/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * Contact Information: * James P. Ketrenos * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ /* * Please use this file (iwl-4965-hw.h) only for hardware-related definitions. * Use iwl-4965-commands.h for uCode API definitions. * Use iwl-4965.h for driver implementation definitions. */ #ifndef __iwl_4965_hw_h__ #define __iwl_4965_hw_h__ /* * uCode queue management definitions ... * Queue #4 is the command queue for 3945 and 4965; map it to Tx FIFO chnl 4. * The first queue used for block-ack aggregation is #7 (4965 only). * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7. */ #define IWL_CMD_QUEUE_NUM 4 #define IWL_CMD_FIFO_NUM 4 #define IWL_BACK_QUEUE_FIRST_ID 7 /* Tx rates */ #define IWL_CCK_RATES 4 #define IWL_OFDM_RATES 8 #define IWL_HT_RATES 16 #define IWL_MAX_RATES (IWL_CCK_RATES+IWL_OFDM_RATES+IWL_HT_RATES) /* Time constants */ #define SHORT_SLOT_TIME 9 #define LONG_SLOT_TIME 20 /* RSSI to dBm */ #define IWL_RSSI_OFFSET 44 #include "iwl-4965-commands.h" #define PCI_LINK_CTRL 0x0F0 #define PCI_POWER_SOURCE 0x0C8 #define PCI_REG_WUM8 0x0E8 #define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000) #define TFD_QUEUE_SIZE_MAX (256) #define IWL_NUM_SCAN_RATES (2) #define IWL_DEFAULT_TX_RETRY 15 #define RX_QUEUE_SIZE 256 #define RX_QUEUE_MASK 255 #define RX_QUEUE_SIZE_LOG 8 #define TFD_TX_CMD_SLOTS 256 #define TFD_CMD_SLOTS 32 /* * RX related structures and functions */ #define RX_FREE_BUFFERS 64 #define RX_LOW_WATERMARK 8 /* Size of one Rx buffer in host DRAM */ #define IWL_RX_BUF_SIZE_4K (4 * 1024) #define IWL_RX_BUF_SIZE_8K (8 * 1024) /* Sizes and addresses for instruction and data memory (SRAM) in * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */ #define RTC_INST_LOWER_BOUND (0x000000) #define IWL49_RTC_INST_UPPER_BOUND (0x018000) #define RTC_DATA_LOWER_BOUND (0x800000) #define IWL49_RTC_DATA_UPPER_BOUND (0x80A000) #define IWL49_RTC_INST_SIZE \ (IWL49_RTC_INST_UPPER_BOUND - RTC_INST_LOWER_BOUND) #define IWL49_RTC_DATA_SIZE \ (IWL49_RTC_DATA_UPPER_BOUND - RTC_DATA_LOWER_BOUND) #define IWL_MAX_INST_SIZE IWL49_RTC_INST_SIZE #define IWL_MAX_DATA_SIZE IWL49_RTC_DATA_SIZE /* Size of uCode instruction memory in bootstrap state machine */ #define IWL_MAX_BSM_SIZE BSM_SRAM_SIZE static inline int iwl4965_hw_valid_rtc_data_addr(u32 addr) { return (addr >= RTC_DATA_LOWER_BOUND) && (addr < IWL49_RTC_DATA_UPPER_BOUND); } /********************* START TEMPERATURE *************************************/ /** * 4965 temperature calculation. * * The driver must calculate the device temperature before calculating * a txpower setting (amplifier gain is temperature dependent). The * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration * values used for the life of the driver, and one of which (R4) is the * real-time temperature indicator. * * uCode provides all 4 values to the driver via the "initialize alive" * notification (see struct iwl4965_init_alive_resp). After the runtime uCode * image loads, uCode updates the R4 value via statistics notifications * (see STATISTICS_NOTIFICATION), which occur after each received beacon * when associated, or can be requested via REPLY_STATISTICS_CMD. * * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver * must sign-extend to 32 bits before applying formula below. * * Formula: * * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8 * * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is * an additional correction, which should be centered around 0 degrees * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for * centering the 97/100 correction around 0 degrees K. * * Add 273 to Kelvin value to find degrees Celsius, for comparing current * temperature with factory-measured temperatures when calculating txpower * settings. */ #define TEMPERATURE_CALIB_KELVIN_OFFSET 8 #define TEMPERATURE_CALIB_A_VAL 259 /* Limit range of calculated temperature to be between these Kelvin values */ #define IWL_TX_POWER_TEMPERATURE_MIN (263) #define IWL_TX_POWER_TEMPERATURE_MAX (410) #define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \ (((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \ ((t) > IWL_TX_POWER_TEMPERATURE_MAX)) /********************* END TEMPERATURE ***************************************/ /********************* START TXPOWER *****************************************/ /** * 4965 txpower calculations rely on information from three sources: * * 1) EEPROM * 2) "initialize" alive notification * 3) statistics notifications * * EEPROM data consists of: * * 1) Regulatory information (max txpower and channel usage flags) is provided * separately for each channel that can possibly supported by 4965. * 40 MHz wide (.11n fat) channels are listed separately from 20 MHz * (legacy) channels. * * See struct iwl4965_eeprom_channel for format, and struct iwl4965_eeprom * for locations in EEPROM. * * 2) Factory txpower calibration information is provided separately for * sub-bands of contiguous channels. 