRUE) { AR6000_SPIN_UNLOCK(&ar->arLock, 0); wmi_disconnect_cmd(ar->arWmi); } else { AR6000_SPIN_UNLOCK(&ar->arLock, 0); } if(ar->arWmiReady == TRUE) { if (wmi_scanparams_cmd(ar->arWmi, 0xFFFF, 0, 0, 0, 0, 0, 0, 0, 0, 0) != A_OK) { return -EIO; } ar->arWlanState = WLAN_DISABLED; } #endif return 0; } /* connect to a service */ static A_STATUS ar6000_connectservice(AR_SOFTC_T *ar, HTC_SERVICE_CONNECT_REQ *pConnect, char *pDesc) { A_STATUS status; HTC_SERVICE_CONNECT_RESP response; do { A_MEMZERO(&response,sizeof(response)); status = HTCConnectService(ar->arHtcTarget, pConnect, &response); if (A_FAILED(status)) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" Failed to connect to %s service status:%d \n", pDesc, status)); break; } switch (pConnect->ServiceID) { case WMI_CONTROL_SVC : if (ar->arWmiEnabled) { /* set control endpoint for WMI use */ wmi_set_control_ep(ar->arWmi, response.Endpoint); } /* save EP for fast lookup */ ar->arControlEp = response.Endpoint; break; case WMI_DATA_BE_SVC : arSetAc2EndpointIDMap(ar, WMM_AC_BE, response.Endpoint); break; case WMI_DATA_BK_SVC : arSetAc2EndpointIDMap(ar, WMM_AC_BK, response.Endpoint); break; case WMI_DATA_VI_SVC : arSetAc2EndpointIDMap(ar, WMM_AC_VI, response.Endpoint); break; case WMI_DATA_VO_SVC : arSetAc2EndpointIDMap(ar, WMM_AC_VO, response.Endpoint); break; default: AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ServiceID not mapped %d\n", pConnect->ServiceID)); status = A_EINVAL; break; } } while (FALSE); return status; } void ar6000_TxDataCleanup(AR_SOFTC_T *ar) { /* flush all the data (non-control) streams * we only flush packets that are tagged as data, we leave any control packets that * were in the TX queues alone */ HTCFlushEndpoint(ar->arHtcTarget, arAc2EndpointID(ar, WMM_AC_BE), AR6K_DATA_PKT_TAG); HTCFlushEndpoint(ar->arHtcTarget, arAc2EndpointID(ar, WMM_AC_BK), AR6K_DATA_PKT_TAG); HTCFlushEndpoint(ar->arHtcTarget, arAc2EndpointID(ar, WMM_AC_VI), AR6K_DATA_PKT_TAG); HTCFlushEndpoint(ar->arHtcTarget, arAc2EndpointID(ar, WMM_AC_VO), AR6K_DATA_PKT_TAG); } HTC_ENDPOINT_ID ar6000_ac2_endpoint_id ( void * devt, A_UINT8 ac) { AR_SOFTC_T *ar = (AR_SOFTC_T *) devt; return(arAc2EndpointID(ar, ac)); } A_UINT8 ar6000_endpoint_id2_ac(void * devt, HTC_ENDPOINT_ID ep ) { AR_SOFTC_T *ar = (AR_SOFTC_T *) devt; return(arEndpoint2Ac(ar, ep )); } /* This function does one time initialization for the lifetime of the device */ int ar6000_init(struct net_device *dev) { AR_SOFTC_T *ar; A_STATUS status; A_INT32 timeleft; A_INT16 i; int ret = 0; #if defined(INIT_MODE_DRV_ENABLED) && defined(ENABLE_COEXISTENCE) WMI_SET_BTCOEX_COLOCATED_BT_DEV_CMD sbcb_cmd; WMI_SET_BTCOEX_FE_ANT_CMD sbfa_cmd; #endif /* INIT_MODE_DRV_ENABLED && ENABLE_COEXISTENCE */ dev_hold(dev); rtnl_unlock(); if((ar = ar6k_priv(dev)) == NULL) { ret = -EIO; goto ar6000_init_done; } if (enablerssicompensation) { read_rssi_compensation_param(ar); for (i=-95; i<=0; i++) { rssi_compensation_table[0-i] = rssi_compensation_calc(ar,i); } } /* Do we need to finish the BMI phase */ if ((wlaninitmode == WLAN_INIT_MODE_USR) && (BMIDone(ar->arHifDevice) != A_OK)) { ret = -EIO; goto ar6000_init_done; } if (!bypasswmi) { #if 0 /* TBDXXX */ if (ar->arVersion.host_ver != ar->arVersion.target_ver) { A_PRINTF("WARNING: Host version 0x%x does not match Target " " version 0x%x!\n", ar->arVersion.host_ver, ar->arVersion.target_ver); } #endif /* Indicate that WMI is enabled (although not ready yet) */ ar->arWmiEnabled = TRUE; if ((ar->arWmi = wmi_init((void *) ar)) == NULL) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Failed to initialize WMI.\n", __func__)); ret = -EIO; goto ar6000_init_done; } AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Got WMI @ 0x%08x.\n", __func__, (unsigned int) ar->arWmi)); } do { HTC_SERVICE_CONNECT_REQ connect; /* the reason we have to wait for the target here is that the driver layer * has to init BMI in order to set the host block size, */ status = HTCWaitTarget(ar->arHtcTarget); if (A_FAILED(status)) { break; } A_MEMZERO(&connect,sizeof(connect)); /* meta data is unused for now */ connect.pMetaData = NULL; connect.MetaDataLength = 0; /* these fields are the same for all service endpoints */ connect.EpCallbacks.pContext = ar; connect.EpCallbacks.EpTxCompleteMultiple = ar6000_tx_complete; connect.EpCallbacks.EpRecv = ar6000_rx; connect.EpCallbacks.EpRecvRefill = ar6000_rx_refill; connect.EpCallbacks.EpSendFull = ar6000_tx_queue_full; /* set the max queue depth so that our ar6000_tx_queue_full handler gets called. * Linux has the peculiarity of not providing flow control between the * NIC and the network stack. There is no API to indicate that a TX packet * was sent which could provide some back pressure to the network stack. * Under linux you would have to wait till the network stack consumed all sk_buffs * before any back-flow kicked in. Which isn't very friendly. * So we have to manage this ourselves */ connect.MaxSendQueueDepth = MAX_DEFAULT_SEND_QUEUE_DEPTH; connect.EpCallbacks.RecvRefillWaterMark = AR6000_MAX_RX_BUFFERS / 4; /* set to 25 % */ if (0 == connect.EpCallbacks.RecvRefillWaterMark) { connect.EpCallbacks.RecvRefillWaterMark++; } /* connect to control service */ connect.ServiceID = WMI_CONTROL_SVC; status = ar6000_connectservice(ar, &connect, "WMI CONTROL"); if (A_FAILED(status)) { break; } connect.LocalConnectionFlags |= HTC_LOCAL_CONN_FLAGS_ENABLE_SEND_BUNDLE_PADDING; /* limit the HTC message size on the send path, although we can receive A-MSDU frames of * 4K, we will only send ethernet-sized (802.3) frames on the send path. */ connect.MaxSendMsgSize = WMI_MAX_TX_DATA_FRAME_LENGTH; /* to reduce the amount of committed memory for larger A_MSDU frames, use the recv-alloc threshold * mechanism for larger packets */ connect.EpCallbacks.RecvAllocThreshold = AR6000_BUFFER_SIZE; connect.EpCallbacks.EpRecvAllocThresh = ar6000_alloc_amsdu_rxbuf; /* for the remaining data services set the connection flag to reduce dribbling, * if configured to do so */ if (reduce_credit_dribble) { connect.ConnectionFlags |= HTC_CONNECT_FLAGS_REDUCE_CREDIT_DRIBBLE; /* the credit dribble trigger threshold is (reduce_credit_dribble - 1) for a value * of 0-3 */ connect.ConnectionFlags &= ~HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK; connect.ConnectionFlags |= ((A_UINT16)reduce_credit_dribble - 1) & HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK; } /* connect to best-effort service */ connect.ServiceID = WMI_DATA_BE_SVC; status = ar6000_connectservice(ar, &connect, "WMI DATA BE"); if (A_FAILED(status)) { break; } /* connect to back-ground * map this to WMI LOW_PRI */ connect.ServiceID = WMI_DATA_BK_SVC; status = ar6000_connectservice(ar, &connect, "WMI DATA BK"); if (A_FAILED(status)) { break; } /* connect to Video service, map this to * to HI PRI */ connect.ServiceID = WMI_DATA_VI_SVC; status = ar6000_connectservice(ar, &connect, "WMI DATA VI"); if (A_FAILED(status)) { break; } /* connect to VO service, this is currently not * mapped to a WMI priority stream due to historical reasons. * WMI originally defined 3 priorities over 3 mailboxes * We can change this when WMI is reworked so that priorities are not * dependent on mailboxes */ connect.ServiceID = WMI_DATA_VO_SVC; status = ar6000_connectservice(ar, &connect, "WMI DATA VO"); if (A_FAILED(status)) { break; } A_ASSERT(arAc2EndpointID(ar,WMM_AC_BE) != 0); A_ASSERT(arAc2EndpointID(ar,WMM_AC_BK) != 0); A_ASSERT(arAc2EndpointID(ar,WMM_AC_VI) != 0); A_ASSERT(arAc2EndpointID(ar,WMM_AC_VO) != 0); /* setup access class priority mappings */ ar->arAcStreamPriMap[WMM_AC_BK] = 0; /* lowest */ ar->arAcStreamPriMap[WMM_AC_BE] = 1; /* */ ar->arAcStreamPriMap[WMM_AC_VI] = 2; /* */ ar->arAcStreamPriMap[WMM_AC_VO] = 3; /* highest */ #ifdef EXPORT_HCI_BRIDGE_INTERFACE if (setuphci && (NULL != ar6kHciTransCallbacks.setupTransport)) { HCI_TRANSPORT_MISC_HANDLES hciHandles; hciHandles.netDevice = ar->arNetDev; hciHandles.hifDevice = ar->arHifDevice; hciHandles.htcHandle = ar->arHtcTarget; status = (A_STATUS)(ar6kHciTransCallbacks.setupTransport(&hciHandles)); } #else if (setuphci) { /* setup HCI */ status = ar6000_setup_hci(ar); } #endif } while (FALSE); if (A_FAILED(status)) { ret = -EIO; goto ar6000_init_done; } /* * give our connected endpoints some buffers */ ar6000_rx_refill(ar, ar->arControlEp); ar6000_rx_refill(ar, arAc2EndpointID(ar,WMM_AC_BE)); /* * We will post the receive buffers only for SPE or endpoint ping testing so we are * making it conditional on the 'bypasswmi' flag. */ if (bypasswmi) { ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_BK)); ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_VI)); ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_VO)); } /* allocate some buffers that handle larger AMSDU frames */ ar6000_refill_amsdu_rxbufs(ar,AR6000_MAX_AMSDU_RX_BUFFERS); /* setup credit distribution */ ar6000_setup_credit_dist(ar->arHtcTarget, &ar->arCreditStateInfo); /* Since cookies are used for HTC transports, they should be */ /* initialized prior to enabling HTC. */ ar6000_cookie_init(ar); /* start HTC */ status = HTCStart(ar->arHtcTarget); if (status != A_OK) { if (ar->arWmiEnabled == TRUE) { wmi_shutdown(ar->arWmi); ar->arWmiEnabled = FALSE; ar->arWmi = NULL; } ar6000_cookie_cleanup(ar); ret = -EIO; goto ar6000_init_done; } if (!bypasswmi) { /* Wait for Wmi event to be ready */ timeleft = wait_event_interruptible_timeout(arEvent, (ar->arWmiReady == TRUE), wmitimeout * HZ); if(!timeleft || signal_pending(current)) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI is not ready or wait was interrupted\n")); ret = -EIO; goto ar6000_init_done; } AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() WMI is ready\n", __func__)); /* Communicate the wmi protocol verision to the target */ if ((ar6000_set_host_app_area(ar)) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set the host app area\n")); } /* configure the device for rx dot11 header rules 0,0 are the default values * therefore this command can be skipped if the inputs are 0,FALSE,FALSE.Required if checksum offload is needed. Set RxMetaVersion to 2*/ if ((wmi_set_rx_frame_format_cmd(ar->arWmi,ar->rxMetaVersion, processDot11Hdr, processDot11Hdr)) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set the rx frame format.\n")); } #if defined(INIT_MODE_DRV_ENABLED) && defined(ENABLE_COEXISTENCE) /* Configure the type of BT collocated with WLAN */ A_MEMZERO(&sbcb_cmd, sizeof(WMI_SET_BTCOEX_COLOCATED_BT_DEV_CMD)); #ifdef CONFIG_AR600x_BT_QCOM sbcb_cmd.btcoexCoLocatedBTdev = 1; #elif defined(CONFIG_AR600x_BT_CSR) sbcb_cmd.btcoexCoLocatedBTdev = 2; #elif defined(CONFIG_AR600x_BT_AR3001) sbcb_cmd.btcoexCoLocatedBTdev = 3; #else #error Unsupported Bluetooth Type #endif /* Collocated Bluetooth Type */ if ((wmi_set_btcoex_colocated_bt_dev_cmd(ar->arWmi, &sbcb_cmd)) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set collocated BT type\n")); } /* Configure the type of BT collocated with WLAN */ A_MEMZERO(&sbfa_cmd, sizeof(WMI_SET_BTCOEX_FE_ANT_CMD)); #ifdef CONFIG_AR600x_DUAL_ANTENNA sbfa_cmd.btcoexFeAntType = 2; #elif defined(CONFIG_AR600x_SINGLE_ANTENNA) sbfa_cmd.btcoexFeAntType = 1; #else #error Unsupported Front-End Antenna Configuration #endif /* AR600x Front-End Antenna Configuration */ if ((wmi_set_btcoex_fe_ant_cmd(ar->arWmi, &sbfa_cmd)) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set fornt end antenna configuration\n")); } #endif /* INIT_MODE_DRV_ENABLED && ENABLE_COEXISTENCE */ } ar->arNumDataEndPts = 1; if (bypasswmi) { /* for tests like endpoint ping, the MAC address needs to be non-zero otherwise * the data path through a raw socket is disabled */ dev->dev_addr[0] = 0x00; dev->dev_addr[1] = 0x01; dev->dev_addr[2] = 0x02; dev->dev_addr[3] = 0xAA; dev->dev_addr[4] = 0xBB; dev->dev_addr[5] = 0xCC; } #ifdef ANDROID_ENV android_ar6k_start(ar); #endif ar6000_init_done: rtnl_lock(); dev_put(dev); return ret; } void ar6000_bitrate_rx(void *devt, A_INT32 rateKbps) { AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; ar->arBitRate = rateKbps; wake_up(&arEvent); } void ar6000_ratemask_rx(void *devt, A_UINT32 ratemask) { AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; ar->arRateMask = ratemask; wake_up(&arEvent); } void ar6000_txPwr_rx(void *devt, A_UINT8 txPwr) { AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; ar->arTxPwr = txPwr; wake_up(&arEvent); } void ar6000_channelList_rx(void *devt, A_INT8 numChan, A_UINT16 *chanList) { AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; A_MEMCPY(ar->arChannelList, chanList, numChan * sizeof (A_UINT16)); ar->arNumChannels = numChan; wake_up(&arEvent); } A_UINT8 ar6000_ibss_map_epid(struct sk_buff *skb, struct net_device *dev, A_UINT32 * mapNo) { AR_SOFTC_T *ar = (AR_SOFTC_T *)ar6k_priv(dev); A_UINT8 *datap; ATH_MAC_HDR *macHdr; A_UINT32 i, eptMap; (*mapNo) = 0; datap = A_NETBUF_DATA(skb); macHdr = (ATH_MAC_HDR *)(datap + sizeof(WMI_DATA_HDR)); if (IEEE80211_IS_MULTICAST(macHdr->dstMac)) { return ENDPOINT_2; } eptMap = -1; for (i = 0; i < ar->arNodeNum; i ++) { if (IEEE80211_ADDR_EQ(macHdr->dstMac, ar->arNodeMap[i].macAddress)) { (*mapNo) = i + 1; ar->arNodeMap[i].txPending ++; return ar->arNodeMap[i].epId; } if ((eptMap == -1) && !ar->arNodeMap[i].txPending) { eptMap = i; } } if (eptMap == -1) { eptMap = ar->arNodeNum; ar->arNodeNum ++; A_ASSERT(ar->arNodeNum <= MAX_NODE_NUM); } A_MEMCPY(ar->arNodeMap[eptMap].macAddress, macHdr->dstMac, IEEE80211_ADDR_LEN); for (i = ENDPOINT_2; i <= ENDPOINT_5; i ++) { if (!ar->arTxPending[i]) { ar->arNodeMap[eptMap].epId = i; break; } // No free endpoint is available, start redistribution on the inuse endpoints. if (i == ENDPOINT_5) { ar->arNodeMap[eptMap].epId = ar->arNexEpId; ar->arNexEpId ++; if (ar->arNexEpId > ENDPOINT_5) { ar->arNexEpId = ENDPOINT_2; } } } (*mapNo) = eptMap + 1; ar->arNodeMap[eptMap].txPending ++; return ar->arNodeMap[eptMap].epId; } #ifdef DEBUG static void ar6000_dump_skb(struct sk_buff *skb) { u_char *ch; for (ch = A_NETBUF_DATA(skb); (A_UINT32)ch < ((A_UINT32)A_NETBUF_DATA(skb) + A_NETBUF_LEN(skb)); ch++) { AR_DEBUG_PRINTF(ATH_DEBUG_WARN,("%2.2x ", *ch)); } AR_DEBUG_PRINTF(ATH_DEBUG_WARN,("\n")); } #endif #ifdef HTC_TEST_SEND_PKTS static void DoHTCSendPktsTest(AR_SOFTC_T *ar, int MapNo, HTC_ENDPOINT_ID eid, struct sk_buff *skb); #endif static int ar6000_data_tx(struct sk_buff *skb, struct net_device *dev) { #define AC_NOT_MAPPED 99 AR_SOFTC_T *ar = (AR_SOFTC_T *)ar6k_priv(dev); A_UINT8 ac = AC_NOT_MAPPED; HTC_ENDPOINT_ID eid = ENDPOINT_UNUSED; A_UINT32 mapNo = 0; int len; struct ar_cookie *cookie; A_BOOL checkAdHocPsMapping = FALSE,bMoreData = FALSE; HTC_TX_TAG htc_tag = AR6K_DATA_PKT_TAG; A_UINT8 dot11Hdr = processDot11Hdr; #ifdef CONFIG_PM if (ar->arWowState) { A_NETBUF_FREE(skb); return 0; } #endif /* CONFIG_PM */ #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,13) skb->list = NULL; #endif AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar6000_data_tx start - skb=0x%x, data=0x%x, len=0x%x\n", (A_UINT32)skb, (A_UINT32)A_NETBUF_DATA(skb), A_NETBUF_LEN(skb))); /* If target is not associated */ if( (!ar->arConnected && !bypasswmi) #ifdef CONFIG_HOST_TCMD_SUPPORT /* TCMD doesnt support any data, free the buf and return */ || (ar->arTargetMode == AR6000_TCMD_MODE) #endif ) { A_NETBUF_FREE(skb); return 0; } do { if (ar->arWmiReady == FALSE && bypasswmi == 0) { break; } #ifdef BLOCK_TX_PATH_FLAG if (blocktx) { break; } #endif /* BLOCK_TX_PATH_FLAG */ /* AP mode Power save processing */ /* If the dst STA is in sleep state, queue the pkt in its PS queue */ if (ar->arNetworkType == AP_NETWORK) { ATH_MAC_HDR *datap = (ATH_MAC_HDR *)A_NETBUF_DATA(skb); sta_t *conn = NULL; /* If the dstMac is a Multicast address & atleast one of the * associated STA is in PS mode, then queue the pkt to the * mcastq */ if (IEEE80211_IS_MULTICAST(datap->dstMac)) { A_UINT8 ctr=0; A_BOOL qMcast=FALSE; for (ctr=0; ctrsta_list[ctr]))) { qMcast = TRUE; } } if(qMcast) { /* If this transmit is not because of a Dtim Expiry q it */ if (ar->DTIMExpired == FALSE) { A_BOOL isMcastqEmpty = FALSE; A_MUTEX_LOCK(&ar->mcastpsqLock); isMcastqEmpty = A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq); A_NETBUF_ENQUEUE(&ar->mcastpsq, skb); A_MUTEX_UNLOCK(&ar->mcastpsqLock); /* If this is the first Mcast pkt getting queued * indicate to the target to set the BitmapControl LSB * of the TIM IE. */ if (isMcastqEmpty) { wmi_set_pvb_cmd(ar->arWmi, MCAST_AID, 1); } return 0; } else { /* This transmit is because of Dtim expiry. Determine if * MoreData bit has to be set. */ A_MUTEX_LOCK(&ar->mcastpsqLock); if(!A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq)) { bMoreData = TRUE; } A_MUTEX_UNLOCK(&ar->mcastpsqLock); } } } else { conn = ieee80211_find_conn(ar, datap->dstMac); if (conn) { if (STA_IS_PWR_SLEEP(conn)) { /* If this transmit is not because of a PsPoll q it*/ if (!STA_IS_PS_POLLED(conn)) { A_BOOL isPsqEmpty = FALSE; /* Queue the frames if the STA is sleeping */ A_MUTEX_LOCK(&conn->psqLock); isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq); A_NETBUF_ENQUEUE(&conn->psq, skb); A_MUTEX_UNLOCK(&conn->psqLock); /* If this is the first pkt getting queued * for this STA, update the PVB for this STA */ if (isPsqEmpty) { wmi_set_pvb_cmd(ar->arWmi, conn->aid, 1); } return 0; } else { /* This tx is because of a PsPoll. Determine if * MoreData bit has to be set */ A_MUTEX_LOCK(&conn->psqLock); if (!A_NETBUF_QUEUE_EMPTY(&conn->psq)) { bMoreData = TRUE; } A_MUTEX_UNLOCK(&conn->psqLock); } } } else { /* non existent STA. drop the frame */ A_NETBUF_FREE(skb); return 0; } } } if (ar->arWmiEnabled) { #ifdef CONFIG_CHECKSUM_OFFLOAD A_UINT8 csumStart=0; A_UINT8 csumDest=0; A_UINT8 csum=skb->ip_summed; if(csumOffload && (csum==CHECKSUM_PARTIAL)){ csumStart=skb->csum_start-(skb->network_header-skb->head)+sizeof(ATH_LLC_SNAP_HDR); csumDest=skb->csum_offset+csumStart; } #endif if (A_NETBUF_HEADROOM(skb) < dev->hard_header_len - LINUX_HACK_FUDGE_FACTOR) { struct sk_buff *newbuf; /* * We really should have gotten enough headroom but sometimes * we still get packets with not enough headroom. Copy the packet. */ len = A_NETBUF_LEN(skb); newbuf = A_NETBUF_ALLOC(len); if (newbuf == NULL) { break; } A_NETBUF_PUT(newbuf, len); A_MEMCPY(A_NETBUF_DATA(newbuf), A_NETBUF_DATA(skb), len); A_NETBUF_FREE(skb); skb = newbuf; /* fall through and assemble header */ } if (dot11Hdr) { if (wmi_dot11_hdr_add(ar->arWmi,skb,ar->arNetworkType) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx-wmi_dot11_hdr_add failed\n")); break; } } else { if (wmi_dix_2_dot3(ar->arWmi, skb) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_dix_2_dot3 failed\n")); break; } } #ifdef CONFIG_CHECKSUM_OFFLOAD if(csumOffload && (csum ==CHECKSUM_PARTIAL)){ WMI_TX_META_V2 metaV2; metaV2.csumStart =csumStart; metaV2.csumDest = csumDest; metaV2.csumFlags = 0x1;/*instruct target to calculate checksum*/ if (wmi_data_hdr_add(ar->arWmi, skb, DATA_MSGTYPE, bMoreData, dot11Hdr, WMI_META_VERSION_2,&metaV2) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_data_hdr_add failed\n")); break; } } else #endif { if (wmi_data_hdr_add(ar->arWmi, skb, DATA_MSGTYPE, bMoreData, dot11Hdr,0,NULL) != A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_data_hdr_add failed\n")); break; } } if ((ar->arNetworkType == ADHOC_NETWORK) && ar->arIbssPsEnable && ar->arConnected) { /* flag to check adhoc mapping once we take the lock below: */ checkAdHocPsMapping = TRUE; } else { /* get the stream mapping */ ac = wmi_implicit_create_pstream(ar->arWmi, skb, 0, ar->arWmmEnabled); } } else { EPPING_HEADER *eppingHdr; eppingHdr = A_NETBUF_DATA(skb); if (IS_EPPING_PACKET(eppingHdr)) { /* the stream ID is mapped to an access class */ ac = eppingHdr->StreamNo_h; /* some EPPING packets cannot be dropped no matter what access class it was * sent on. We can change the packet tag to guarantee it will not get dropped */ if (IS_EPING_PACKET_NO_DROP(eppingHdr)) { htc_tag = AR6K_CONTROL_PKT_TAG; } if (ac == HCI_TRANSPORT_STREAM_NUM) { /* pass this to HCI */ #ifndef EXPORT_HCI_BRIDGE_INTERFACE if (A_SUCCESS(hci_test_send(ar,skb))) { return 0; } #endif /* set AC to discard this skb */ ac = AC_NOT_MAPPED; } else { /* a quirk of linux, the payload of the frame is 32-bit aligned and thus the addition * of the HTC header will mis-align the start of the HTC frame, so we add some * padding which will be stripped off in the target */ if (EPPING_ALIGNMENT_PAD > 0) { A_NETBUF_PUSH(skb, EPPING_ALIGNMENT_PAD); } } } else { /* not a ping packet, drop it */ ac = AC_NOT_MAPPED; } } } while (FALSE); /* did we succeed ? */ if ((ac == AC_NOT_MAPPED) && !checkAdHocPsMapping) { /* cleanup and exit */ A_NETBUF_FREE(skb); AR6000_STAT_INC(ar, tx_dropped); AR6000_STAT_INC(ar, tx_aborted_errors); return 0; } cookie = NULL; /* take the lock to protect driver data */ AR6000_SPIN_LOCK(&ar->arLock, 0); do { if (checkAdHocPsMapping) { eid = ar6000_ibss_map_epid(skb, dev, &mapNo); }else { eid = arAc2EndpointID (ar, ac); } /* validate that the endpoint is connected */ if (eid == 0 || eid == ENDPOINT_UNUSED ) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" eid %d is NOT mapped!\n", eid)); break; } /* allocate resource for this packet */ cookie = ar6000_alloc_cookie(ar); if (cookie != NULL) { /* update counts while the lock is held */ ar->arTxPending[eid]++; ar->arTotalTxDataPending++; } } while (FALSE); AR6000_SPIN_UNLOCK(&ar->arLock, 0); if (cookie != NULL) { cookie->arc_bp[0] = (A_UINT32)skb; cookie->arc_bp[1] = mapNo; SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt, cookie, A_NETBUF_DATA(skb), A_NETBUF_LEN(skb), eid, htc_tag); #ifdef DEBUG if (debugdriver >= 3) { ar6000_dump_skb(skb); } #endif #ifdef HTC_TEST_SEND_PKTS DoHTCSendPktsTest(ar,mapNo,eid,skb); #endif /* HTC interface is asynchronous, if this fails, cleanup will happen in * the ar6000_tx_complete callback */ HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt); } else { /* no packet to send, cleanup */ A_NETBUF_FREE(skb); AR6000_STAT_INC(ar, tx_dropped); AR6000_STAT_INC(ar, tx_aborted_errors); } return 0; } int ar6000_acl_data_tx(struct sk_buff *skb, struct net_device *dev) { AR_SOFTC_T *ar = (AR_SOFTC_T *)ar6k_priv(dev); struct ar_cookie *cookie; HTC_ENDPOINT_ID eid = ENDPOINT_UNUSED; cookie = NULL; AR6000_SPIN_LOCK(&ar->arLock, 0); /* For now we send ACL on BE endpoint: We can also have a dedicated EP */ eid = arAc2EndpointID (ar, 0); /* allocate resource for this packet */ cookie = ar6000_alloc_cookie(ar); if (cookie != NULL) { /* update counts while the lock is held */ ar->arTxPending[eid]++; ar->arTotalTxDataPending++; } AR6000_SPIN_UNLOCK(&ar->arLock, 0); if (cookie != NULL) { cookie->arc_bp[0] = (A_UINT32)skb; cookie->arc_bp[1] = 0; SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt, cookie, A_NETBUF_DATA(skb), A_NETBUF_LEN(skb), eid, AR6K_DATA_PKT_TAG); /* HTC interface is asynchronous, if this fails, cleanup will happen in * the ar6000_tx_complete callback */ HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt); } else { /* no packet to send, cleanup */ A_NETBUF_FREE(skb); AR6000_STAT_INC(ar, tx_dropped); AR6000_STAT_INC(ar, tx_aborted_errors); } return 0; } #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL static void tvsub(register struct timeval *out, register struct timeval *in) { if((out->tv_usec -= in->tv_usec) < 0) { out->tv_sec--; out->tv_usec += 1000000; } out->tv_sec -= in->tv_sec; } void applyAPTCHeuristics(AR_SOFTC_T *ar) { A_UINT32 duration; A_UINT32 numbytes; A_UINT32 throughput; struct timeval ts; A_STATUS status; AR6000_SPIN_LOCK(&ar->arLock, 0); if ((enableAPTCHeuristics) && (!aptcTR.timerScheduled)) { do_gettimeofday(&ts); tvsub(&ts, &aptcTR.samplingTS); duration = ts.tv_sec * 1000 + ts.tv_usec / 1000; /* ms */ numbytes = aptcTR.bytesTransmitted + aptcTR.bytesReceived; if (duration > APTC_TRAFFIC_SAMPLING_INTERVAL) { /* Initialize the time stamp and byte count */ aptcTR.bytesTransmitted = aptcTR.bytesReceived = 0; do_gettimeofday(&aptcTR.samplingTS); /* Calculate and decide based on throughput thresholds */ throughput = ((numbytes * 8) / duration); if (throughput > APTC_UPPER_THROUGHPUT_THRESHOLD) { /* Disable Sleep and schedule a timer */ A_ASSERT(ar->arWmiReady == TRUE); AR6000_SPIN_UNLOCK(&ar->arLock, 0); status = wmi_powermode_cmd(ar->arWmi, MAX_PERF_POWER); AR6000_SPIN_LOCK(&ar->arLock, 0); A_TIMEOUT_MS(&aptcTimer, APTC_TRAFFIC_SAMPLING_INTERVAL, 0); aptcTR.timerScheduled = TRUE; } } } AR6000_SPIN_UNLOCK(&ar->arLock, 0); } #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ static HTC_SEND_FULL_ACTION ar6000_tx_queue_full(void *Context, HTC_PACKET *pPacket) { AR_SOFTC_T *ar = (AR_SOFTC_T *)Context; HTC_SEND_FULL_ACTION action = HTC_SEND_FULL_KEEP; A_BOOL stopNet = FALSE; HTC_ENDPOINT_ID Endpoint = HTC_GET_ENDPOINT_FROM_PKT(pPacket); do { if (bypasswmi) { int accessClass; if (HTC_GET_TAG_FROM_PKT(pPacket) == AR6K_CONTROL_PKT_TAG) { /* don't drop special control packets */ break; } accessClass = arEndpoint2Ac(ar,Endpoint); /* for endpoint ping testing drop Best Effort and Background */ if ((accessClass == WMM_AC_BE) || (accessClass == WMM_AC_BK)) { action = HTC_SEND_FULL_DROP; stopNet = FALSE; } else { /* keep but stop the netqueues */ stopNet = TRUE; } break; } if (Endpoint == ar->arControlEp) { /* under normal WMI if this is getting full, then something is running rampant * the host should not be exhausting the WMI queue with too many commands * the only exception to this is during testing using endpointping */ AR6000_SPIN_LOCK(&ar->arLock, 0); /* set flag to handle subsequent messages */ ar->arWMIControlEpFull = TRUE; AR6000_SPIN_UNLOCK(&ar->arLock, 0); AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI Control Endpoint is FULL!!! \n")); /* no need to stop the network */ stopNet = FALSE; break; } /* if we get here, we are dealing with data endpoints getting full */ if (HTC_GET_TAG_FROM_PKT(pPacket) == AR6K_CONTROL_PKT_TAG) { /* don't drop control packets issued on ANY data endpoint */ break; } if (ar->arNetworkType == ADHOC_NETWORK) { /* in adhoc mode, we cannot differentiate traffic priorities so there is no need to * continue, however we should stop the network */ stopNet = TRUE; break; } /* the last MAX_HI_COOKIE_NUM "batch" of cookies