2.4GHz has just one sub-band, * but 5 GHz has several sub-bands. * * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided. * * See struct iwl4965_eeprom_calib_info (and the tree of structures * contained within it) for format, and struct iwl4965_eeprom for * locations in EEPROM. * * "Initialization alive" notification (see struct iwl4965_init_alive_resp) * consists of: * * 1) Temperature calculation parameters. * * 2) Power supply voltage measurement. * * 3) Tx gain compensation to balance 2 transmitters for MIMO use. * * Statistics notifications deliver: * * 1) Current values for temperature param R4. */ /** * To calculate a txpower setting for a given desired target txpower, channel, * modulation bit rate, and transmitter chain (4965 has 2 transmitters to * support MIMO and transmit diversity), driver must do the following: * * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel. * Do not exceed regulatory limit; reduce target txpower if necessary. * * If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31), * 2 transmitters will be used simultaneously; driver must reduce the * regulatory limit by 3 dB (half-power) for each transmitter, so the * combined total output of the 2 transmitters is within regulatory limits. * * * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]); * reduce target txpower if necessary. * * Backoff values below are in 1/2 dB units (equivalent to steps in * txpower gain tables): * * OFDM 6 - 36 MBit: 10 steps (5 dB) * OFDM 48 MBit: 15 steps (7.5 dB) * OFDM 54 MBit: 17 steps (8.5 dB) * OFDM 60 MBit: 20 steps (10 dB) * CCK all rates: 10 steps (5 dB) * * Backoff values apply to saturation txpower on a per-transmitter basis; * when using MIMO (2 transmitters), each transmitter uses the same * saturation level provided in EEPROM, and the same backoff values; * no reduction (such as with regulatory txpower limits) is required. * * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel * widths and 40 Mhz (.11n fat) channel widths; there is no separate * factory measurement for fat channels. * * The result of this step is the final target txpower. The rest of * the steps figure out the proper settings for the device to achieve * that target txpower. * * * 3) Determine (EEPROM) calibration subband for the target channel, by * comparing against first and last channels in each subband * (see struct iwl4965_eeprom_calib_subband_info). * * * 4) Linearly interpolate (EEPROM) factory calibration measurement sets, * referencing the 2 factory-measured (sample) channels within the subband. * * Interpolation is based on difference between target channel's frequency * and the sample channels' frequencies. Since channel numbers are based * on frequency (5 MHz between each channel number), this is equivalent * to interpolating based on channel number differences. * * Note that the sample channels may or may not be the channels at the * edges of the subband. The target channel may be "outside" of the * span of the sampled channels. * * Driver may choose the pair (for 2 Tx chains) of measurements (see * struct iwl4965_eeprom_calib_ch_info) for which the actual measured * txpower comes closest to the desired txpower. Usually, though, * the middle set of measurements is closest to the regulatory limits, * and is therefore a good choice for all txpower calculations (this * assumes that high accuracy is needed for maximizing legal txpower, * while lower txpower configurations do not need as much accuracy). * * Driver should interpolate both members of the chosen measurement pair, * i.e. for both Tx chains (radio transmitters), unless the driver knows * that only one of the chains will be used (e.g. only one tx antenna * connected, but this should be unusual). The rate scaling algorithm * switches antennas to find best performance, so both Tx chains will * be used (although only one at a time) even for non-MIMO transmissions. * * Driver should interpolate factory values for temperature, gain table * index, and actual power. The power amplifier detector values are * not used by the driver. * * Sanity check: If the target channel happens to be one of the sample * channels, the results should agree with the sample channel's * measurements! * * * 5) Find difference between desired txpower and (interpolated) * factory-measured txpower. Using (interpolated) factory gain table index * (shown elsewhere) as a starting point, adjust this index lower to * increase txpower, or higher to decrease txpower, until the target * txpower is reached. Each step in the gain table is 1/2 dB. * * For example, if factory measured txpower is 16 dBm, and target txpower * is 13 dBm, add 6 steps to the factory gain index to reduce txpower * by 3 dB. * * * 6) Find difference between current device temperature and (interpolated) * factory-measured temperature for sub-band. Factory values are in * degrees Celsius. To calculate current temperature, see comments for * "4965 temperature calculation". * * If current temperature is higher than factory temperature, driver must * increase gain (lower gain table index), and vice versa. * * Temperature affects gain differently for different channels: * * 2.4 GHz all channels: 3.5 degrees per half-dB step * 5 GHz channels 34-43: 4.5 degrees per half-dB step * 5 GHz channels >= 44: 4.0 degrees per half-dB step * * NOTE: Temperature can increase rapidly when transmitting, especially * with heavy traffic at high txpowers. Driver should update * temperature calculations often under these conditions to * maintain strong txpower in the face of rising temperature. * * * 7) Find difference between current power supply voltage indicator * (from "initialize alive") and factory-measured power supply voltage * indicator (EEPROM). * * If the current voltage is higher (indicator is lower) than factory * voltage, gain should be reduced (gain table index increased) by: * * (eeprom - current) / 7 * * If the current voltage is lower (indicator is higher) than factory * voltage, gain should be increased (gain table index decreased) by: * * 2 * (current - eeprom) / 7 * * If