are reserved for the highest * active stream */ if (ar->arAcStreamPriMap[arEndpoint2Ac(ar,Endpoint)] < ar->arHiAcStreamActivePri && ar->arCookieCount <= MAX_HI_COOKIE_NUM) { /* this stream's priority is less than the highest active priority, we * give preference to the highest priority stream by directing * HTC to drop the packet that overflowed */ action = HTC_SEND_FULL_DROP; /* since we are dropping packets, no need to stop the network */ stopNet = FALSE; break; } } while (FALSE); if (stopNet) { AR6000_SPIN_LOCK(&ar->arLock, 0); ar->arNetQueueStopped = TRUE; AR6000_SPIN_UNLOCK(&ar->arLock, 0); /* one of the data endpoints queues is getting full..need to stop network stack * the queue will resume in ar6000_tx_complete() */ netif_stop_queue(ar->arNetDev); } return action; } static void ar6000_tx_complete(void *Context, HTC_PACKET_QUEUE *pPacketQueue) { AR_SOFTC_T *ar = (AR_SOFTC_T *)Context; A_UINT32 mapNo = 0; A_STATUS status; struct ar_cookie * ar_cookie; HTC_ENDPOINT_ID eid; A_BOOL wakeEvent = FALSE; struct sk_buff_head skb_queue; HTC_PACKET *pPacket; struct sk_buff *pktSkb; A_BOOL flushing = FALSE; skb_queue_head_init(&skb_queue); /* lock the driver as we update internal state */ AR6000_SPIN_LOCK(&ar->arLock, 0); /* reap completed packets */ while (!HTC_QUEUE_EMPTY(pPacketQueue)) { pPacket = HTC_PACKET_DEQUEUE(pPacketQueue); ar_cookie = (struct ar_cookie *)pPacket->pPktContext; A_ASSERT(ar_cookie); status = pPacket->Status; pktSkb = (struct sk_buff *)ar_cookie->arc_bp[0]; eid = pPacket->Endpoint; mapNo = ar_cookie->arc_bp[1]; A_ASSERT(pktSkb); A_ASSERT(pPacket->pBuffer == A_NETBUF_DATA(pktSkb)); /* add this to the list, use faster non-lock API */ __skb_queue_tail(&skb_queue,pktSkb); if (A_SUCCESS(status)) { A_ASSERT(pPacket->ActualLength == A_NETBUF_LEN(pktSkb)); } AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar6000_tx_complete skb=0x%x data=0x%x len=0x%x eid=%d ", (A_UINT32)pktSkb, (A_UINT32)pPacket->pBuffer, pPacket->ActualLength, eid)); ar->arTxPending[eid]--; if ((eid != ar->arControlEp) || bypasswmi) { ar->arTotalTxDataPending--; } if (eid == ar->arControlEp) { if (ar->arWMIControlEpFull) { /* since this packet completed, the WMI EP is no longer full */ ar->arWMIControlEpFull = FALSE; } if (ar->arTxPending[eid] == 0) { wakeEvent = TRUE; } } if (A_FAILED(status)) { if (status == A_ECANCELED) { /* a packet was flushed */ flushing = TRUE; } AR6000_STAT_INC(ar, tx_errors); if (status != A_NO_RESOURCE) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() -TX ERROR, status: 0x%x\n", __func__, status)); } } else { AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("OK\n")); flushing = FALSE; AR6000_STAT_INC(ar, tx_packets); ar->arNetStats.tx_bytes += A_NETBUF_LEN(pktSkb); #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL aptcTR.bytesTransmitted += a_netbuf_to_len(pktSkb); applyAPTCHeuristics(ar); #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ } // TODO this needs to be looked at if ((ar->arNetworkType == ADHOC_NETWORK) && ar->arIbssPsEnable && (eid != ar->arControlEp) && mapNo) { mapNo --; ar->arNodeMap[mapNo].txPending --; if (!ar->arNodeMap[mapNo].txPending && (mapNo == (ar->arNodeNum - 1))) { A_UINT32 i; for (i = ar->arNodeNum; i > 0; i --) { if (!ar->arNodeMap[i - 1].txPending) { A_MEMZERO(&ar->arNodeMap[i - 1], sizeof(struct ar_node_mapping)); ar->arNodeNum --; } else { break; } } } } ar6000_free_cookie(ar, ar_cookie); if (ar->arNetQueueStopped) { ar->arNetQueueStopped = FALSE; } } AR6000_SPIN_UNLOCK(&ar->arLock, 0); /* lock is released, we can freely call other kernel APIs */ /* free all skbs in our local list */ while (!skb_queue_empty(&skb_queue)) { /* use non-lock version */ pktSkb = __skb_dequeue(&skb_queue); A_NETBUF_FREE(pktSkb); } if ((ar->arConnected == TRUE) || (bypasswmi)) { if (!flushing) { /* don't wake the queue if we are flushing, other wise it will just * keep queueing packets, which will keep failing */ netif_wake_queue(ar->arNetDev); } } if (wakeEvent) { wake_up(&arEvent); } } sta_t * ieee80211_find_conn(AR_SOFTC_T *ar, A_UINT8 *node_addr) { sta_t *conn = NULL; A_UINT8 i, max_conn; switch(ar->arNetworkType) { case AP_NETWORK: max_conn = AP_MAX_NUM_STA; break; default: max_conn=0; break; } for (i = 0; i < max_conn; i++) { if (IEEE80211_ADDR_EQ(node_addr, ar->sta_list[i].mac)) { conn = &ar->sta_list[i]; break; } } return conn; } sta_t *ieee80211_find_conn_for_aid(AR_SOFTC_T *ar, A_UINT8 aid) { sta_t *conn = NULL; A_UINT8 ctr; for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) { if (ar->sta_list[ctr].aid == aid) { conn = &ar->sta_list[ctr]; break; } } return conn; } /* * Receive event handler. This is called by HTC when a packet is received */ int pktcount; static void ar6000_rx(void *Context, HTC_PACKET *pPacket) { AR_SOFTC_T *ar = (AR_SOFTC_T *)Context; struct sk_buff *skb = (struct sk_buff *)pPacket->pPktContext; int minHdrLen; A_UINT8 containsDot11Hdr = 0; A_STATUS status = pPacket->Status; HTC_ENDPOINT_ID ept = pPacket->Endpoint; A_ASSERT((status != A_OK) || (pPacket->pBuffer == (A_NETBUF_DATA(skb) + HTC_HEADER_LEN))); AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_rx ar=0x%x eid=%d, skb=0x%x, data=0x%x, len=0x%x status:%d", (A_UINT32)ar, ept, (A_UINT32)skb, (A_UINT32)pPacket->pBuffer, pPacket->ActualLength, status)); if (status != A_OK) { if (status != A_ECANCELED) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("RX ERR (%d) \n",status)); } } /* take lock to protect buffer counts * and adaptive power throughput state */ AR6000_SPIN_LOCK(&ar->arLock, 0); if (A_SUCCESS(status)) { AR6000_STAT_INC(ar, rx_packets); ar->arNetStats.rx_bytes += pPacket->ActualLength; #ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL aptcTR.bytesReceived += a_netbuf_to_len(skb); applyAPTCHeuristics(ar); #endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */ A_NETBUF_PUT(skb, pPacket->ActualLength + HTC_HEADER_LEN); A_NETBUF_PULL(skb, HTC_HEADER_LEN); #ifdef DEBUG if (debugdriver >= 2) { ar6000_dump_skb(skb); } #endif /* DEBUG */ } AR6000_SPIN_UNLOCK(&ar->arLock, 0); skb->dev = ar->arNetDev; if (status != A_OK) { AR6000_STAT_INC(ar, rx_errors); A_NETBUF_FREE(skb); } else if (ar->arWmiEnabled == TRUE) { if (ept == ar->arControlEp) { /* * this is a wmi control msg */ #ifdef ANDROID_ENV android_ar6k_check_wow_status(ar); #endif /* ANDROID_ENV */ wmi_control_rx(ar->arWmi, skb); } else { WMI_DATA_HDR *dhdr = (WMI_DATA_HDR *)A_NETBUF_DATA(skb); A_UINT8 is_amsdu, tid, is_acl_data_frame; is_acl_data_frame = WMI_DATA_HDR_GET_DATA_TYPE(dhdr) == WMI_DATA_HDR_DATA_TYPE_ACL; /* * this is a wmi data packet */ // NWF if (processDot11Hdr) { minHdrLen = sizeof(WMI_DATA_HDR) + sizeof(struct ieee80211_frame) + sizeof(ATH_LLC_SNAP_HDR); } else { minHdrLen = sizeof (WMI_DATA_HDR) + sizeof(ATH_MAC_HDR) + sizeof(ATH_LLC_SNAP_HDR); } /* In the case of AP mode we may receive NULL data frames * that do not have LLC hdr. They are 16 bytes in size. * Allow these frames in the AP mode. * ACL data frames don't follow ethernet frame bounds for * min length */ if (ar->arNetworkType != AP_NETWORK && !is_acl_data_frame && ((pPacket->ActualLength < minHdrLen) || (pPacket->ActualLength > AR6000_MAX_RX_MESSAGE_SIZE))) { /* * packet is too short or too long */ AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("TOO SHORT or TOO LONG\n")); AR6000_STAT_INC(ar, rx_errors); AR6000_STAT_INC(ar, rx_length_errors); A_NETBUF_FREE(skb); } else { A_UINT16 seq_no; A_UINT8 meta_type; #if 0 /* Access RSSI values here */ AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("RSSI %d\n", ((WMI_DATA_HDR *) A_NETBUF_DATA(skb))->rssi)); #endif /* Get the Power save state of the STA */ if (ar->arNetworkType == AP_NETWORK) { sta_t *conn = NULL; A_UINT8 psState=0,prevPsState; ATH_MAC_HDR *datap=NULL; A_UINT16 offset; meta_type = WMI_DATA_HDR_GET_META(dhdr); psState = (((WMI_DATA_HDR *)A_NETBUF_DATA(skb))->info >> WMI_DATA_HDR_PS_SHIFT) & WMI_DATA_HDR_PS_MASK; offset = sizeof(WMI_DATA_HDR); switch (meta_type) { case 0: break; case WMI_META_VERSION_1: offset += sizeof(WMI_RX_META_V1); break; #ifdef CONFIG_CHECKSUM_OFFLOAD case WMI_META_VERSION_2: offset += sizeof(WMI_RX_META_V2); break; #endif default: break; } datap = (ATH_MAC_HDR *)(A_NETBUF_DATA(skb)+offset); conn = ieee80211_find_conn(ar, datap->srcMac); if (conn) { /* if there is a change in PS state of the STA, * take appropriate steps. * 1. If Sleep-->Awake, flush the psq for the STA * Clear the PVB for the STA. * 2. If Awake-->Sleep, Starting queueing frames * the STA. */ prevPsState = STA_IS_PWR_SLEEP(conn); if (psState) { STA_SET_PWR_SLEEP(conn); } else { STA_CLR_PWR_SLEEP(conn); } if (prevPsState ^ STA_IS_PWR_SLEEP(conn)) { if (!STA_IS_PWR_SLEEP(conn)) { A_MUTEX_LOCK(&conn->psqLock); while (!A_NETBUF_QUEUE_EMPTY(&conn->psq)) { struct sk_buff *skb=NULL; skb = A_NETBUF_DEQUEUE(&conn->psq); A_MUTEX_UNLOCK(&conn->psqLock); ar6000_data_tx(skb,ar->arNetDev); A_MUTEX_LOCK(&conn->psqLock); } A_MUTEX_UNLOCK(&conn->psqLock); /* Clear the PVB for this STA */ wmi_set_pvb_cmd(ar->arWmi, conn->aid, 0); } } } else { /* This frame is from a STA that is not associated*/ A_ASSERT(FALSE); } /* Drop NULL data frames here */ if((pPacket->ActualLength < minHdrLen) || (pPacket->ActualLength > AR6000_MAX_RX_MESSAGE_SIZE)) { A_NETBUF_FREE(skb); goto rx_done; } } is_amsdu = WMI_DATA_HDR_IS_AMSDU(dhdr); tid = WMI_DATA_HDR_GET_UP(dhdr); seq_no = WMI_DATA_HDR_GET_SEQNO(dhdr); meta_type = WMI_DATA_HDR_GET_META(dhdr); containsDot11Hdr = WMI_DATA_HDR_GET_DOT11(dhdr); wmi_data_hdr_remove(ar->arWmi, skb); switch (meta_type) { case WMI_META_VERSION_1: { WMI_RX_META_V1 *pMeta = (WMI_RX_META_V1 *)A_NETBUF_DATA(skb); A_PRINTF("META %d %d %d %d %x\n", pMeta->status, pMeta->rix, pMeta->rssi, pMeta->channel, pMeta->flags); A_NETBUF_PULL((void*)skb, sizeof(WMI_RX_META_V1)); break; } #ifdef CONFIG_CHECKSUM_OFFLOAD case WMI_META_VERSION_2: { WMI_RX_META_V2 *pMeta = (WMI_RX_META_V2 *)A_NETBUF_DATA(skb); if(pMeta->csumFlags & 0x1){ skb->ip_summed=CHECKSUM_COMPLETE; skb->csum=(pMeta->csum); } A_NETBUF_PULL((void*)skb, sizeof(WMI_RX_META_V2)); break; } #endif default: break; } A_ASSERT(status == A_OK); /* NWF: print the 802.11 hdr bytes */ if(containsDot11Hdr) { status = wmi_dot11_hdr_remove(ar->arWmi,skb); } else if(!is_amsdu && !is_acl_data_frame) { status = wmi_dot3_2_dix(skb); } if (status != A_OK) { /* Drop frames that could not be processed (lack of memory, etc.) */ A_NETBUF_FREE(skb); goto rx_done; } if (is_acl_data_frame) { A_NETBUF_PUSH(skb, sizeof(int)); *((short *)A_NETBUF_DATA(skb)) = WMI_ACL_DATA_EVENTID; } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) /* * extra push and memcpy, for eth_type_trans() of 2.4 kernel * will pull out hard_header_len bytes of the skb. */ A_NETBUF_PUSH(skb, sizeof(WMI_DATA_HDR) + sizeof(ATH_LLC_SNAP_HDR) + HTC_HEADER_LEN); A_MEMCPY(A_NETBUF_DATA(skb), A_NETBUF_DATA(skb) + sizeof(WMI_DATA_HDR) + sizeof(ATH_LLC_SNAP_HDR) + HTC_HEADER_LEN, sizeof(ATH_MAC_HDR)); #endif if ((ar->arNetDev->flags & IFF_UP) == IFF_UP) { if (ar->arNetworkType == AP_NETWORK) { struct sk_buff *skb1 = NULL; ATH_MAC_HDR *datap; datap = (ATH_MAC_HDR *)A_NETBUF_DATA(skb); if (IEEE80211_IS_MULTICAST(datap->dstMac)) { /* Bcast/Mcast frames should be sent to the OS * stack as well as on the air. */ skb1 = skb_copy(skb,GFP_ATOMIC); } else { /* Search for a connected STA with dstMac as * the Mac address. If found send the frame to * it on the air else send the frame up the * stack */ sta_t *conn = NULL; conn = ieee80211_find_conn(ar, datap->dstMac); if (conn && ar->intra_bss) { skb1 = skb; skb = NULL; } else if(conn && !ar->intra_bss) { A_NETBUF_FREE(skb); skb = NULL; } } if (skb1) { ar6000_data_tx(skb1, ar->arNetDev); } } } #ifdef ATH_AR6K_11N_SUPPORT aggr_process_recv_frm(ar->aggr_cntxt, tid, seq_no, is_amsdu, (void **)&skb); #endif ar6000_deliver_frames_to_nw_stack((void *) ar->arNetDev, (void *)skb); } } } else { if (EPPING_ALIGNMENT_PAD > 0) { A_NETBUF_PULL(skb, EPPING_ALIGNMENT_PAD); } ar6000_deliver_frames_to_nw_stack((void *)ar->arNetDev, (void *)skb); } rx_done: return; } static void ar6000_deliver_frames_to_nw_stack(void *dev, void *osbuf) { struct sk_buff *skb = (struct sk_buff *)osbuf; if(skb) { skb->dev = dev; if ((skb->dev->flags & IFF_UP) == IFF_UP) { skb->protocol = eth_type_trans(skb, skb->dev); /* * If this routine is called on a ISR (Hard IRQ) or DSR (Soft IRQ) * or tasklet use the netif_rx to deliver the packet to the stack * netif_rx will queue the packet onto the receive queue and mark * the softirq thread has a pending action to complete. Kernel will * schedule the softIrq kernel thread after processing the DSR. * * If this routine is called on a process context, use netif_rx_ni * which will schedle the softIrq kernel thread after queuing the packet. */ if (in_interrupt()) { netif_rx(skb); } else { netif_rx_ni(skb); } } else { A_NETBUF_FREE(skb); } } } #if 0 static void ar6000_deliver_frames_to_bt_stack(void *dev, void *osbuf) { struct sk_buff *skb = (struct sk_buff *)osbuf; if(skb) { skb->dev = dev; if ((skb->dev->flags & IFF_UP) == IFF_UP) { skb->protocol = htons(ETH_P_CONTROL); netif_rx(skb); } else { A_NETBUF_FREE(skb); } } } #endif static void ar6000_rx_refill(void *Context, HTC_ENDPOINT_ID Endpoint) { AR_SOFTC_T *ar = (AR_SOFTC_T *)Context; void *osBuf; int RxBuffers; int buffersToRefill; HTC_PACKET *pPacket; HTC_PACKET_QUEUE queue; buffersToRefill = (int)AR6000_MAX_RX_BUFFERS - HTCGetNumRecvBuffers(ar->arHtcTarget, Endpoint); if (buffersToRefill <= 0) { /* fast return, nothing to fill */ return; } INIT_HTC_PACKET_QUEUE(&queue); AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_rx_refill: providing htc with %d buffers at eid=%d\n", buffersToRefill, Endpoint)); for (RxBuffers = 0; RxBuffers < buffersToRefill; RxBuffers++) { osBuf = A_NETBUF_ALLOC(AR6000_BUFFER_SIZE); if (NULL == osBuf) { break; } /* the HTC packet wrapper is at the head of the reserved area * in the skb */ pPacket = (HTC_PACKET *)(A_NETBUF_HEAD(osBuf)); /* set re-fill info */ SET_HTC_PACKET_INFO_RX_REFILL(pPacket,osBuf,A_NETBUF_DATA(osBuf),AR6000_BUFFER_SIZE,Endpoint); /* add to queue */ HTC_PACKET_ENQUEUE(&queue,pPacket); } if (!HTC_QUEUE_EMPTY(&queue)) { /* add packets */ HTCAddReceivePktMultiple(ar->arHtcTarget, &queue); } } /* clean up our amsdu buffer list */ static void ar6000_cleanup_amsdu_rxbufs(AR_SOFTC_T *ar) { HTC_PACKET *pPacket; void *osBuf; /* empty AMSDU buffer queue and free OS bufs */ while (TRUE) { AR6000_SPIN_LOCK(&ar->arLock, 0); pPacket = HTC_PACKET_DEQUEUE(&ar->amsdu_rx_buffer_queue); AR6000_SPIN_UNLOCK(&ar->arLock, 0); if (NULL == pPacket) { break; } osBuf = pPacket->pPktContext; if (NULL == osBuf) { A_ASSERT(FALSE); break; } A_NETBUF_FREE(osBuf); } } /* refill the amsdu buffer list */ static void ar6000_refill_amsdu_rxbufs(AR_SOFTC_T *ar, int Count) { HTC_PACKET *pPacket; void *osBuf; while (Count > 0) { osBuf = A_NETBUF_ALLOC(AR6000_AMSDU_BUFFER_SIZE); if (NULL == osBuf) { break; } /* the HTC packet wrapper is at the head of the reserved area * in the skb */ pPacket = (HTC_PACKET *)(A_NETBUF_HEAD(osBuf)); /* set re-fill info */ SET_HTC_PACKET_INFO_RX_REFILL(pPacket,osBuf,A_NETBUF_DATA(osBuf),AR6000_AMSDU_BUFFER_SIZE,0); AR6000_SPIN_LOCK(&ar->arLock, 0); /* put it in the list */ HTC_PACKET_ENQUEUE(&ar->amsdu_rx_buffer_queue,pPacket); AR6000_SPIN_UNLOCK(&ar->arLock, 0); Count--; } } /* callback to allocate a large receive buffer for a pending packet. This function is called when * an HTC packet arrives whose length exceeds a threshold value * * We use a pre-allocated list of buffers of maximum AMSDU size (4K). Under linux it is more optimal to * keep the allocation size the same to optimize cached-slab allocations. * * */ static HTC_PACKET *ar6000_alloc_amsdu_rxbuf(void *Context, HTC_ENDPOINT_ID Endpoint, int Length) { HTC_PACKET *pPacket = NULL; AR_SOFTC_T *ar = (AR_SOFTC_T *)Context; int refillCount = 0; AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_alloc_amsdu_rxbuf: eid=%d, Length:%d\n",Endpoint,Length)); do { if (Length <= AR6000_BUFFER_SIZE) { /* shouldn't be getting called on normal sized packets */ A_ASSERT(FALSE); break; } if (Length > AR6000_AMSDU_BUFFER_SIZE) { A_ASSERT(FALSE); break; } AR6000_SPIN_LOCK(&ar->arLock, 0); /* allocate a packet from the list */ pPacket = HTC_PACKET_DEQUEUE(&ar->amsdu_rx_buffer_queue); /* see if we need to refill again */ refillCount = AR6000_MAX_AMSDU_RX_BUFFERS - HTC_PACKET_QUEUE_DEPTH(&ar->amsdu_rx_buffer_queue); AR6000_SPIN_UNLOCK(&ar->arLock, 0); if (NULL == pPacket) { break; } /* set actual endpoint ID */ pPacket->Endpoint = Endpoint; } while (FALSE); if (refillCount >= AR6000_AMSDU_REFILL_THRESHOLD) { ar6000_refill_amsdu_rxbufs(ar,refillCount); } return pPacket; } static struct net_device_stats * ar6000_get_stats(struct net_device *dev) { AR_SOFTC_T *ar = (AR_SOFTC_T *)ar6k_priv(dev); return &ar->arNetStats; } static struct iw_statistics * ar6000_get_iwstats(struct net_device * dev) { AR_SOFTC_T *ar = (AR_SOFTC_T *)ar6k_priv(dev); TARGET_STATS *pStats = &ar->arTargetStats; struct iw_statistics * pIwStats = &ar->arIwStats; int rtnllocked; if (ar->bIsDestroyProgress || ar->arWmiReady == FALSE) { pIwStats->status = 0; pIwStats->qual.qual = 0; pIwStats->qual.level =0; pIwStats->qual.noise = 0; pIwStats->discard.code =0; pIwStats->discard.retries=0; pIwStats->miss.beacon =0; return pIwStats; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) /* * The in_atomic function is used to determine if the scheduling is * allowed in the current context or not. This was introduced in 2.6 * From what I have read on the differences between 2.4 and 2.6, the * 2.4 kernel did not support preemption and so this check might not * be required for 2.4 kernels. */ if (in_atomic()) { wmi_get_stats_cmd(ar->arWmi); pIwStats->status = 1 ; pIwStats->qual.qual = pStats->cs_aveBeacon_rssi - 161; pIwStats->qual.level =pStats->cs_aveBeacon_rssi; /* noise is -95 dBm */ pIwStats->qual.noise = pStats->noise_floor_calibation; pIwStats->discard.code = pStats->rx_decrypt_err; pIwStats->discard.retries = pStats->tx_retry_cnt; pIwStats->miss.beacon = pStats->cs_bmiss_cnt; return pIwStats; } #endif /* LINUX_VERSION_CODE */ if (down_interruptible(&ar->arSem)) { pIwStats->status = 0; return pIwStats; } if (ar->bIsDestroyProgress) { up(&ar->arSem); pIwStats->status = 0; return pIwStats; } ar->statsUpdatePending = TRUE; if(wmi_get_stats_cmd(ar->arWmi) != A_OK) { up(&ar->arSem); pIwStats->status = 0; return pIwStats; } dev_hold(dev); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27) rtnllocked = rtnl_is_locked(); #else rtnllocked = TRUE; #endif if (rtnllocked) { rtnl_unlock(); } wait_event_interruptible_timeout(arEvent, ar->statsUpdatePending == FALSE, wmitimeout * HZ); if (rtnllocked) { rtnl_lock(); } dev_put(dev); if (signal_pending(current)) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000 : WMI get stats timeout \n")); up(&ar->arSem); pIwStats->status = 0; return pIwStats; } pIwStats->status = 1 ; pIwStats->qual.qual = pStats->cs_aveBeacon_rssi - 161; pIwStats->qual.level =pStats->cs_aveBeacon_rssi; /* noise is -95 dBm */ pIwStats->qual.noise = pStats->noise_floor_calibation; pIwStats->discard.code = pStats->rx_decrypt_err; pIwStats->discard.retries = pStats->tx_retry_cnt; pIwStats->miss.beacon = pStats->cs_bmiss_cnt; up(&ar->arSem); return pIwStats; } void ar6000_ready_event(void *devt, A_UINT8 *datap, A_UINT8 phyCap, A_UINT32 vers) { AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; struct net_device *dev = ar->arNetDev; ar->arWmiReady = TRUE; wake_up(&arEvent); A_MEMCPY(dev->dev_addr, datap, AR6000_ETH_ADDR_LEN); AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("mac address = %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n", dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5])); ar->arPhyCapability = phyCap; ar->arVersion.wlan_ver = vers; #if WLAN_CONFIG_IGNORE_POWER_SAVE_FAIL_EVENT_DURING_SCAN wmi_pmparams_cmd(ar->arWmi, 0, 1, 0, 0, 1, IGNORE_POWER_SAVE_FAIL_EVENT_DURING_SCAN); #endif #if WLAN_CONFIG_DONOT_IGNORE_BARKER_IN_ERP wmi_set_lpreamble_cmd(ar->arWmi, 0, WMI_DONOT_IGNORE_BARKER_IN_ERP); #endif wmi_set_keepalive_cmd(ar->arWmi, WLAN_CONFIG_KEEP_ALIVE_INTERVAL); } A_UINT8 add_new_sta(AR_SOFTC_T *ar, A_UINT8 *mac, A_UINT16 aid, A_UINT8 *wpaie, A_UINT8 ielen, A_UINT8 keymgmt, A_UINT8 ucipher, A_UINT8 auth) { A_INT8 free_slot=-1, i; for(i=0; i < AP_MAX_NUM_STA; i++) { if(A_MEMCMP(ar->sta_list[i].mac, mac, ATH_MAC_LEN)==0) { /* it is already available */ return 0; } if(!((1 << i) & ar->sta_list_index)) { free_slot = i; break; } } if(free_slot >= 0) { A_MEMCPY(ar->sta_list[free_slot].mac, mac, ATH_MAC_LEN); A_MEMCPY(ar->sta_list[free_slot].wpa_ie, wpaie, ielen); ar->sta_list[free_slot].aid = aid; ar->sta_list[free_slot].keymgmt = keymgmt; ar->sta_list[free_slot].ucipher = ucipher; ar->sta_list[free_slot].auth = auth; ar->sta_list_index = ar->sta_list_index | (1 << free_slot); ar->arAPStats.sta[aid-1].aid = aid; return 1; } return 0; /* not added */ } void ar6000_connect_event(AR_SOFTC_T *ar, A_UINT16 channel, A_UINT8 *bssid, A_UINT16 listenInterval, A_UINT16 beaconInterval, NETWORK_TYPE networkType, A_UINT8 beaconIeLen, A_UINT8 assocReqLen, A_UINT8 assocRespLen, A_UINT8 *assocInfo) { union iwreq_data wrqu; int i, beacon_ie_pos, assoc_resp_ie_pos, assoc_req_ie_pos; static const char *tag1 = "ASSOCINFO(ReqIEs="; static const char *tag2 = "ASSOCRESPIE="; static const char *beaconIetag = "BEACONIE="; char buf[WMI_CONTROL_MSG_MAX_LEN * 2 + strlen(tag1) + 1]; char *pos; A_UINT8 key_op_ctrl; unsigned long flags; struct ieee80211req_key *ik; CRYPTO_TYPE keyType = NONE_CRYPT; if(ar->arNetworkType & AP_NETWORK) { struct net_device *dev = ar->arNetDev; if(A_MEMCMP(dev->dev_addr, bssid, ATH_MAC_LEN)==0) { ar->arACS = channel; ik = &ar->ap_mode_bkey; switch(ar->arAuthMode) { case NONE_AUTH: if(ar->arPairwiseCrypto == WEP_CRYPT) { ar6000_install_static_wep_keys(ar); } #ifdef WAPI_ENABLE else if(ar->arPairwiseCrypto == WAPI_CRYPT) { ap_set_wapi_key(ar, ik); } #endif break; case WPA_PSK_AUTH: case WPA2_PSK_AUTH: case (WPA_PSK_AUTH|WPA2_PSK_AUTH): switch (ik->ik_type) { case IEEE80211_CIPHER_TKIP: keyType = TKIP_CRYPT; break; case IEEE80211_CIPHER_AES_CCM: keyType = AES_CRYPT; break; default: goto skip_key; } wmi_addKey_cmd(ar->arWmi, ik->ik_keyix, keyType, GROUP_USAGE, ik->ik_keylen, (A_UINT8 *)&ik->ik_keyrsc, ik->ik_keydata, KEY_OP_INIT_VAL, ik->ik_macaddr, SYNC_BOTH_WMIFLAG); break; } skip_key: ar->arConnected = TRUE; return; } A_PRINTF("NEW STA %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x \n " " AID=%d \n", bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5], channel); switch ((listenInterval>>8)&0xFF) { case OPEN_AUTH: A_PRINTF("AUTH: OPEN\n"); break; case SHARED_AUTH: A_PRINTF("AUTH: SHARED\n"); break; default: A_PRINTF("AUTH: Unknown\n"); break; }; switch (listenInterval&0xFF) { case WPA_PSK_AUTH: A_PRINTF("KeyMgmt: WPA-PSK\n"); break; case WPA2_PSK_AUTH: A_PRINTF("KeyMgmt: WPA2-PSK\n"); break; default: A_PRINTF("KeyMgmt: NONE\n"); break; }; switch (beaconInterval) { case AES_CRYPT: A_PRINTF("Cipher: AES\n"); break; case TKIP_CRYPT: A_PRINTF("Cipher: TKIP\n"); break; case WEP_CRYPT: A_PRINTF("Cipher: WEP\n"); break; #ifdef WAPI_ENABLE case WAPI_CRYPT: A_PRINTF("Cipher: WAPI\n"); break; #endif default: A_PRINTF("Cipher: NONE\n"); break; }; add_new_sta(ar, bssid, channel /*aid*/, assocInfo /* WPA IE */, assocRespLen /* IE len */, listenInterval&0xFF /* Keymgmt */, beaconInterval /* cipher */, (listenInterval>>8)&0xFF /* auth alg */); /* Send event to application */ A_MEMZERO(&wrqu, sizeof(wrqu)); A_MEMCPY(wrqu.addr.sa_data, bssid, ATH_MAC_LEN); wireless_send_event(ar->arNetDev, IWEVREGISTERED, &wrqu, NULL); /* In case the queue is stopped when we switch modes, this will * wake it up */ netif_wake_queue(ar->arNetDev); return; } #ifdef ATH6K_CONFIG_CFG80211 ar6k_cfg80211_connect_event(ar, channel, bssid, listenInterval, beaconInterval, networkType, beaconIeLen, assocReqLen, assocRespLen, assocInfo); #endif /* ATH6K_CONFIG_CFG80211 */ A_MEMCPY(ar->arBssid, bssid, sizeof(ar->arBssid)); ar->arBssChannel = channel; A_PRINTF("AR6000 connected event on freq %d ", channel); A_PRINTF("with bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x " " listenInterval=%d, beaconInterval = %d, beaconIeLen = %d assocReqLen=%d" " assocRespLen =%d\n", bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5], listenInterval, beaconInterval, beaconIeLen, assocReqLen, assocRespLen); if (networkType & ADHOC_NETWORK) { if (networkType & ADHOC_CREATOR) { A_PRINTF("Network: Adhoc (Creator)\n"); } else { A_PRINTF("Network: Adhoc (Joiner)\n"); } } else { A_PRINTF("Network: Infrastructure\n"); } if ((ar->arNetworkType == INFRA_NETWORK)) { wmi_listeninterval_cmd(ar->arWmi, ar->arListenInterval, 0); } if (beaconIeLen && (sizeof(buf) > (9 + beaconIeLen * 2))) { AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nBeaconIEs= ")); beacon_ie_pos = 0; A_MEMZERO(buf, sizeof(buf)); sprintf(buf, "%s", beaconIetag); pos = buf + 9; for (i = beacon_ie_pos; i < beacon_ie_pos + beaconIeLen; i++) { AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i])); sprintf(pos, "%2.2x", assocInfo[i]); pos += 2; } AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n")); A_MEMZERO(&wrqu, sizeof(wrqu)); wrqu.data.length = strlen(buf); wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); } if (assocRespLen && (sizeof(buf) > (12 + (assocRespLen * 2)))) { assoc_resp_ie_pos = beaconIeLen + assocReqLen + sizeof(A_UINT16) + /* capinfo*/ sizeof(A_UINT16) + /* status Code */ sizeof(A_UINT16) ; /* associd */ A_MEMZERO(buf, sizeof(buf)); sprintf(buf, "%s", tag2); pos = buf + 12; AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nAssocRespIEs= ")); /* * The Association Response Frame w.o. the WLAN header is delivered to * the host, so skip over to the IEs */ for (i = assoc_resp_ie_pos; i < assoc_resp_ie_pos + assocRespLen - 6; i++) { AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i])); sprintf(pos, "%2.2x", assocInfo[i]); pos += 2; } AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n")); A_MEMZERO(&wrqu, sizeof(wrqu)); wrqu.data.length = strlen(buf); wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); } if (assocReqLen && (sizeof(buf) > (17 + (assocReqLen * 2)))) { /* * assoc Request includes capability and listen interval. Skip these. */ assoc_req_ie_pos = beaconIeLen + sizeof(A_UINT16) + /* capinfo*/ sizeof(A_UINT16); /* listen interval */ A_MEMZERO(buf, sizeof(buf)); sprintf(buf, "%s", tag1); pos = buf + 17; AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("AssocReqIEs= ")); for (i = assoc_req_ie_pos; i < assoc_req_ie_pos + assocReqLen - 4; i++) { AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i])); sprintf(pos, "%2.2x", assocInfo[i]); pos += 2;; } AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n")); A_MEMZERO(&wrqu, sizeof(wrqu)); wrqu.data.length = strlen(buf); wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); } #ifdef USER_KEYS if (ar->user_savedkeys_stat == USER_SAVEDKEYS_STAT_RUN && ar->user_saved_keys.keyOk == TRUE) { key_op_ctrl = KEY_OP_VALID_MASK & ~KEY_OP_INIT_TSC; if (ar->user_key_ctrl & AR6000_USER_SETKEYS_RSC_UNCHANGED) { key_op_ctrl &= ~KEY_OP_INIT_RSC; } else { key_op_ctrl |= KEY_OP_INIT_RSC; } ar6000_reinstall_keys(ar, key_op_ctrl); } #endif /* USER_KEYS */ netif_wake_queue(ar->arNetDev); if ((networkType & ADHOC_NETWORK) && (OPEN_AUTH == ar->arDot11AuthMode) && (NONE_AUTH == ar->arAuthMode) && (WEP_CRYPT == ar->arPairwiseCrypto)) { if (!ar->arConnected) { wmi_addKey_cmd(ar->arWmi, ar->arDefTxKeyIndex, WEP_CRYPT, GROUP_USAGE | TX_USAGE, ar->arWepKeyList[ar->arDefTxKeyIndex].arKeyLen, NULL, ar->arWepKeyList[ar->arDefTxKeyIndex].arKey, KEY_OP_INIT_VAL, NULL, NO_SYNC_WMIFLAG); } } /* Update connect & link status atomically */ spin_lock_irqsave(&ar->arLock, flags); ar->arConnected = TRUE; ar->arConnectPending = FALSE; netif_carrier_on(ar->arNetDev); spin_unlock_irqrestore(&ar->arLock, flags); /* reset the rx aggr state */ aggr_reset_state(ar->aggr_cntxt); reconnect_flag = 0; A_MEMZERO(&wrqu, sizeof(wrqu)); A_MEMCPY(wrqu.addr.sa_data, bssid, IEEE80211_ADDR_LEN); wrqu.addr.sa_family = ARPHRD_ETHER; wireless_send_event(ar->arNetDev, SIOCGIWAP, &wrqu, NULL); if ((ar->arNetworkType == ADHOC_NETWORK) && ar->arIbssPsEnable) { A_MEMZERO(ar->arNodeMap, sizeof(ar->arNodeMap)); ar->arNodeNum = 0; ar->arNexEpId = ENDPOINT_2; } if (!ar->arUserBssFilter) { wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0); } } void ar6000_set_numdataendpts(AR_SOFTC_T *ar, A_UINT32 num) { A_ASSERT(num <= (HTC_MAILBOX_NUM_MAX - 1)); ar->arNumDataEndPts = num; } void sta_cleanup(AR_SOFTC_T *ar, A_UINT8 i) { struct sk_buff *skb; /* empty the queued pkts in the PS queue if any */ A_MUTEX_LOCK(&ar->sta_list[i].psqLock); while (!A_NETBUF_QUEUE_EMPTY(&ar->sta_list[i].psq)) { skb = A_NETBUF_DEQUEUE(&ar->sta_list[i].psq); A_NETBUF_FREE(skb); } A_MUTEX_UNLOCK(&ar->sta_list[i].psqLock); /* Zero out the state fields */ A_MEMZERO(&ar->arAPStats.sta[ar->sta_list[i].aid-1], sizeof(WMI_PER_STA_STAT)); A_MEMZERO(&ar->sta_list[i].mac, ATH_MAC_LEN); A_MEMZERO(&ar->sta_list[i].wpa_ie, IEEE80211_MAX_IE); ar->sta_list[i].aid = 0; ar->sta_list[i].flags = 0; ar->sta_list_index = ar->sta_list_index & ~(1 << i); } A_UINT8 remove_sta(AR_SOFTC_T *ar, A_UINT8 *mac, A_UINT16 reason) { A_UINT8 i, removed=0; if(IS_MAC_NULL(mac)) { return removed; } if(IS_MAC_BCAST(mac)) { A_PRINTF("DEL ALL STA\n"); for(i=0; i < AP_MAX_NUM_STA; i++) { if(!IS_MAC_NULL(ar->sta_list[i].mac)) { sta_cleanup(ar, i); removed = 1; } } } else { for(i=0; i < AP_MAX_NUM_STA; i++) { if(A_MEMCMP(ar->sta_list[i].mac, mac, ATH_MAC_LEN)==0) { A_PRINTF("DEL STA %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x " " aid=%d REASON=%d\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], ar->sta_list[i].aid, reason); sta_cleanup(ar, i); removed = 1; break; } } } return removed; } void ar6000_disconnect_event(AR_SOFTC_T *ar, A_UINT8 reason, A_UINT8 *bssid, A_UINT8 assocRespLen, A_UINT8 *assocInfo, A_UINT16 protocolReasonStatus) { A_UINT8 i; unsigned long flags; if(ar->arNetworkType & AP_NETWORK) { union iwreq_data wrqu; struct sk_buff *skb; if(!remove_sta(ar, bssid, protocolReasonStatus)) { return; } /* If there are no more associated STAs, empty the mcast PS q */ if (ar->sta_list_index == 0) { A_MUTEX_LOCK(&ar->mcastpsqLock); while (!A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq)) { skb = A_NETBUF_DEQUEUE(&ar->mcastpsq); A_NETBUF_FREE(skb); } A_MUTEX_UNLOCK(&ar->mcastpsqLock); /* Clear the LSB of the BitMapCtl field of the TIM IE */ wmi_set_pvb_cmd(ar->arWmi, MCAST_AID, 0); } if(!IS_MAC_BCAST(bssid)) { /* Send event to application */ A_MEMZERO(&wrqu, sizeof(wrqu)); A_MEMCPY(wrqu.addr.sa_data, bssid, ATH_MAC_LEN); wireless_send_event(ar->arNetDev, IWEVEXPIRED, &wrqu, NULL); } return; } #ifdef ATH6K_CONFIG_CFG80211 ar6k_cfg80211_disconnect_event(ar, reason, bssid, assocRespLen, assocInfo, protocolReasonStatus); #endif /* ATH6K_CONFIG_CFG80211 */ if (NO_NETWORK_AVAIL != reason) { union iwreq_data wrqu; A_MEMZERO(&wrqu, sizeof(wrqu)); wrqu.addr.sa_family = ARPHRD_ETHER; /* Send disconnect event to supplicant */ wireless_send_event(ar->arNetDev, SIOCGIWAP, &wrqu, NULL); } /* it is necessary to clear the host-side rx aggregation state */ aggr_reset_state(ar->aggr_cntxt); A_UNTIMEOUT(&ar->disconnect_timer); A_PRINTF("AR6000 disconnected"); if (bssid[0] || bssid[1] || bssid[2] || bssid[3] || bssid[4] || bssid[5]) { A_PRINTF(" from %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ", bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5]); } AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nDisconnect Reason is %d", reason)); AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nProtocol Reason/Status Code is %d", protocolReasonStatus)); AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nAssocResp Frame = %s", assocRespLen ? " " : "NULL")); for (i = 0; i < assocRespLen; i++) { if (!(i % 0x10)) { AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n")); } AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i])); } AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n")); /* * If the event is due to disconnect cmd from the host, only they the target * would stop trying to connect. Under any other condition, target would * keep trying to connect. * */ if( reason == DISCONNECT_CMD) { ar->arConnectPending = FALSE; if (!ar->arUserBssFilter) { wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0); } } else { ar->arConnectPending = TRUE; if (((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x11)) || ((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x0) && (reconnect_flag == 1))) { ar->arConnected = TRUE; return; } } if (reason == NO_NETWORK_AVAIL) { bss_t *pWmiSsidnode = NULL; /* remove the current associated bssid node */ wmi_free_node (ar->arWmi, bssid); /* * In case any other same SSID nodes are present * remove it, since those nodes also not available now */ do { /* * Find the nodes based on SSID and remove it * NOTE :: This case will not work out for Hidden-SSID */ pWmiSsidnode = wmi_find_Ssidnode (ar->arWmi, ar->arSsid, ar->arSsidLen, FALSE, TRUE); if (pWmiSsidnode) { wmi_free_node (ar->arWmi, pWmiSsidnode->ni_macaddr); } }while (pWmiSsidnode); #if 0 /* * Issuing a disconnect cmd prevent the firmware from * continuing the scan and connect to the AP, if the AP * cannot be found in 10 seconds. The user has to issue * the iwconfig command again to connect to the AP. * This change came in CL#575412 (EV# 59469) has to * be fixed in a different way */ ar6000_init_profile_info(ar); wmi_disconnect_cmd(ar->arWmi); #endif } /* Update connect & link status atomically */ spin_lock_irqsave(&ar->arLock, flags); ar->arConnected = FALSE; netif_carrier_off(ar->arNetDev); spin_unlock_irqrestore(&ar->arLock, flags); if( (reason != CSERV_DISCONNECT) || (reconnect_flag != 1) ) { reconnect_flag = 0; } #ifdef USER_KEYS if (reason != CSERV_DISCONNECT) { ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT; ar->user_key_ctrl = 0; } #endif /* USER_KEYS */ netif_stop_queue(ar->arNetDev); A_MEMZERO(ar->arBssid, sizeof(ar->arBssid)); ar->arBssChannel = 0; ar->arBeaconInterval = 0; ar6000_TxDataCleanup(ar); } void ar6000_regDomain_event(AR_SOFTC_T *ar, A_UINT32 regCode) { A_PRINTF("AR6000 Reg Code = 0x%x\n", regCode); ar->arRegCode = regCode; } #ifdef ATH_AR6K_11N_SUPPORT void ar6000_aggr_rcv_addba_req_evt(AR_SOFTC_T *ar, WMI_ADDBA_REQ_EVENT *evt) { if(evt->status == 0) { aggr_recv_addba_req_evt(ar->aggr_cntxt, evt->tid, evt->st_seq_no, evt->win_sz); } } void ar6000_aggr_rcv_addba_resp_evt(AR_SOFTC_T *ar, WMI_ADDBA_RESP_EVENT *evt) { A_PRINTF("ADDBA RESP. tid %d status %d, sz %d\n", evt->tid, evt->status, evt->amsdu_sz); if(evt->status == 0) { } } void ar6000_aggr_rcv_delba_req_evt(AR_SOFTC_T *ar, WMI_DELBA_EVENT *evt) { aggr_recv_delba_req_evt(ar->aggr_cntxt, evt->tid); } #endif void ar6000_hci_event_rcv_evt(struct ar6_softc *ar, WMI_HCI_EVENT *cmd) { void *osbuf = NULL; A_INT8 i; A_UINT8 size, *buf; A_STATUS ret = A_OK; size = cmd->evt_buf_sz + 4; osbuf = A_NETBUF_ALLOC(size); if (osbuf == NULL) { ret = A_NO_MEMORY; A_PRINTF("Error in allocating netbuf \n"); return; } A_NETBUF_PUT(osbuf, size); buf = (A_UINT8 *)A_NETBUF_DATA(osbuf); /* First 2-bytes carry HCI event/ACL data type * the next 2 are free */ *((short *)buf) = WMI_HCI_EVENT_EVENTID; buf += sizeof(int); A_MEMCPY(buf, cmd->buf, cmd->evt_buf_sz); ar6000_deliver_frames_to_nw_stack(ar->arNetDev, osbuf); if(loghci) { A_PRINTF_LOG("HCI Event From PAL <-- \n"); for(i = 0; i < cmd->evt_buf_sz; i++) { A_PRINTF_LOG("0x%02x ", cmd->buf[i]); if((i % 10) == 0) { A_PRINTF_LOG("\n"); } } A_PRINTF_LOG("\n"); A_PRINTF_LOG("==================================\n"); } } void ar6000_neighborReport_event(AR_SOFTC_T *ar, int numAps, WMI_NEIGHBOR_INFO *info) { #if WIRELESS_EXT >= 18 struct iw_pmkid_cand *pmkcand; #else /* WIRELESS_EXT >= 18 */ static const char *tag = "PRE-AUTH"; char buf[128]; #endif /* WIRELESS_EXT >= 18 */ union iwreq_data wrqu; int i; AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("AR6000 Neighbor Report Event\n")); for (i=0; i < numAps; info++, i++) { AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ", info->bssid[0], info->bssid[1], info->bssid[2], info->bssid[3], info->bssid[4], info->bssid[5])); if (info->bssFlags & WMI_PREAUTH_CAPABLE_BSS) { AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("preauth-cap")); } if (info->bssFlags & WMI_PMKID_VALID_BSS) { AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,(" pmkid-valid\n")); continue; /* we skip bss if the pmkid is already valid */ } AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,("\n")); A_MEMZERO(&wrqu, sizeof(wrqu)); #if WIRELESS_EXT >= 18 pmkcand = A_MALLOC_NOWAIT(sizeof(struct iw_pmkid_cand)); A_MEMZERO(pmkcand, sizeof(struct iw_pmkid_cand)); pmkcand->index = i; pmkcand->flags = info->bssFlags; A_MEMCPY(pmkcand->bssid.sa_data, info->bssid, ATH_MAC_LEN); wrqu.data.length = sizeof(struct iw_pmkid_cand); wireless_send_event(ar->arNetDev, IWEVPMKIDCAND, &wrqu, (char *)pmkcand); A_FREE(pmkcand); #else /* WIRELESS_EXT >= 18 */ snprintf(buf, sizeof(buf), "%s%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x", tag, info->bssid[0], info->bssid[1], info->bssid[2], info->bssid[3], info->bssid[4], info->bssid[5], i, info->bssFlags); wrqu.data.length = strlen(buf); wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); #endif /* WIRELESS_EXT >= 18 */ } } void ar6000_tkip_micerr_event(AR_SOFTC_T *ar, A_UINT8 keyid, A_BOOL ismcast) { static const char *tag = "MLME-MICHAELMICFAILURE.indication"; char buf[128]; union iwreq_data wrqu; /* * For AP case, keyid will have aid of STA which sent pkt with * MIC error. Use this aid to get MAC & send it to hostapd. */ if (ar->arNetworkType == AP_NETWORK) { sta_t *s = ieee80211_find_conn_for_aid(ar, (keyid >> 2)); if(!s){ A_PRINTF("AP TKIP MIC error received from Invalid aid / STA not found =%d\n", keyid); return; } A_PRINTF("AP TKIP MIC error received from aid=%d\n", keyid); snprintf(buf,sizeof(buf), "%s addr=%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x", tag, s->mac[0],s->mac[1],s->mac[2],s->mac[3],s->mac[4],s->mac[5]); } else { #ifdef ATH6K_CONFIG_CFG80211 ar6k_cfg80211_tkip_micerr_event(ar, keyid, ismcast); #endif /* ATH6K_CONFIG_CFG80211 */ A_PRINTF("AR6000 TKIP MIC error received for keyid %d %scast\n", keyid & 0x3, ismcast ? "multi": "uni"); snprintf(buf, sizeof(buf), "%s(keyid=%d %sicast)", tag, keyid & 0x3, ismcast ? "mult" : "un"); } memset(&wrqu, 0, sizeof(wrqu)); wrqu.data.length = strlen(buf); wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); } void ar6000_scanComplete_event(AR_SOFTC_T *ar, A_STATUS status) { #ifdef ATH6K_CONFIG_CFG80211 ar6k_cfg80211_scanComplete_event(ar, status); #endif /* ATH6K_CONFIG_CFG80211 */ if (!ar->arUserBssFilter) { wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0); } if (!ar->scan_complete) { if (status==A_OK) { union iwreq_data wrqu; A_MEMZERO(&wrqu, sizeof(wrqu)); wireless_send_event(ar->arNetDev, SIOCGIWSCAN, &wrqu, NULL); ar->scan_complete = 1; } } AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_SCAN,( "AR6000 scan complete: %d\n", status)); } void ar6000_targetStats_event(AR_SOFTC_T *ar, A_UINT8 *ptr, A_UINT32 len) { A_UINT8 ac; if(ar->arNetworkType == AP_NETWORK) { WMI_AP_MODE_STAT *p = (WMI_AP_MODE_STAT *)ptr; WMI_AP_MODE_STAT *ap = &ar->arAPStats; if (len < sizeof(*p)) { return; } for(ac=0;acsta[ac].tx_bytes += p->sta[ac].tx_bytes; ap->sta[ac].tx_pkts += p->sta[ac].tx_pkts; ap->sta[ac].tx_error += p->sta[ac].tx_error; ap->sta[ac].tx_discard += p->sta[ac].tx_discard; ap->sta[ac].rx_bytes += p->sta[ac].rx_bytes; ap->sta[ac].rx_pkts += p->sta[ac].rx_pkts; ap->sta[ac].rx_error += p->sta[ac].rx_error; ap->sta[ac].rx_discard += p->sta[ac].rx_discard; } } else { WMI_TARGET_STATS *pTarget = (WMI_TARGET_STATS *)ptr; TARGET_STATS *pStats = &ar->arTargetStats; if (len < sizeof(*pTarget)) { return; } // Update the RSSI of the connected bss. if (ar->arConnected) { bss_t *pConnBss = NULL; pConnBss = wmi_find_node(ar->arWmi,ar->arBssid); if (pConnBss) { pConnBss->ni_rssi = pTarget->cservStats.cs_aveBeacon_rssi; pConnBss->ni_snr = pTarget->cservStats.cs_aveBeacon_snr; wmi_node_return(ar->arWmi, pConnBss); } } AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 updating target stats\n")); pStats->tx_packets += pTarget->txrxStats.tx_stats.tx_packets; pStats->tx_bytes += pTarget->txrxStats.tx_stats.tx_bytes; pStats->tx_unicast_pkts += pTarget->txrxStats.tx_stats.tx_unicast_pkts; pStats->tx_unicast_bytes += pTarget->txrxStats.tx_stats.tx_unicast_bytes; pStats->tx_multicast_pkts += pTarget->txrxStats.tx_stats.tx_multicast_pkts; pStats->tx_multicast_bytes += pTarget->txrxStats.tx_stats.tx_multicast_bytes; pStats->tx_broadcast_pkts += pTarget->txrxStats.tx_stats.tx_broadcast_pkts; pStats->tx_broadcast_bytes += pTarget->txrxStats.tx_stats.tx_broadcast_bytes; pStats->tx_rts_success_cnt += pTarget->txrxStats.tx_stats.tx_rts_success_cnt; for(ac = 0; ac < WMM_NUM_AC; ac++) pStats->tx_packet_per_ac[ac] += pTarget->txrxStats.tx_stats.tx_packet_per_ac[ac]; pStats->tx_errors += pTarget->txrxStats.tx_stats.tx_errors; pStats->tx_failed_cnt += pTarget->txrxStats.tx_stats.tx_failed_cnt; pStats->tx_retry_cnt += pTarget->txrxStats.tx_stats.tx_retry_cnt; pStats->tx_mult_retry_cnt += pTarget->txrxStats.tx_stats.tx_mult_retry_cnt; pStats->tx_rts_fail_cnt += pTarget->txrxStats.tx_stats.tx_rts_fail_cnt; pStats->tx_unicast_rate = wmi_get_rate(pTarget->txrxStats.tx_stats.tx_unicast_rate); pStats->rx_packets += pTarget->txrxStats.rx_stats.rx_packets; pStats->rx_bytes += pTarget->txrxStats.rx_stats.rx_bytes; pStats->rx_unicast_pkts += pTarget->txrxStats.rx_stats.rx_unicast_pkts; pStats->rx_unicast_bytes += pTarget->txrxStats.rx_stats.rx_unicast_bytes; pStats->rx_multicast_pkts += pTarget->txrxStats.rx_stats.rx_multicast_pkts; pStats->rx_multicast_bytes += pTarget->txrxStats.rx_stats.rx_multicast_bytes; pStats->rx_broadcast_pkts += pTarget->txrxStats.rx_stats.rx_broadcast_pkts; pStats->rx_broadcast_bytes += pTarget->txrxStats.rx_stats.rx_broadcast_bytes; pStats->rx_fragment_pkt += pTarget->txrxStats.rx_stats.rx_fragment_pkt; pStats->rx_errors += pTarget->txrxStats.rx_stats.rx_errors; pStats->rx_crcerr += pTarget->txrxStats.rx_stats.rx_crcerr; pStats->rx_key_cache_miss += pTarget->txrxStats.rx_stats.rx_key_cache_miss; pStats->rx_decrypt_err += pTarget->txrxStats.rx_stats.rx_decrypt_err; pStats->rx_duplicate_frames += pTarget->txrxStats.rx_stats.rx_duplicate_frames; pStats->rx_unicast_rate = wmi_get_rate(pTarget->txrxStats.rx_stats.rx_unicast_rate); pStats->tkip_local_mic_failure += pTarget->txrxStats.tkipCcmpStats.tkip_local_mic_failure; pStats->tkip_counter_measures_invoked += pTarget->txrxStats.tkipCcmpStats.tkip_counter_measures_invoked; pStats->tkip_replays += pTarget->txrxStats.tkipCcmpStats.tkip_replays; pStats->tkip_format_errors += pTarget->txrxStats.tkipCcmpStats.tkip_format_errors; pStats->ccmp_format_errors += pTarget->txrxStats.tkipCcmpStats.ccmp_format_errors; pStats->ccmp_replays += pTarget->txrxStats.tkipCcmpStats.ccmp_replays; pStats->power_save_failure_cnt += pTarget->pmStats.power_save_failure_cnt; pStats->noise_floor_calibation = pTarget->noise_floor_calibation; pStats->cs_bmiss_cnt += pTarget->cservStats.cs_bmiss_cnt; pStats->cs_lowRssi_cnt += pTarget->cservStats.cs_lowRssi_cnt; pStats->cs_connect_cnt += pTarget->cservStats.cs_connect_cnt; pStats->cs_disconnect_cnt += pTarget->cservStats.cs_disconnect_cnt; pStats->cs_aveBeacon_snr = pTarget->cservStats.cs_aveBeacon_snr; pStats->cs_aveBeacon_rssi = pTarget->cservStats.cs_aveBeacon_rssi; if (enablerssicompensation) { pStats->cs_aveBeacon_rssi = rssi_compensation_calc(ar, pStats->cs_aveBeacon_rssi); } pStats->cs_lastRoam_msec = pTarget->cservStats.cs_lastRoam_msec; pStats->cs_snr = pTarget->cservStats.cs_snr; pStats->cs_rssi = pTarget->cservStats.cs_rssi; pStats->lq_val = pTarget->lqVal; pStats->wow_num_pkts_dropped += pTarget->wowStats.wow_num_pkts_dropped; pStats->wow_num_host_pkt_wakeups += pTarget->wowStats.wow_num_host_pkt_wakeups; pStats->wow_num_host_event_wakeups += pTarget->wowStats.wow_num_host_event_wakeups; pStats->wow_num_events_discarded += pTarget->wowStats.wow_num_events_discarded; pStats->arp_received += pTarget->arpStats.arp_received; pStats->arp_matched += pTarget->arpStats.arp_matched; pStats->arp_replied += pTarget->arpStats.arp_replied; if (ar->statsUpdatePending) { ar->statsUpdatePending = FALSE; wake_up(&arEvent); } } } void ar6000_rssiThreshold_event(AR_SOFTC_T *ar, WMI_RSSI_THRESHOLD_VAL newThreshold, A_INT16 rssi) { USER_RSSI_THOLD userRssiThold; rssi = rssi + SIGNAL_QUALITY_NOISE_FLOOR; if (enablerssicompensation) { rssi = rssi_compensation_calc(ar, rssi); } /* Send an event to the app */ userRssiThold.tag = ar->rssi_map[newThreshold].tag; userRssiThold.rssi = rssi; A_PRINTF("rssi Threshold range = %d tag = %d rssi = %d\n", newThreshold, userRssiThold.tag, userRssiThold.rssi); ar6000_send_event_to_app(ar, WMI_RSSI_THRESHOLD_EVENTID,(A_UINT8 *)&userRssiThold, sizeof(USER_RSSI_THOLD)); } void ar6000_hbChallengeResp_event(AR_SOFTC_T *ar, A_UINT32 cookie, A_UINT32 source) { if (source == APP_HB_CHALLENGE) { /* Report it to the app in case it wants a positive acknowledgement */ ar6000_send_event_to_app(ar, WMIX_HB_CHALLENGE_RESP_EVENTID, (A_UINT8 *)&cookie, sizeof(cookie)); } else { /* This would ignore the replys that come in after their due time */ if (cookie == ar->arHBChallengeResp.seqNum) { ar->arHBChallengeResp.outstanding = FALSE; } } } void ar6000_reportError_event(AR_SOFTC_T *ar, WMI_TARGET_ERROR_VAL errorVal) { char *errString[] = { [WMI_TARGET_PM_ERR_FAIL] "WMI_TARGET_PM_ERR_FAIL", [WMI_TARGET_KEY_NOT_FOUND] "WMI_TARGET_KEY_NOT_FOUND", [WMI_TARGET_DECRYPTION_ERR] "WMI_TARGET_DECRYPTION_ERR", [WMI_TARGET_BMISS] "WMI_TARGET_BMISS", [WMI_PSDISABLE_NODE_JOIN] "WMI_PSDISABLE_NODE_JOIN" }; A_PRINTF("AR6000 Error on Target. Error = 0x%x\n", errorVal); /* One error is reported at a time, and errorval is a bitmask */ if(errorVal & (errorVal - 1)) return; A_PRINTF("AR6000 Error type = "); switch(errorVal) { case WMI_TARGET_PM_ERR_FAIL: case WMI_TARGET_KEY_NOT_FOUND: case WMI_TARGET_DECRYPTION_ERR: case WMI_TARGET_BMISS: case WMI_PSDISABLE_NODE_JOIN: A_PRINTF("%s\n", errString[errorVal]); break; default: A_PRINTF("INVALID\n"); break; } } void ar6000_cac_event(AR_SOFTC_T *ar, A_UINT8 ac, A_UINT8 cacIndication, A_UINT8 statusCode, A_UINT8 *tspecSuggestion) { WMM_TSPEC_IE *tspecIe; /* * This is the TSPEC IE suggestion from AP. * Suggestion provided by AP under some error * cases, could be helpful for the host app. * Check documentation. */ tspecIe = (WMM_TSPEC_IE *)tspecSuggestion; /* * What do we do, if we get TSPEC rejection? One thought * that comes to mind is implictly delete the pstream... */ A_PRINTF("AR6000 CAC notification. " "AC = %d, cacIndication = 0x%x, statusCode = 0x%x\n", ac, cacIndication, statusCode); } void ar6000_channel_change_event(AR_SOFTC_T *ar, A_UINT16 oldChannel, A_UINT16 newChannel) { A_PRINTF("Channel Change notification\nOld Channel: %d, New Channel: %d\n", oldChannel, newChannel); } #define AR6000_PRINT_BSSID(_pBss) do { \ A_PRINTF("%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",\ (_pBss)[0],(_pBss)[1],(_pBss)[2],(_pBss)[3],\ (_pBss)[4],(_pBss)[5]); \ } while(0) void ar6000_roam_tbl_event(AR_SOFTC_T *ar, WMI_TARGET_ROAM_TBL *pTbl) { A_UINT8 i; A_PRINTF("ROAM TABLE NO OF ENTRIES is %d ROAM MODE is %d\n", pTbl->numEntries, pTbl->roamMode); for (i= 0; i < pTbl->numEntries; i++) { A_PRINTF("[%d]bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ", i, pTbl->bssRoamInfo[i].bssid[0], pTbl->bssRoamInfo[i].bssid[1], pTbl->bssRoamInfo[i].bssid[2], pTbl->bssRoamInfo[i].bssid[3], pTbl->bssRoamInfo[i].bssid[4], pTbl->bssRoamInfo[i].bssid[5]); A_PRINTF("RSSI %d RSSIDT %d LAST RSSI %d UTIL %d ROAM_UTIL %d" " BIAS %d\n", pTbl->bssRoamInfo[i].rssi, pTbl->bssRoamInfo[i].rssidt, pTbl->bssRoamInfo[i].last_rssi, pTbl->bssRoamInfo[i].util, pTbl->bssRoamInfo[i].roam_util, pTbl->bssRoamInfo[i].bias); } } void ar6000_wow_list_event(struct ar6_softc *ar, A_UINT8 num_filters, WMI_GET_WOW_LIST_REPLY *wow_reply) { A_UINT8 i,j; /*Each event now contains exactly one filter, see bug 26613*/ A_PRINTF("WOW pattern %d of %d patterns\n", wow_reply->this_filter_num, wow_reply->num_filters); A_PRINTF("wow mode = %s host mode = %s\n", (wow_reply->wow_mode == 0? "disabled":"enabled"), (wow_reply->host_mode == 1 ? "awake":"asleep")); /*If there are no patterns, the reply will only contain generic WoW information. Pattern information will exist only if there are patterns present. Bug 26716*/ /* If this event contains pattern information, display it*/ if (wow_reply->this_filter_num) { i=0; A_PRINTF("id=%d size=%d offset=%d\n", wow_reply->wow_filters[i].wow_filter_id, wow_reply->wow_filters[i].wow_filter_size, wow_reply->wow_filters[i].wow_filter_offset); A_PRINTF("wow pattern = "); for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) { A_PRINTF("%2.2x",wow_reply->wow_filters[i].wow_filter_pattern[j]); } A_PRINTF("\nwow mask = "); for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) { A_PRINTF("%2.2x",wow_reply->wow_filters[i].wow_filter_mask[j]); } A_PRINTF("\n"); } } /* * Report the Roaming related data collected on the target */ void ar6000_display_roam_time(WMI_TARGET_ROAM_TIME *p) { A_PRINTF("Disconnect Data : BSSID: "); AR6000_PRINT_BSSID(p->disassoc_bssid); A_PRINTF(" RSSI %d DISASSOC Time %d NO_TXRX_TIME %d\n", p->disassoc_bss_rssi,p->disassoc_time, p->no_txrx_time); A_PRINTF("Connect Data: BSSID: "); AR6000_PRINT_BSSID(p->assoc_bssid); A_PRINTF(" RSSI %d ASSOC Time %d TXRX_TIME %d\n", p->assoc_bss_rssi,p->assoc_time, p->allow_txrx_time); } void ar6000_roam_data_event(AR_SOFTC_T *ar, WMI_TARGET_ROAM_DATA *p) { switch (p->roamDataType) { case ROAM_DATA_TIME: ar6000_display_roam_time(&p->u.roamTime); break; default: break; } } void ar6000_bssInfo_event_rx(AR_SOFTC_T *ar, A_UINT8 *datap, int len) { struct sk_buff *skb; WMI_BSS_INFO_HDR *bih = (WMI_BSS_INFO_HDR *)datap; if (!ar->arMgmtFilter) { return; } if (((ar->arMgmtFilter & IEEE80211_FILTER_TYPE_BEACON) && (bih->frameType != BEACON_FTYPE)) || ((ar->arMgmtFilter & IEEE80211_FILTER_TYPE_PROBE_RESP) && (bih->frameType != PROBERESP_FTYPE))) { return; } if ((skb = A_NETBUF_ALLOC_RAW(len)) != NULL) { A_NETBUF_PUT(skb, len); A_MEMCPY(A_NETBUF_DATA(skb), datap, len); skb->dev = ar->arNetDev; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22) A_MEMCPY(skb_mac_header(skb), A_NETBUF_DATA(skb), 6); #else skb->mac.raw = A_NETBUF_DATA(skb); #endif skb->ip_summed = CHECKSUM_NONE; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = __constant_htons(0x0019); netif_rx(skb); } } A_UINT32 wmiSendCmdNum; A_STATUS ar6000_control_tx(void *devt, void *osbuf, HTC_ENDPOINT_ID eid) { AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; A_STATUS status = A_OK; struct ar_cookie *cookie = NULL; int i; #ifdef CONFIG_PM if (ar->arWowState) { A_NETBUF_FREE(osbuf); return A_EACCES; } #endif /* CONFIG_PM */ /* take lock to protect ar6000_alloc_cookie() */ AR6000_SPIN_LOCK(&ar->arLock, 0); do { AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar_contrstatus = ol_tx: skb=0x%x, len=0x%x eid =%d\n", (A_UINT32)osbuf, A_NETBUF_LEN(osbuf), eid)); if (ar->arWMIControlEpFull && (eid == ar->arControlEp)) { /* control endpoint is full, don't allocate resources, we * are just going to drop this packet */ cookie = NULL; AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" WMI Control EP full, dropping packet : 0x%X, len:%d \n", (A_UINT32)osbuf, A_NETBUF_LEN(osbuf))); } else { cookie = ar6000_alloc_cookie(ar); } if (cookie == NULL) { status = A_NO_MEMORY; break; } if(logWmiRawMsgs) { A_PRINTF("WMI cmd send, msgNo %d :", wmiSendCmdNum); for(i = 0; i < a_netbuf_to_len(osbuf); i++) A_PRINTF("%x ", ((A_UINT8 *)a_netbuf_to_data(osbuf))[i]); A_PRINTF("\n"); } wmiSendCmdNum++; } while (FALSE); if (cookie != NULL) { /* got a structure to send it out on */ ar->arTxPending[eid]++; if (eid != ar->arControlEp) { ar->arTotalTxDataPending++; } } AR6000_SPIN_UNLOCK(&ar->arLock, 0); if (cookie != NULL) { cookie->arc_bp[0] = (A_UINT32)osbuf; cookie->arc_bp[1] = 0; SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt, cookie, A_NETBUF_DATA(osbuf), A_NETBUF_LEN(osbuf), eid, AR6K_CONTROL_PKT_TAG); /* this interface is asynchronous, if there is an error, cleanup will happen in the * TX completion callback */ HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt); status = A_OK; } if (status != A_OK) { A_NETBUF_FREE(osbuf); } return status; } /* indicate tx activity or inactivity on a WMI stream */ void ar6000_indicate_tx_activity(void *devt, A_UINT8 TrafficClass, A_BOOL Active) { AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; HTC_ENDPOINT_ID eid ; int i; if (ar->arWmiEnabled) { eid = arAc2EndpointID(ar, TrafficClass); AR6000_SPIN_LOCK(&ar->arLock, 0); ar->arAcStreamActive[TrafficClass] = Active; if (Active) { /* when a stream goes active, keep track of the active stream with the highest priority */ if (ar->arAcStreamPriMap[TrafficClass] > ar->arHiAcStreamActivePri) { /* set the new highest active priority */ ar->arHiAcStreamActivePri = ar->arAcStreamPriMap[TrafficClass]; } } else { /* when a stream goes inactive, we may have to search for the next active stream * that is the highest priority */ if (ar->arHiAcStreamActivePri == ar->arAcStreamPriMap[TrafficClass]) { /* the highest priority stream just went inactive */ /* reset and search for the "next" highest "active" priority stream */ ar->arHiAcStreamActivePri = 0; for (i = 0; i < WMM_NUM_AC; i++) { if (ar->arAcStreamActive[i]) { if (ar->arAcStreamPriMap[i] > ar->arHiAcStreamActivePri) { /* set the new highest active priority */ ar->arHiAcStreamActivePri = ar->arAcStreamPriMap[i]; } } } } } AR6000_SPIN_UNLOCK(&ar->arLock, 0); } else { /* for mbox ping testing, the traffic class is mapped directly as a stream ID, * see handling of AR6000_XIOCTL_TRAFFIC_ACTIVITY_CHANGE in ioctl.c */ eid = (HTC_ENDPOINT_ID)TrafficClass; } /* notify HTC, this may cause credit distribution changes */ HTCIndicateActivityChange(ar->arHtcTarget, eid, Active); } void ar6000_btcoex_config_event(struct ar6_softc *ar, A_UINT8 *ptr, A_UINT32 len) { WMI_BTCOEX_CONFIG_EVENT *pBtcoexConfig = (WMI_BTCOEX_CONFIG_EVENT *)ptr; WMI_BTCOEX_CONFIG_EVENT *pArbtcoexConfig =&ar->arBtcoexConfig; AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 BTCOEX CONFIG EVENT \n")); A_PRINTF("received config event\n"); pArbtcoexConfig->btProfileType = pBtcoexConfig->btProfileType; pArbtcoexConfig->linkId = pBtcoexConfig->linkId; switch (pBtcoexConfig->btProfileType) { case WMI_BTCOEX_BT_PROFILE_SCO: A_MEMCPY(&pArbtcoexConfig->info.scoConfigCmd, &pBtcoexConfig->info.scoConfigCmd, sizeof(WMI_SET_BTCOEX_SCO_CONFIG_CMD)); break; case WMI_BTCOEX_BT_PROFILE_A2DP: A_MEMCPY(&pArbtcoexConfig->info.a2dpConfigCmd, &pBtcoexConfig->info.a2dpConfigCmd, sizeof(WMI_SET_BTCOEX_A2DP_CONFIG_CMD)); break; case WMI_BTCOEX_BT_PROFILE_ACLCOEX: A_MEMCPY(&pArbtcoexConfig->info.aclcoexConfig, &pBtcoexConfig->info.aclcoexConfig, sizeof(WMI_SET_BTCOEX_ACLCOEX_CONFIG_CMD)); break; case WMI_BTCOEX_BT_PROFILE_INQUIRY_PAGE: A_MEMCPY(&pArbtcoexConfig->info.btinquiryPageConfigCmd, &pBtcoexConfig->info.btinquiryPageConfigCmd, sizeof(WMI_SET_BTCOEX_ACLCOEX_CONFIG_CMD)); break; } if (ar->statsUpdatePending) { ar->statsUpdatePending = FALSE; wake_up(&arEvent); } } void ar6000_btcoex_stats_event(struct ar6_softc *ar, A_UINT8 *ptr, A_UINT32 len) { WMI_BTCOEX_STATS_EVENT *pBtcoexStats = (WMI_BTCOEX_STATS_EVENT *)ptr; AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 BTCOEX CONFIG EVENT \n")); A_MEMCPY(&ar->arBtcoexStats, pBtcoexStats, sizeof(WMI_BTCOEX_STATS_EVENT)); if (ar->statsUpdatePending) { ar->statsUpdatePending = FALSE; wake_up(&arEvent); } } module_init(ar6000_init_module); module_exit(ar6000_cleanup_module); /* Init cookie queue */ static void ar6000_cookie_init(AR_SOFTC_T *ar) { A_UINT32 i; ar->arCookieList = NULL; ar->arCookieCount = 0; A_MEMZERO(s_ar_cookie_mem, sizeof(s_ar_cookie_mem)); for (i = 0; i < MAX_COOKIE_NUM; i++) { ar6000_free_cookie(ar, &s_ar_cookie_mem[i]); } } /* cleanup cookie queue */ static void ar6000_cookie_cleanup(AR_SOFTC_T *ar) { /* It is gone .... */ ar->arCookieList = NULL; ar->arCookieCount = 0; } /* Init cookie queue */ static void ar6000_free_cookie(AR_SOFTC_T *ar, struct ar_cookie * cookie) { /* Insert first */ A_ASSERT(ar != NULL); A_ASSERT(cookie != NULL); cookie->arc_list_next = ar->arCookieList; ar->arCookieList = cookie; ar->arCookieCount++; } /* cleanup cookie queue */ static struct ar_cookie * ar6000_alloc_cookie(AR_SOFTC_T *ar) { struct ar_cookie *cookie; cookie = ar->arCookieList; if(cookie != NULL) { ar->arCookieList = cookie->arc_list_next; ar->arCookieCount--; } return cookie; } #ifdef SEND_EVENT_TO_APP /* * This function is used to send event which come from taget to * the application. The buf which send to application is include * the event ID and event content. */ #define EVENT_ID_LEN 2 void ar6000_send_event_to_app(AR_SOFTC_T *ar, A_UINT16 eventId, A_UINT8 *datap, int len) { #if (WIRELESS_EXT >= 15) /* note: IWEVCUSTOM only exists in wireless extensions after version 15 */ char *buf; A_UINT16 size; union iwreq_data wrqu; size = len + EVENT_ID_LEN; if (size > IW_CUSTOM_MAX) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI event ID : 0x%4.4X, len = %d too big for IWEVCUSTOM (max=%d) \n", eventId, size, IW_CUSTOM_MAX)); return; } buf = A_MALLOC_NOWAIT(size); if (NULL == buf){ AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s: failed to allocate %d bytes\n", __func__, size)); return; } A_MEMZERO(buf, size); A_MEMCPY(buf, &eventId, EVENT_ID_LEN); A_MEMCPY(buf+EVENT_ID_LEN, datap, len); //AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("event ID = %d,len = %d\n",*(A_UINT16*)buf, size)); A_MEMZERO(&wrqu, sizeof(wrqu)); wrqu.data.length = size; wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); A_FREE(buf); #endif } /* * This function is used to send events larger than 256 bytes * to the application. The buf which is sent to application * includes the event ID and event content. */ void ar6000_send_generic_event_to_app(AR_SOFTC_T *ar, A_UINT16 eventId, A_UINT8 *datap, int len) { #if (WIRELESS_EXT >= 18) /* IWEVGENIE exists in wireless extensions version 18 onwards */ char *buf; A_UINT16 size; union iwreq_data wrqu; size = len + EVENT_ID_LEN; if (size > IW_GENERIC_IE_MAX) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI event ID : 0x%4.4X, len = %d too big for IWEVGENIE (max=%d) \n", eventId, size, IW_GENERIC_IE_MAX)); return; } buf = A_MALLOC_NOWAIT(size); if (NULL == buf){ AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s: failed to allocate %d bytes\n", __func__, size)); return; } A_MEMZERO(buf, size); A_MEMCPY(buf, &eventId, EVENT_ID_LEN); A_MEMCPY(buf+EVENT_ID_LEN, datap, len); A_MEMZERO(&wrqu, sizeof(wrqu)); wrqu.data.length = size; wireless_send_event(ar->arNetDev, IWEVGENIE, &wrqu, buf); A_FREE(buf); #endif /* (WIRELESS_EXT >= 18) */ } #endif /* SEND_EVENT_TO_APP */ void ar6000_tx_retry_err_event(void *devt) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Tx retries reach maximum!\n")); } void ar6000_snrThresholdEvent_rx(void *devt, WMI_SNR_THRESHOLD_VAL newThreshold, A_UINT8 snr) { WMI_SNR_THRESHOLD_EVENT event; AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; event.range = newThreshold; event.snr = snr; ar6000_send_event_to_app(ar, WMI_SNR_THRESHOLD_EVENTID, (A_UINT8 *)&event, sizeof(WMI_SNR_THRESHOLD_EVENT)); } void ar6000_lqThresholdEvent_rx(void *devt, WMI_LQ_THRESHOLD_VAL newThreshold, A_UINT8 lq) { AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("lq threshold range %d, lq %d\n", newThreshold, lq)); } A_UINT32 a_copy_to_user(void *to, const void *from, A_UINT32 n) { return(copy_to_user(to, from, n)); } A_UINT32 a_copy_from_user(void *to, const void *from, A_UINT32 n) { return(copy_from_user(to, from, n)); } A_STATUS ar6000_get_driver_cfg(struct net_device *dev, A_UINT16 cfgParam, void *result) { A_STATUS ret = 0; switch(cfgParam) { case AR6000_DRIVER_CFG_GET_WLANNODECACHING: *((A_UINT32 *)result) = wlanNodeCaching; break; case AR6000_DRIVER_CFG_LOG_RAW_WMI_MSGS: *((A_UINT32 *)result) = logWmiRawMsgs; break; default: ret = EINVAL; break; } return ret; } void ar6000_keepalive_rx(void *devt, A_UINT8 configured) { AR_SOFTC_T *ar = (AR_SOFTC_T *)devt; ar->arKeepaliveConfigured = configured; wake_up(&arEvent); } void ar6000_pmkid_list_event(void *devt, A_UINT8 numPMKID, WMI_PMKID *pmkidList, A_UINT8 *bssidList) { A_UINT8 i, j; A_PRINTF("Number of Cached PMKIDs is %d\n", numPMKID); for (i = 0; i < numPMKID; i++) { A_PRINTF("\nBSSID %d ", i); for (j = 0; j < ATH_MAC_LEN; j++) { A_PRINTF("%2.2x", bssidList[j]); } bssidList += (ATH_MAC_LEN + WMI_PMKID_LEN); A_PRINTF("\nPMKID %d ", i); for (j = 0; j < WMI_PMKID_LEN; j++) { A_PRINTF("%2.2x", pmkidList->pmkid[j]); } pmkidList = (WMI_PMKID *)((A_UINT8 *)pmkidList + ATH_MAC_LEN + WMI_PMKID_LEN); } } void ar6000_pspoll_event(AR_SOFTC_T *ar,A_UINT8 aid) { sta_t *conn=NULL; A_BOOL isPsqEmpty = FALSE; conn = ieee80211_find_conn_for_aid(ar, aid); /* If the PS q for this STA is not empty, dequeue and send a pkt from * the head of the q. Also update the More data bit in the WMI_DATA_HDR * if there are more pkts for this STA in the PS q. If there are no more * pkts for this STA, update the PVB for this STA. */ A_MUTEX_LOCK(&conn->psqLock); isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq); A_MUTEX_UNLOCK(&conn->psqLock); if (isPsqEmpty) { /* TODO:No buffered pkts for this STA. Send out a NULL data frame */ } else { struct sk_buff *skb = NULL; A_MUTEX_LOCK(&conn->psqLock); skb = A_NETBUF_DEQUEUE(&conn->psq); A_MUTEX_UNLOCK(&conn->psqLock); /* Set the STA flag to PSPolled, so that the frame will go out */ STA_SET_PS_POLLED(conn); ar6000_data_tx(skb, ar->arNetDev); STA_CLR_PS_POLLED(conn); /* Clear the PVB for this STA if the queue has become empty */ A_MUTEX_LOCK(&conn->psqLock); isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq); A_MUTEX_UNLOCK(&conn->psqLock); if (isPsqEmpty) { wmi_set_pvb_cmd(ar->arWmi, conn->aid, 0); } } } void ar6000_dtimexpiry_event(AR_SOFTC_T *ar) { A_BOOL isMcastQueued = FALSE; struct sk_buff *skb = NULL; /* If there are no associated STAs, ignore the DTIM expiry event. * There can be potential race conditions where the last associated * STA may disconnect & before the host could clear the 'Indicate DTIM' * request to the firmware, the firmware would have just indicated a DTIM * expiry event. The race is between 'clear DTIM expiry cmd' going * from the host to the firmware & the DTIM expiry event happening from * the firmware to the host. */ if (ar->sta_list_index == 0) { return; } A_MUTEX_LOCK(&ar->mcastpsqLock); isMcastQueued = A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq); A_MUTEX_UNLOCK(&ar->mcastpsqLock); A_ASSERT(isMcastQueued == FALSE); /* Flush the mcast psq to the target */ /* Set the STA flag to DTIMExpired, so that the frame will go out */ ar->DTIMExpired = TRUE; A_MUTEX_LOCK(&ar->mcastpsqLock); while (!A_NETBUF_QUEUE_EMPTY(&ar->mcastpsq)) { skb = A_NETBUF_DEQUEUE(&ar->mcastpsq); A_MUTEX_UNLOCK(&ar->mcastpsqLock); ar6000_data_tx(skb, ar->arNetDev); A_MUTEX_LOCK(&ar->mcastpsqLock); } A_MUTEX_UNLOCK(&ar->mcastpsqLock); /* Reset the DTIMExpired flag back to 0 */ ar->DTIMExpired = FALSE; /* Clear the LSB of the BitMapCtl field of the TIM IE */ wmi_set_pvb_cmd(ar->arWmi, MCAST_AID, 0); } void read_rssi_compensation_param(AR_SOFTC_T *ar) { HIF_DEVICE *device= ar->arHifDevice; A_UINT32 rssicomp; A_UINT32 param; if (BMIReadMemory(device, HOST_INTEREST_ITEM_ADDRESS(ar, hi_board_data), (A_UCHAR *)&rssicomp, 4)!= A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMIReadMemory for reading board data address failed \n")); return; } rssicomp += 0x40; if (BMIReadSOCRegister(device, rssicomp, ¶m)!= A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMIReadSOCRegister () failed \n")); return ; } rssi_compensation_param.a_enable = (A_INT16) (param & 0xffff); rssi_compensation_param.a_param_a = (A_INT16) (param >> 16); rssicomp += 4; if (BMIReadSOCRegister(device, rssicomp, ¶m)!= A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMIReadSOCRegister () failed \n")); return ; } rssi_compensation_param.a_param_b = (A_INT16) (param & 0xffff); rssi_compensation_param.bg_enable = (A_INT16) (param >> 16); rssicomp += 4; if (BMIReadSOCRegister(device, rssicomp, ¶m)!