number of index steps in either direction turns out to be > 2, * something is wrong ... just use 0. * * NOTE: Voltage compensation is independent of band/channel. * * NOTE: "Initialize" uCode measures current voltage, which is assumed * to be constant after this initial measurement. Voltage * compensation for txpower (number of steps in gain table) * may be calculated once and used until the next uCode bootload. * * * 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31), * adjust txpower for each transmitter chain, so txpower is balanced * between the two chains. There are 5 pairs of tx_atten[group][chain] * values in "initialize alive", one pair for each of 5 channel ranges: * * Group 0: 5 GHz channel 34-43 * Group 1: 5 GHz channel 44-70 * Group 2: 5 GHz channel 71-124 * Group 3: 5 GHz channel 125-200 * Group 4: 2.4 GHz all channels * * Add the tx_atten[group][chain] value to the index for the target chain. * The values are signed, but are in pairs of 0 and a non-negative number, * so as to reduce gain (if necessary) of the "hotter" channel. This * avoids any need to double-check for regulatory compliance after * this step. * * * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation * value to the index: * * Hardware rev B: 9 steps (4.5 dB) * Hardware rev C: 5 steps (2.5 dB) * * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG, * bits [3:2], 1 = B, 2 = C. * * NOTE: This compensation is in addition to any saturation backoff that * might have been applied in an earlier step. * * * 10) Select the gain table, based on band (2.4 vs 5 GHz). * * Limit the adjusted index to stay within the table! * * * 11) Read gain table entries for DSP and radio gain, place into appropriate * location(s) in command (struct iwl4965_txpowertable_cmd). */ /* Limit range of txpower output target to be between these values */ #define IWL_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */ #define IWL_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */ /** * When MIMO is used (2 transmitters operating simultaneously), driver should * limit each transmitter to deliver a max of 3 dB below the regulatory limit * for the device. That is, use half power for each transmitter, so total * txpower is within regulatory limits. * * The value "6" represents number of steps in gain table to reduce power 3 dB. * Each step is 1/2 dB. */ #define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6) /** * CCK gain compensation. * * When calculating txpowers for CCK, after making sure that the target power * is within regulatory and saturation limits, driver must additionally * back off gain by adding these values to the gain table index. * * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG, * bits [3:2], 1 = B, 2 = C. */ #define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9) #define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5) /* * 4965 power supply voltage compensation for txpower */ #define TX_POWER_IWL_VOLTAGE_CODES_PER_03V (7) /** * Gain tables. * * The following tables contain pair of values for setting txpower, i.e. * gain settings for the output of the device's digital signal processor (DSP), * and for the analog gain structure of the transmitter. * * Each entry in the gain tables represents a step of 1/2 dB. Note that these * are *relative* steps, not indications of absolute output power. Output * power varies with temperature, voltage, and channel frequency, and also * requires consideration of average power (to satisfy regulatory constraints), * and peak power (to avoid distortion of the output signal). * * Each entry contains two values: * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained * linear value that multiplies the output of the digital signal processor, * before being sent to the analog radio. * 2) Radio gain. This sets the analog gain of the radio Tx path. * It is a coarser setting, and behaves in a logarithmic (dB) fashion. * * EEPROM contains factory calibration data for txpower. This maps actual * measured txpower levels to gain settings in the "well known" tables * below ("well-known" means here that both factory calibration *and* the * driver work with the same table). * * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table * has an extension (into negative indexes), in case the driver needs to * boost power setting for high device temperatures (higher than would be * present during factory calibration). A 5 Ghz EEPROM index of "40" * corresponds to the 49th entry in the table used by the driver. */ #define MIN_TX_GAIN_INDEX (0) /* highest gain, lowest idx, 2.4 */ #define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */ /** * 2.4 GHz gain table * * Index Dsp gain Radio gain * 0 110 0x3f (highest gain) * 1 104 0x3f * 2 98 0x3f * 3 110 0x3e * 4 104 0x3e * 5 98 0x3e * 6 110 0x3d * 7 104 0x3d * 8 98 0x3d * 9 110 0x3c * 10 104 0x3c * 11 98 0x3c * 12 110 0x3b * 13 104 0x3b * 14 98 0x3b * 15 110 0x3a * 16 104 0x3a * 17 98 0x3a * 18 110 0x39 * 19 104 0x39 * 20 98 0x39 * 21 110 0x38 * 22 104 0x38 * 23 98 0x38 * 24 110 0x37 * 25 104 0x37 * 26 98 0x37 * 27 110 0x36 * 28 104 0x36 * 29 98 0x36 * 30 110 0x35 * 31 104 0x35 * 32 98 0x35 * 33 110 0x34 * 34 104 0x34 * 35 98 0x34 * 36 110 0x33 * 37 104 0x33 * 38 98 0x33 * 39 110 0x32 * 40 104 0x32 * 41 98 0x32 * 42 110 0x31 * 43 104 0x31 * 44 98 0x31 * 45 110 0x30 * 46 104 0x30 * 47 98 0x30 * 48 110 0x6 * 49 104 0x6 * 50 98 0x6 * 51 110 0x5 * 52 104 0x5 * 53 98 0x5 * 54 110 0x4 * 55 104 0x4 * 56 98 0x4 * 57 110 0x3 * 58 104 0x3 * 59 98 0x3 * 60 110 0x2 * 61 104 