= A_OK) { AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMIReadSOCRegister () failed \n")); return ; } rssi_compensation_param.bg_param_a = (A_INT16) (param & 0xffff); rssi_compensation_param.bg_param_b = (A_INT16) (param >> 16); if (rssi_compensation_param.bg_enable != 0x1) rssi_compensation_param.bg_enable = 0; if (rssi_compensation_param.a_enable != 0x1) rssi_compensation_param.a_enable = 0; AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("compensation flag = %d a = %d b = %d\n",\ rssi_compensation_param.bg_enable, rssi_compensation_param.bg_param_a, rssi_compensation_param.bg_param_b)); AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("compensation flag = %d a = %d b = %d\n",\ rssi_compensation_param.a_enable, rssi_compensation_param.a_param_a, rssi_compensation_param.a_param_b)); return ; } A_INT32 rssi_compensation_calc_tcmd(A_UINT32 freq, A_INT32 rssi, A_UINT32 totalPkt) { if (freq > 5000) { if (rssi_compensation_param.a_enable) { AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n")); AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d, totalPkt = %d\n", rssi,totalPkt)); rssi = rssi * rssi_compensation_param.a_param_a + totalPkt * rssi_compensation_param.a_param_b; rssi = (rssi-50) /100; AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi)); } } else { if (rssi_compensation_param.bg_enable) { AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n")); AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d, totalPkt = %d\n", rssi,totalPkt)); rssi = rssi * rssi_compensation_param.bg_param_a + totalPkt * rssi_compensation_param.bg_param_b; rssi = (rssi-50) /100; AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi)); } } return rssi; } A_INT16 rssi_compensation_calc(AR_SOFTC_T *ar, A_INT16 rssi) { if (ar->arBssChannel > 5000) { if (rssi_compensation_param.a_enable) { AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n")); AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d\n", rssi)); rssi = rssi * rssi_compensation_param.a_param_a + rssi_compensation_param.a_param_b; rssi = (rssi-50) /100; AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi)); } } else { if (rssi_compensation_param.bg_enable) { AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n")); AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d\n", rssi)); rssi = rssi * rssi_compensation_param.bg_param_a + rssi_compensation_param.bg_param_b; rssi = (rssi-50) /100; AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi)); } } return rssi; } A_INT16 rssi_compensation_reverse_calc(AR_SOFTC_T *ar, A_INT16 rssi, A_BOOL Above) { A_INT16 i; if (ar->arBssChannel > 5000) { if (rssi_compensation_param.a_enable) { AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n")); AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before rev compensation = %d\n", rssi)); rssi = rssi * 100; rssi = (rssi - rssi_compensation_param.a_param_b) / rssi_compensation_param.a_param_a; AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after rev compensation = %d\n", rssi)); } } else { if (rssi_compensation_param.bg_enable) { AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n")); AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before rev compensation = %d\n", rssi)); if (Above) { for (i=95; i>=0; i--) { if (rssi <= rssi_compensation_table[i]) { rssi = 0 - i; break; } } } else { for (i=0; i<=95; i++) { if (rssi >= rssi_compensation_table[i]) { rssi = 0 - i; break; } } } AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after rev compensation = %d\n", rssi)); } } return rssi; } #ifdef WAPI_ENABLE void ap_wapi_rekey_event(AR_SOFTC_T *ar, A_UINT8 type, A_UINT8 *mac) { union iwreq_data wrqu; A_CHAR buf[20]; A_MEMZERO(buf, sizeof(buf)); strcpy(buf, "WAPI_REKEY"); buf[10] = type; A_MEMCPY(&buf[11], mac, ATH_MAC_LEN); A_MEMZERO(&wrqu, sizeof(wrqu)); wrqu.data.length = 10+1+ATH_MAC_LEN; wireless_send_event(ar->arNetDev, IWEVCUSTOM, &wrqu, buf); A_PRINTF("WAPI REKEY - %d - %02x:%02x\n", type, mac[4], mac[5]); } #endif #ifdef USER_KEYS static A_STATUS ar6000_reinstall_keys(AR_SOFTC_T *ar, A_UINT8 key_op_ctrl) { A_STATUS status = A_OK; struct ieee80211req_key *uik = &ar->user_saved_keys.ucast_ik; struct ieee80211req_key *bik = &ar->user_saved_keys.bcast_ik; CRYPTO_TYPE keyType = ar->user_saved_keys.keyType; if (IEEE80211_CIPHER_CCKM_KRK != uik->ik_type) { if (NONE_CRYPT == keyType) { goto _reinstall_keys_out; } if (uik->ik_keylen) { status = wmi_addKey_cmd(ar->arWmi, uik->ik_keyix, ar->user_saved_keys.keyType, PAIRWISE_USAGE, uik->ik_keylen, (A_UINT8 *)&uik->ik_keyrsc, uik->ik_keydata, key_op_ctrl, uik->ik_macaddr, SYNC_BEFORE_WMIFLAG); } } else { status = wmi_add_krk_cmd(ar->arWmi, uik->ik_keydata); } if (IEEE80211_CIPHER_CCKM_KRK != bik->ik_type) { if (NONE_CRYPT == keyType) { goto _reinstall_keys_out; } if (bik->ik_keylen) { status = wmi_addKey_cmd(ar->arWmi, bik->ik_keyix, ar->user_saved_keys.keyType, GROUP_USAGE, bik->ik_keylen, (A_UINT8 *)&bik->ik_keyrsc, bik->ik_keydata, key_op_ctrl, bik->ik_macaddr, NO_SYNC_WMIFLAG); } } else { status = wmi_add_krk_cmd(ar->arWmi, bik->ik_keydata); } _reinstall_keys_out: ar->user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT; ar->user_key_ctrl = 0; return status; } #endif /* USER_KEYS */ void ar6000_dset_open_req( void *context, A_UINT32 id, A_UINT32 targHandle, A_UINT32 targReplyFn, A_UINT32 targReplyArg) { } void ar6000_dset_close( void *context, A_UINT32 access_cookie) { return; } void ar6000_dset_data_req( void *context, A_UINT32 accessCookie, A_UINT32 offset, A_UINT32 length, A_UINT32 targBuf, A_UINT32 targReplyFn, A_UINT32 targReplyArg) { } int ar6000_ap_mode_profile_commit(struct ar6_softc *ar) { WMI_CONNECT_CMD p; unsigned long flags; /* No change in AP's profile configuration */ if(ar->ap_profile_flag==0) { A_PRINTF("COMMIT: No change in profile!!!\n"); return -ENODATA; } if(!ar->arSsidLen) { A_PRINTF("SSID not set!!!\n"); return -ECHRNG; } switch(ar->arAuthMode) { case NONE_AUTH: if((ar->arPairwiseCrypto != NONE_CRYPT) && #ifdef WAPI_ENABLE (ar->arPairwiseCrypto != WAPI_CRYPT) && #endif (ar->arPairwiseCrypto != WEP_CRYPT)) { A_PRINTF("Cipher not supported in AP mode Open auth\n"); return -EOPNOTSUPP; } break; case WPA_PSK_AUTH: case WPA2_PSK_AUTH: case (WPA_PSK_AUTH|WPA2_PSK_AUTH): break; default: A_PRINTF("This key mgmt type not supported in AP mode\n"); return -EOPNOTSUPP; } /* Update the arNetworkType */ ar->arNetworkType = ar->arNextMode; A_MEMZERO(&p,sizeof(p)); p.ssidLength = ar->arSsidLen; A_MEMCPY(p.ssid,ar->arSsid,p.ssidLength); p.channel = ar->arChannelHint; p.networkType = ar->arNetworkType; p.dot11AuthMode = ar->arDot11AuthMode; p.authMode = ar->arAuthMode; p.pairwiseCryptoType = ar->arPairwiseCrypto; p.pairwiseCryptoLen = ar->arPairwiseCryptoLen; p.groupCryptoType = ar->arGroupCrypto; p.groupCryptoLen = ar->arGroupCryptoLen; p.ctrl_flags = ar->arConnectCtrlFlags; ar->arConnected = FALSE; wmi_ap_profile_commit(ar->arWmi, &p); spin_lock_irqsave(&ar->arLock, flags); ar->arConnected = TRUE; netif_carrier_on(ar->arNetDev); spin_unlock_irqrestore(&ar->arLock, flags); ar->ap_profile_flag = 0; return 0; } A_STATUS ar6000_connect_to_ap(struct ar6_softc *ar) { /* The ssid length check prevents second "essid off" from the user, to be treated as a connect cmd. The second "essid off" is ignored. */ if((ar->arWmiReady == TRUE) && (ar->arSsidLen > 0) && ar->arNetworkType!=AP_NETWORK) { A_STATUS status; if((ADHOC_NETWORK != ar->arNetworkType) && (NONE_AUTH==ar->arAuthMode) && (WEP_CRYPT==ar->arPairwiseCrypto)) { ar6000_install_static_wep_keys(ar); } if (!ar->arUserBssFilter) { if (wmi_bssfilter_cmd(ar->arWmi, ALL_BSS_FILTER, 0) != A_OK) { return -EIO; } } #ifdef WAPI_ENABLE if (ar->arWapiEnable) { ar->arPairwiseCrypto = WAPI_CRYPT; ar->arPairwiseCryptoLen = 0; ar->arGroupCrypto = WAPI_CRYPT; ar->arGroupCryptoLen = 0; ar->arAuthMode = NONE_AUTH; ar->arConnectCtrlFlags |= CONNECT_IGNORE_WPAx_GROUP_CIPHER; } #endif AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("Connect called with authmode %d dot11 auth %d"\ " PW crypto %d PW crypto Len %d GRP crypto %d"\ " GRP crypto Len %d\n", ar->arAuthMode, ar->arDot11AuthMode, ar->arPairwiseCrypto, ar->arPairwiseCryptoLen, ar->arGroupCrypto, ar->arGroupCryptoLen)); reconnect_flag = 0; /* Set the listen interval into 1000TUs. This value will be indicated to Ap in the conn. later set it back locally at the STA to 100/1000 TUs depending on the power mode */ if ((ar->arNetworkType == INFRA_NETWORK)) { wmi_listeninterval_cmd(ar->arWmi, A_MAX_WOW_LISTEN_INTERVAL, 0); } status = wmi_connect_cmd(ar->arWmi, ar->arNetworkType, ar->arDot11AuthMode, ar->arAuthMode, ar->arPairwiseCrypto, ar->arPairwiseCryptoLen, ar->arGroupCrypto,ar->arGroupCryptoLen, ar->arSsidLen, ar->arSsid, ar->arReqBssid, ar->arChannelHint, ar->arConnectCtrlFlags); if (status != A_OK) { wmi_listeninterval_cmd(ar->arWmi, ar->arListenInterval, 0); if (!ar->arUserBssFilter) { wmi_bssfilter_cmd(ar->arWmi, NONE_BSS_FILTER, 0); } return status; } if ((!(ar->arConnectCtrlFlags & CONNECT_DO_WPA_OFFLOAD)) && ((WPA_PSK_AUTH == ar->arAuthMode) || (WPA2_PSK_AUTH == ar->arAuthMode))) { A_TIMEOUT_MS(&ar->disconnect_timer, A_DISCONNECT_TIMER_INTERVAL, 0); } ar->arConnectCtrlFlags &= ~CONNECT_DO_WPA_OFFLOAD; ar->arConnectPending = TRUE; return status; } return A_ERROR; } A_STATUS ar6000_set_wlan_state(struct ar6_softc *ar, AR6000_WLAN_STATE state) { A_STATUS status = A_OK; AR6000_WLAN_STATE oldstate = ar->arWlanState; if (ar->arWmiReady == FALSE || (state!=WLAN_DISABLED && state!=WLAN_ENABLED)) { return A_ERROR; } if (state == ar->arWlanState) { return A_OK; } ar->arWlanState = state; do { if (ar->arWlanState == WLAN_ENABLED) { /* Enable foreground scanning */ if (wmi_scanparams_cmd(ar->arWmi, ar->scParams.fg_start_period, ar->scParams.fg_end_period, ar->scParams.bg_period, ar->scParams.minact_chdwell_time, ar->scParams.maxact_chdwell_time, ar->scParams.pas_chdwell_time, ar->scParams.shortScanRatio, ar->scParams.scanCtrlFlags, ar->scParams.max_dfsch_act_time, ar->scParams.maxact_scan_per_ssid) != A_OK) { status = A_ERROR; break; } if (ar->arSsidLen) { if (ar6000_connect_to_ap(ar) != A_OK) { status = A_ERROR; break; } } } else { /* Disconnect from the AP and disable foreground scanning */ AR6000_SPIN_LOCK(&ar->arLock, 0); if (ar->arConnected == TRUE || ar->arConnectPending == TRUE) { AR6000_SPIN_UNLOCK(&ar->arLock, 0); wmi_disconnect_cmd(ar->arWmi); } else { AR6000_SPIN_UNLOCK(&ar->arLock, 0); } if (wmi_scanparams_cmd(ar->arWmi, 0xFFFF, 0, 0, 0, 0, 0, 0, 0, 0, 0) != A_OK) { status = A_ERROR; break; } } } while (0); if (status!=A_OK) { ar->arWlanState = oldstate; } return status; } A_STATUS ar6000_ap_mode_get_wpa_ie(struct ar6_softc *ar, struct ieee80211req_wpaie *wpaie) { sta_t *conn = NULL; conn = ieee80211_find_conn(ar, wpaie->wpa_macaddr); A_MEMZERO(wpaie->wpa_ie, IEEE80211_MAX_IE); A_MEMZERO(wpaie->rsn_ie, IEEE80211_MAX_IE); if(conn) { A_MEMCPY(wpaie->wpa_ie, conn->wpa_ie, IEEE80211_MAX_IE); } return 0; } A_STATUS is_iwioctl_allowed(A_UINT8 mode, A_UINT16 cmd) { if(cmd >= SIOCSIWCOMMIT && cmd <= SIOCGIWPOWER) { cmd -= SIOCSIWCOMMIT; if(sioctl_filter[cmd] == 0xFF) return A_OK; if(sioctl_filter[cmd] & mode) return A_OK; } else if(cmd >= SIOCIWFIRSTPRIV && cmd <= (SIOCIWFIRSTPRIV+30)) { cmd -= SIOCIWFIRSTPRIV; if(pioctl_filter[cmd] == 0xFF) return A_OK; if(pioctl_filter[cmd] & mode) return A_OK; } else { return A_ERROR; } return A_ENOTSUP; } A_STATUS is_xioctl_allowed(A_UINT8 mode, int cmd) { if(sizeof(xioctl_filter)-1 < cmd) { A_PRINTF("Filter for this cmd=%d not defined\n",cmd); return 0; } if(xioctl_filter[cmd] == 0xFF) return A_OK; if(xioctl_filter[cmd] & mode) return A_OK; return A_ERROR; } #ifdef WAPI_ENABLE int ap_set_wapi_key(struct ar6_softc *ar, void *ikey) { struct ieee80211req_key *ik = (struct ieee80211req_key *)ikey; KEY_USAGE keyUsage = 0; A_STATUS status; if (A_MEMCMP(ik->ik_macaddr, bcast_mac, IEEE80211_ADDR_LEN) == 0) { keyUsage = GROUP_USAGE; } else { keyUsage = PAIRWISE_USAGE; } A_PRINTF("WAPI_KEY: Type:%d ix:%d mac:%02x:%02x len:%d\n", keyUsage, ik->ik_keyix, ik->ik_macaddr[4], ik->ik_macaddr[5], ik->ik_keylen); status = wmi_addKey_cmd(ar->arWmi, ik->ik_keyix, WAPI_CRYPT, keyUsage, ik->ik_keylen, (A_UINT8 *)&ik->ik_keyrsc, ik->ik_keydata, KEY_OP_INIT_VAL, ik->ik_macaddr, SYNC_BOTH_WMIFLAG); if (A_OK != status) { return -EIO; } return 0; } #endif void ar6000_peer_event( void *context, A_UINT8 eventCode, A_UINT8 *macAddr) { A_UINT8 pos; for (pos=0;pos<6;pos++) printk("%02x: ",*(macAddr+pos)); printk("\n"); } #ifdef HTC_TEST_SEND_PKTS #define HTC_TEST_DUPLICATE 8 static void DoHTCSendPktsTest(AR_SOFTC_T *ar, int MapNo, HTC_ENDPOINT_ID eid, struct sk_buff *dupskb) { struct ar_cookie *cookie; struct ar_cookie *cookieArray[HTC_TEST_DUPLICATE]; struct sk_buff *new_skb; int i; int pkts = 0; HTC_PACKET_QUEUE pktQueue; EPPING_HEADER *eppingHdr; eppingHdr = A_NETBUF_DATA(dupskb); if (eppingHdr->Cmd_h == EPPING_CMD_NO_ECHO) { /* skip test if this is already a tx perf test */ return; } for (i = 0; i < HTC_TEST_DUPLICATE; i++,pkts++) { AR6000_SPIN_LOCK(&ar->arLock, 0); cookie = ar6000_alloc_cookie(ar); if (cookie != NULL) { ar->arTxPending[eid]++; ar->arTotalTxDataPending++; } AR6000_SPIN_UNLOCK(&ar->arLock, 0); if (NULL == cookie) { break; } new_skb = A_NETBUF_ALLOC(A_NETBUF_LEN(dupskb)); if (new_skb == NULL) { AR6000_SPIN_LOCK(&ar->arLock, 0); ar6000_free_cookie(ar,cookie); AR6000_SPIN_UNLOCK(&ar->arLock, 0); break; } A_NETBUF_PUT_DATA(new_skb, A_NETBUF_DATA(dupskb), A_NETBUF_LEN(dupskb)); cookie->arc_bp[0] = (A_UINT32)new_skb; cookie->arc_bp[1] = MapNo; SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt, cookie, A_NETBUF_DATA(new_skb), A_NETBUF_LEN(new_skb), eid, AR6K_DATA_PKT_TAG); cookieArray[i] = cookie; { EPPING_HEADER *pHdr = (EPPING_HEADER *)A_NETBUF_DATA(new_skb); pHdr->Cmd_h = EPPING_CMD_NO_ECHO; /* do not echo the packet */ } } if (pkts == 0) { return; } INIT_HTC_PACKET_QUEUE(&pktQueue); for (i = 0; i < pkts; i++) { HTC_PACKET_ENQUEUE(&pktQueue,&cookieArray[i]->HtcPkt); } HTCSendPktsMultiple(ar->arHtcTarget, &pktQueue); } #endif #ifdef EXPORT_HCI_BRIDGE_INTERFACE EXPORT_SYMBOL(setupbtdev); #endif