0x2 * 62 98 0x2 * 63 110 0x1 * 64 104 0x1 * 65 98 0x1 * 66 110 0x0 * 67 104 0x0 * 68 98 0x0 * 69 97 0 * 70 96 0 * 71 95 0 * 72 94 0 * 73 93 0 * 74 92 0 * 75 91 0 * 76 90 0 * 77 89 0 * 78 88 0 * 79 87 0 * 80 86 0 * 81 85 0 * 82 84 0 * 83 83 0 * 84 82 0 * 85 81 0 * 86 80 0 * 87 79 0 * 88 78 0 * 89 77 0 * 90 76 0 * 91 75 0 * 92 74 0 * 93 73 0 * 94 72 0 * 95 71 0 * 96 70 0 * 97 69 0 * 98 68 0 */ /** * 5 GHz gain table * * Index Dsp gain Radio gain * -9 123 0x3F (highest gain) * -8 117 0x3F * -7 110 0x3F * -6 104 0x3F * -5 98 0x3F * -4 110 0x3E * -3 104 0x3E * -2 98 0x3E * -1 110 0x3D * 0 104 0x3D * 1 98 0x3D * 2 110 0x3C * 3 104 0x3C * 4 98 0x3C * 5 110 0x3B * 6 104 0x3B * 7 98 0x3B * 8 110 0x3A * 9 104 0x3A * 10 98 0x3A * 11 110 0x39 * 12 104 0x39 * 13 98 0x39 * 14 110 0x38 * 15 104 0x38 * 16 98 0x38 * 17 110 0x37 * 18 104 0x37 * 19 98 0x37 * 20 110 0x36 * 21 104 0x36 * 22 98 0x36 * 23 110 0x35 * 24 104 0x35 * 25 98 0x35 * 26 110 0x34 * 27 104 0x34 * 28 98 0x34 * 29 110 0x33 * 30 104 0x33 * 31 98 0x33 * 32 110 0x32 * 33 104 0x32 * 34 98 0x32 * 35 110 0x31 * 36 104 0x31 * 37 98 0x31 * 38 110 0x30 * 39 104 0x30 * 40 98 0x30 * 41 110 0x25 * 42 104 0x25 * 43 98 0x25 * 44 110 0x24 * 45 104 0x24 * 46 98 0x24 * 47 110 0x23 * 48 104 0x23 * 49 98 0x23 * 50 110 0x22 * 51 104 0x18 * 52 98 0x18 * 53 110 0x17 * 54 104 0x17 * 55 98 0x17 * 56 110 0x16 * 57 104 0x16 * 58 98 0x16 * 59 110 0x15 * 60 104 0x15 * 61 98 0x15 * 62 110 0x14 * 63 104 0x14 * 64 98 0x14 * 65 110 0x13 * 66 104 0x13 * 67 98 0x13 * 68 110 0x12 * 69 104 0x08 * 70 98 0x08 * 71 110 0x07 * 72 104 0x07 * 73 98 0x07 * 74 110 0x06 * 75 104 0x06 * 76 98 0x06 * 77 110 0x05 * 78 104 0x05 * 79 98 0x05 * 80 110 0x04 * 81 104 0x04 * 82 98 0x04 * 83 110 0x03 * 84 104 0x03 * 85 98 0x03 * 86 110 0x02 * 87 104 0x02 * 88 98 0x02 * 89 110 0x01 * 90 104 0x01 * 91 98 0x01 * 92 110 0x00 * 93 104 0x00 * 94 98 0x00 * 95 93 0x00 * 96 88 0x00 * 97 83 0x00 * 98 78 0x00 */ /** * Sanity checks and default values for EEPROM regulatory levels. * If EEPROM values fall outside MIN/MAX range, use default values. * * Regulatory limits refer to the maximum average txpower allowed by * regulatory agencies in the geographies in which the device is meant * to be operated. These limits are SKU-specific (i.e. geography-specific), * and channel-specific; each channel has an individual regulatory limit * listed in the EEPROM. * * Units are in half-dBm (i.e. "34" means 17 dBm). */ #define IWL_TX_POWER_DEFAULT_REGULATORY_24 (34) #define IWL_TX_POWER_DEFAULT_REGULATORY_52 (34) #define IWL_TX_POWER_REGULATORY_MIN (0) #define IWL_TX_POWER_REGULATORY_MAX (34) /** * Sanity checks and default values for EEPROM saturation levels. * If EEPROM values fall outside MIN/MAX range, use default values. * * Saturation is the highest level that the output power amplifier can produce * without significant clipping distortion. This is a "peak" power level. * Different types of modulation (i.e. various "rates", and OFDM vs. CCK) * require differing amounts of backoff, relative to their average power output, * in order to avoid clipping distortion. * * Driver must make sure that it is violating neither the saturation limit, * nor the regulatory limit, when calculating Tx power settings for various * rates. * * Units are in half-dBm (i.e. "38" means 19 dBm). */ #define IWL_TX_POWER_DEFAULT_SATURATION_24 (38) #define IWL_TX_POWER_DEFAULT_SATURATION_52 (38) #define IWL_TX_POWER_SATURATION_MIN (20) #define IWL_TX_POWER_SATURATION_MAX (50) /** * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance) * and thermal Txpower calibration. * * When calculating txpower, driver must compensate for current device * temperature; higher temperature requires higher gain. Driver must calculate * current temperature (see "4965 temperature calculation"), then compare vs. * factory calibration temperature in EEPROM; if current temperature is higher * than factory temperature, driver must *increase* gain by proportions shown * in table below. If current temperature is lower than factory, driver must * *decrease* gain. * * Different frequency ranges require different compensation, as shown below. */ /* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */ #define CALIB_IWL_TX_ATTEN_GR1_FCH 34 #define CALIB_IWL_TX_ATTEN_GR1_LCH 43 /* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */ #define CALIB_IWL_TX_ATTEN_GR2_FCH 44 #define CALIB_IWL_TX_ATTEN_GR2_LCH 70 /* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */ #define CALIB_IWL_TX_ATTEN_GR3_FCH 71 #define CALIB_IWL_TX_ATTEN_GR3_LCH 124 /* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */ #define CALIB_IWL_TX_ATTEN_GR4_FCH 125 #define CALIB_IWL_TX_ATTEN_GR4_LCH 200 /* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */ #define CALIB_IWL_TX_ATTEN_GR5_FCH 1 #define CALIB_IWL_TX_ATTEN_GR5_LCH 20 enum { CALIB_CH_GROUP_1 = 0, CALIB_CH_GROUP_2 = 1, CALIB_CH_GROUP_3 = 2, CALIB_CH_GROUP_4 = 3, CALIB_CH_GROUP_5 = 4, CALIB_CH_GROUP_MAX }; /********************* END TXPOWER *****************************************/ /****************************/ /* Flow Handler Definitions */ /****************************/ /** * This I/O area is directly read/writable by driver (e.g. Linux uses writel()) * Addresses are offsets from device's PCI hardware base address. */ #define FH_MEM_LOWER_BOUND (0x1000) #define FH_MEM_UPPER_BOUND (0x1EF0) /** * Keep-Warm (KW) buffer base address. * * Driver must allocate a 4KByte buffer that is used by 4965 for keeping the * host DRAM powered on (via dummy accesses to DRAM) to maintain low-latency * DRAM access when 4965 is Txing or Rxing. The dummy accesses prevent host * from going into a power-savings mode that would cause higher DRAM latency, * and possible data over/under-runs, before all Tx/Rx is complete. * * Driver loads IWL_FH_KW_MEM_ADDR_REG with the physical address (bits 35:4) * of the buffer, which must be 4K aligned. Once this is set up, the 4965 * automatically invokes keep-warm accesses when normal accesses might not * be sufficient to maintain fast DRAM response. * * Bit fields: * 31-0: Keep-warm buffer physical base address [35:4], must be 4K aligned */ #define IWL_FH_KW_MEM_ADDR_REG (FH_MEM_LOWER_BOUND + 0x97C) /** * TFD Circular Buffers Base (CBBC) addresses * * 4965 has 16 base pointer registers, one for each of 16 host-DRAM-resident * circular buffers (CBs/queues) containing Transmit Frame Descriptors (TFDs) * (see struct iwl_tfd_frame). These 16 pointer registers are offset by 0x04 * bytes from one another. Each TFD circular buffer in DRAM must be 256-byte * aligned (address bits 0-7 must be 0). * * Bit fields in each pointer register: * 27-0: TFD CB physical base address [35:8], must be 256-byte aligned */ #define FH_MEM_CBBC_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x9D0) #define FH_MEM_CBBC_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xA10) /* Find TFD CB base pointer for given queue (range 0-15). */ #define FH_MEM_CBBC_QUEUE(x) (FH_MEM_CBBC_LOWER_BOUND + (x) * 0x4) /** * Rx SRAM Control and Status Registers (RSCSR) * * These registers provide handshake between driver and 4965 for the Rx queue * (this queue handles *all* command responses, notifications, Rx data, etc. * sent from 4965 uCode to host driver). Unlike Tx, there is only one Rx * queue, and only one Rx DMA/FIFO channel. Also unlike Tx, which can * concatenate up to 20 DRAM buffers to form a Tx frame, each Receive Buffer * Descriptor (RBD) points to only one Rx Buffer (RB); there is a 1:1 * mapping between RBDs and RBs. * * Driver must allocate host DRAM memory for the following, and set the * physical address of each into 4965 registers: * * 1) Receive Buffer Descriptor (RBD) circular buffer (CB), typically with 256 * entries (although any power of 2, up to 4096, is selectable by driver). * Each entry (1 dword) points to a receive buffer (RB) of consistent size * (typically 4K, although 8K or 16K are also selectable by driver). * Driver sets up RB size and number of RBDs in the CB via Rx config * register FH_MEM_RCSR_CHNL0_CONFIG_REG. * * Bit fields within one RBD: * 27-0: Receive Buffer physical address bits [35:8], 256-byte aligned * * Driver sets physical address [35:8] of base of RBD circular buffer * into FH_RSCSR_CHNL0_RBDCB_BASE_REG [27:0]. * * 2) Rx status buffer, 8 bytes, in which 4965 indicates which Rx Buffers * (RBs) have been filled, via a "write pointer", actually the index of * the RB's corresponding RBD within the circular buffer. Driver sets * physical address [35:4] into FH_RSCSR_CHNL0_STTS_WPTR_REG [31:0]. * * Bit fields in lower dword of Rx status buffer (upper dword not used * by driver; see struct iwl4965_shared, val0): * 31-12: Not used by driver * 11- 0: Index of last filled Rx buffer descriptor * (4965 writes, driver reads this value) * * As the driver prepares Receive Buffers (RBs) for 4965 to fill, driver must * enter pointers to these RBs into contiguous RBD circular buffer entries, * and update the 4965's "write" index register, FH_RSCSR_CHNL0_RBDCB_WPTR_REG. * * This "write" index corresponds to the *next* RBD that the driver will make * available, i.e. one RBD past the tail of the ready-to-fill RBDs within * the circular buffer. This value should initially be 0 (before preparing any * RBs), should be 8 after preparing the first 8 RBs (for example), and must * wrap back to 0 at the end of the circular buffer (but don't wrap before * "read" index has advanced past 1! See below). * NOTE: 4965 EXPECTS THE WRITE INDEX TO BE INCREMENTED IN MULTIPLES OF 8. * * As the 4965 fills RBs (referenced from contiguous RBDs within the circular * buffer), it updates the Rx status buffer in host DRAM, 2) described above, * to tell the driver the index of the latest filled RBD. The driver must * read this "read" index from DRAM after receiving an Rx interrupt from 4965. * * The driver must also internally keep track of a third index, which is the * next RBD to process. When receiving an Rx interrupt, driver should process * all filled but unprocessed RBs up to, but not including, the RB * corresponding to the "read" index. For example, if "read" index becomes "1", * driver may process the RB pointed to by RBD 0. Depending on volume of * traffic, there may be many RBs to process. * * If read index == write index, 4965 thinks there is no room to put new data. * Due to this, the maximum number of filled RBs is 255, instead of 256. To * be safe, make sure that there is a gap of at least 2 RBDs between "write" * and "read" indexes; that is, make sure that there are no more than 254 * buffers waiting to be filled. */ #define FH_MEM_RSCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xBC0) #define FH_MEM_RSCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xC00) #define FH_MEM_RSCSR_CHNL0 (FH_MEM_RSCSR_LOWER_BOUND) /** * Physical base address of 8-byte Rx Status buffer. * Bit fields: * 31-0: Rx status buffer physical base address [35:4], must 16-byte aligned. */ #define FH_RSCSR_CHNL0_STTS_WPTR_REG (FH_MEM_RSCSR_CHNL0) /** * Physical base address of Rx Buffer Descriptor Circular Buffer. * Bit fields: * 27-0: RBD CD physical base address [35:8], must be 256-byte aligned. */ #define FH_RSCSR_CHNL0_RBDCB_BASE_REG (FH_MEM_RSCSR_CHNL0 + 0x004) /** * Rx write pointer (index, really!). * Bit fields: * 11-0: Index of driver's most recent prepared-to-be-filled RBD, + 1. * NOTE: For 256-entry circular buffer, use only bits [7:0]. */ #define FH_RSCSR_CHNL0_RBDCB_WPTR_REG (FH_MEM_RSCSR_CHNL0 + 0x008) #define FH_RSCSR_CHNL0_WPTR (FH_RSCSR_CHNL0_RBDCB_WPTR_REG) /** * Rx Config/Status Registers (RCSR) * Rx Config Reg for channel 0 (only channel used) * * Driver must initialize FH_MEM_RCSR_CHNL0_CONFIG_REG as follows for * normal operation (see bit fields). * * Clearing FH_MEM_RCSR_CHNL0_CONFIG_REG to 0 turns off Rx DMA. * Driver should poll FH_MEM_RSSR_RX_STATUS_REG for * FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (bit 24) before continuing. * * Bit fields: * 31-30: Rx DMA channel enable: '00' off/pause, '01' pause at end of frame, * '10' operate normally * 29-24: reserved * 23-20: # RBDs in circular buffer = 2^value; use "8" for 256 RBDs (normal), * min "5" for 32 RBDs, max "12" for 4096 RBDs. * 19-18: reserved * 17-16: size of each receive buffer; '00' 4K (normal), '01' 8K, * '10' 12K, '11' 16K. * 15-14: reserved * 13-12: IRQ destination; '00' none, '01' host driver (normal operation) * 11- 4: timeout for closing Rx buffer and interrupting host (units 32 usec) * typical value 0x10 (about 1/2 msec) * 3- 0: reserved */ #define FH_MEM_RCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC00) #define FH_MEM_RCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xCC0) #define FH_MEM_RCSR_CHNL0 (FH_MEM_RCSR_LOWER_BOUND) #define FH_MEM_RCSR_CHNL0_CONFIG_REG (FH_MEM_RCSR_CHNL0) #define FH_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MASK (0x00000FF0) /* bit 4-11 */ #define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MASK (0x00001000) /* bit 12 */ #define FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MASK (0x00008000) /* bit 15 */ #define FH_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MASK (0x00030000) /* bits 16-17 */ #define FH_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MASK (0x00F00000) /* bits 20-23 */ #define FH_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MASK (0xC0000000) /* bits 30-31 */ #define FH_RCSR_RX_CONFIG_RBDCB_SIZE_BITSHIFT (20) #define FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_BITSHIFT (4) #define RX_RB_TIMEOUT (0x10) #define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL (0x00000000) #define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL (0x40000000) #define FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000) #define FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000) #define FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K (0x00010000) #define FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K (0x00020000) #define FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_16K (0x00030000) #define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000) #define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000) /** * Rx Shared Status Registers (RSSR) * * After stopping Rx DMA channel (writing 0 to FH_MEM_RCSR_CHNL0_CONFIG_REG), * driver must poll FH_MEM_RSSR_RX_STATUS_REG until Rx channel is idle. * * Bit fields: * 24: 1 = Channel 0 is idle * * FH_MEM_RSSR_SHARED_CTRL_REG and FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV contain * default values that should not be altered by the driver. */ #define FH_MEM_RSSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC40) #define FH_MEM_RSSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xD00) #define FH_MEM_RSSR_SHARED_CTRL_REG (FH_MEM_RSSR_LOWER_BOUND) #define FH_MEM_RSSR_RX_STATUS_REG (FH_MEM_RSSR_LOWER_BOUND + 0x004) #define FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV (FH_MEM_RSSR_LOWER_BOUND + 0x008) #define FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (0x01000000) /** * Transmit DMA Channel Control/Status Registers (TCSR) * * 4965 has one configuration register for each of 8 Tx DMA/FIFO channels * supported in hardware (don't confuse these with the 16 Tx queues in DRAM, * which feed the DMA/FIFO channels); config regs are separated by 0x20 bytes. * * To use a Tx DMA channel, driver must initialize its * IWL_FH_TCSR_CHNL_TX_CONFIG_REG(chnl) with: * * IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | * IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL * * All other bits should be 0. * * Bit fields: * 31-30: Tx DMA channel enable: '00' off/pause, '01' pause at end of frame, * '10' operate normally * 29- 4: Reserved, set to "0" * 3: Enable internal DMA requests (1, normal operation), disable (0) * 2- 0: Reserved, set to "0" */ #define IWL_FH_TCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xD00) #define IWL_FH_TCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xE60) /* Find Control/Status reg for given Tx DMA/FIFO channel */ #define IWL_FH_TCSR_CHNL_TX_CONFIG_REG(_chnl) \ (IWL_FH_TCSR_LOWER_BOUND + 0x20 * _chnl) #define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE_VAL (0x00000000) #define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL (0x00000008) #define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000) #define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF (0x40000000) #define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000) /** * Tx Shared Status Registers (TSSR) * * After stopping Tx DMA channel (writing 0 to * IWL_FH_TCSR_CHNL_TX_CONFIG_REG(chnl)), driver must poll * IWL_FH_TSSR_TX_STATUS_REG until selected Tx channel is idle * (channel's buffers empty | no pending requests). * * Bit fields: * 31-24: 1 = Channel buffers empty (channel 7:0) * 23-16: 1 = No pending requests (channel 7:0) */ #define IWL_FH_TSSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xEA0) #define IWL_FH_TSSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xEC0) #define IWL_FH_TSSR_TX_STATUS_REG (IWL_FH_TSSR_LOWER_BOUND + 0x010) #define IWL_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) \ ((1 << (_chnl)) << 24) #define IWL_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl) \ ((1 << (_chnl)) << 16) #define IWL_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) \ (IWL_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) | \ IWL_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl)) /********************* START TX SCHEDULER *************************************/ /** * 4965 Tx Scheduler * * The Tx Scheduler selects the next frame to be transmitted, chosing TFDs * (Transmit Frame Descriptors) from up to 16 circular Tx queues resident in * host DRAM. It steers each frame's Tx command (which contains the frame * data) into one of up to 7 prioritized Tx DMA FIFO channels within the * device. A queue maps to only one (selectable by driver) Tx DMA channel, * but one DMA channel may take input from several queues. * * Tx DMA channels have dedicated purposes. For 4965, they are used as follows: * * 0 -- EDCA BK (background) frames, lowest priority * 1 -- EDCA BE (best effort) frames, normal priority * 2 -- EDCA VI (video) frames, higher priority * 3 -- EDCA VO (voice) and management frames, highest priority * 4 -- Commands (e.g. RXON, etc.) * 5 -- HCCA short frames * 6 -- HCCA long frames * 7 -- not used by driver (device-internal only) * * Driver should normally map queues 0-6 to Tx DMA/FIFO channels 0-6. * In addition, driver can map queues 7-15 to Tx DMA/FIFO channels 0-3 to * support 11n aggregation via EDCA DMA channels. * * The driver sets up each queue to work in one of two modes: * * 1) Scheduler-Ack, in which the scheduler automatically supports a * block-ack (BA) window of up to 64 TFDs. In this mode, each queue * contains TFDs for a unique combination of Recipient Address (RA) * and Traffic Identifier (TID), that is, traffic of a given * Quality-Of-Service (QOS) priority, destined for a single station. * * In scheduler-ack mode, the scheduler keeps track of the Tx status of * each frame within the BA window, including whether it's been transmitted, * and whether it's been acknowledged by the receiving station. The device * automatically processes block-acks received from the receiving STA, * and reschedules un-acked frames to be retransmitted (successful * Tx completion may end up being out-of-order). * * The driver must maintain the queue's Byte Count table in host DRAM * (struct iwl4965_sched_queue_byte_cnt_tbl) for this mode. * This mode does not support fragmentation. * * 2) FIFO (a.k.a. non-Scheduler-ACK), in which each TFD is processed in order. * The device may automatically retry Tx, but will retry only one frame * at a time, until receiving ACK from receiving station, or reaching * retry limit and giving up. * * The command queue (#4) must use this mode! * This mode does not require use of the Byte Count table in host DRAM. * * Driver controls scheduler operation via 3 means: * 1) Scheduler registers * 2) Shared scheduler data base in internal 4956 SRAM * 3) Shared data in host DRAM * * Initialization: * * When loading, driver should allocate memory for: * 1) 16 TFD circular buffers, each with space for (typically) 256 TFDs. * 2) 16 Byte Count circular buffers in 16 KBytes contiguous memory * (1024 bytes for each queue). * * After receiving "Alive" response from uCode, driver must initialize * the scheduler (especially for queue #4, the command queue, otherwise * the driver can't issue commands!): */ /** * Max Tx window size is the max number of contiguous TFDs that the scheduler * can keep track of at one time when creating block-ack chains of frames. * Note that "64" matches the number of ack bits in a block-ack packet. * Driver should use SCD_WIN_SIZE and SCD_FRAME_LIMIT values to initialize * SCD_CONTEXT_QUEUE_OFFSET(x) values. */ #define SCD_WIN_SIZE 64 #define SCD_FRAME_LIMIT 64 /* SCD registers are internal, must be accessed via HBUS_TARG_PRPH regs */ #define SCD_START_OFFSET 0xa02c00 /* * 4965 tells driver SRAM address for internal scheduler structs via this reg. * Value is valid only after "Alive" response from uCode. */ #define SCD_SRAM_BASE_ADDR (SCD_START_OFFSET + 0x0) /* * Driver may need to update queue-empty bits after changing queue's * write and read pointers (indexes) during (re-)initialization (i.e. when * scheduler is not tracking what's happening). * Bit fields: * 31-16: Write mask -- 1: update empty bit, 0: don't change empty bit * 15-00: Empty state, one for each queue -- 1: empty, 0: non-empty * NOTE: This register is not used by Linux driver. */ #define SCD_EMPTY_BITS (SCD_START_OFFSET + 0x4) /* * Physical base address of array of byte count (BC) circular buffers (CBs). * Each Tx queue has a BC CB in host DRAM to support Scheduler-ACK mode. * This register points to BC CB for queue 0, must be on 1024-byte boundary. * Others are spaced by 1024 bytes. * Each BC CB is 2 bytes * (256 + 64) = 740 bytes, followed by 384 bytes pad. * (Index into a queue's BC CB) = (index into queue's TFD CB) = (SSN & 0xff). * Bit fields: * 25-00: Byte Count CB physical address [35:10], must be 1024-byte aligned. */ #define SCD_DRAM_BASE_ADDR (SCD_START_OFFSET + 0x10) /* * Enables any/all Tx DMA/FIFO channels. * Scheduler generates requests for only the active channels. * Set this to 0xff to enable all 8 channels (normal usage). * Bit fields: * 7- 0: Enable (1), disable (0), one bit for each channel 0-7 */ #define SCD_TXFACT (SCD_START_OFFSET + 0x1c) /* Mask to enable contiguous Tx DMA/FIFO channels between "lo" and "hi". */ #define SCD_TXFACT_REG_TXFIFO_MASK(lo, hi) \ ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) /* * Queue (x) Write Pointers (indexes, really!), one for each Tx queue. * Initialized and updated by driver as new TFDs are added to queue. * NOTE: If using Block Ack, index must correspond to frame's * Start Sequence Number; index = (SSN & 0xff) * NOTE: Alternative to HBUS_TARG_WRPTR, which is what Linux driver uses? */ #define SCD_QUEUE_WRPTR(x) (SCD_START_OFFSET + 0x24 + (x) * 4) /* * Queue (x) Read Pointers (indexes, really!), one for each Tx queue. * For FIFO mode, index indicates next frame to transmit. * For Scheduler-ACK mode, index indicates first frame in Tx window. * Initialized by driver, updated by scheduler. */ #define SCD_QUEUE_RDPTR(x) (SCD_START_OFFSET + 0x64 + (x) * 4) /* * Select which queues work in chain mode (1) vs. not (0). * Use chain mode to build chains of aggregated frames. * Bit fields: * 31-16: Reserved * 15-00: Mode, one bit for each queue -- 1: Chain mode, 0: one-at-a-time * NOTE: If driver sets up queue for chain mode, it should be also set up * Scheduler-ACK mode as well, via SCD_QUEUE_STATUS_BITS(x). */ #define SCD_QUEUECHAIN_SEL (SCD_START_OFFSET + 0xd0) /* * Select which queues interrupt driver when scheduler increments * a queue's read pointer (index). * Bit fields: * 31-16: Reserved * 15-00: Interrupt enable, one bit for each queue -- 1: enabled, 0: disabled * NOTE: This functionality is apparently a no-op; driver relies on interrupts * from Rx queue to read Tx command responses and update Tx queues. */ #define SCD_INTERRUPT_MASK (SCD_START_OFFSET + 0xe4) /* * Queue search status registers. One for each queue. * Sets up queue mode and assigns queue to Tx DMA channel. * Bit fields: * 19-10: Write mask/enable bits for bits 0-9 * 9: Driver should init to "0" * 8: Scheduler-ACK mode (1), non-Scheduler-ACK (i.e. FIFO) mode (0). * Driver should init to "1" for aggregation mode, or "0" otherwise. * 7-6: Driver should init to "0" * 5: Window Size Left; indicates whether scheduler can request * another TFD, based on window size, etc. Driver should init * this bit to "1" for aggregation mode, or "0" for non-agg. * 4-1: Tx FIFO to use (range 0-7). * 0: Queue is active (1), not active (0). * Other bits should be written as "0" * * NOTE: If enabling Scheduler-ACK mode, chain mode should also be enabled * via SCD_QUEUECHAIN_SEL. */ #define SCD_QUEUE_STATUS_BITS(x) (SCD_START_OFFSET + 0x104 + (x) * 4) /* Bit field positions */ #define SCD_QUEUE_STTS_REG_POS_ACTIVE (0) #define SCD_QUEUE_STTS_REG_POS_TXF (1) #define SCD_QUEUE_STTS_REG_POS_WSL (5) #define SCD_QUEUE_STTS_REG_POS_SCD_ACK (8) /* Write masks */ #define SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (10) #define SCD_QUEUE_STTS_REG_MSK (0x0007FC00) /** * 4965 internal SRAM structures for scheduler, shared with driver ... * * Driver should clear and initialize the following areas after receiving * "Alive" response from 4965 uCode, i.e. after initial * uCode load, or after a uCode load done for error recovery: * * SCD_CONTEXT_DATA_OFFSET (size 128 bytes) * SCD_TX_STTS_BITMAP_OFFSET (size 256 bytes) * SCD_TRANSLATE_TBL_OFFSET (size 32 bytes) * * Driver accesses SRAM via HBUS_TARG_MEM_* registers. * Driver reads base address of this scheduler area from SCD_SRAM_BASE_ADDR. * All OFFSET values must be added to this base address. */ /* * Queue context. One 8-byte entry for each of 16 queues. * * Driver should clear this entire area (size 0x80) to 0 after receiving * "Alive" notification from uCode. Additionally, driver should init * each queue's entry as follows: * * LS Dword bit fields: * 0-06: Max Tx window size for Scheduler-ACK. Driver should init to 64. * * MS Dword bit fields: * 16-22: Frame limit. Driver should init to 10 (0xa). * * Driver should init all other bits to 0. * * Init must be done after driver receives "Alive" response from 4965 uCode, * and when setting up queue for aggregation. */ #define SCD_CONTEXT_DATA_OFFSET 0x380 #define SCD_CONTEXT_QUEUE_OFFSET(x) (SCD_CONTEXT_DATA_OFFSET + ((x) * 8)) #define SCD_QUEUE_CTX_REG1_WIN_SIZE_POS (0) #define SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK (0x0000007F) #define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16) #define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000) /* * Tx Status Bitmap * * Driver should clear this entire area (size 0x100) to 0 after receiving * "Alive" notification from uCode. Area is used only by device itself; * no other support (besides clearing) is required from driver. */ #define SCD_TX_STTS_BITMAP_OFFSET 0x400 /* * RAxTID to queue translation mapping. * * When queue is in Scheduler-ACK mode, frames placed in a that queue must be * for only one combination of receiver address (RA) and traffic ID (TID), i.e. * one QOS priority level destined for one station (for this wireless link, * not final destination). The SCD_TRANSLATE_TABLE area provides 16 16-bit * mappings, one for each of the 16 queues. If queue is not in Scheduler-ACK * mode, the device ignores the mapping value. * * Bit fields, for each 16-bit map: * 15-9: Reserved, set to 0 * 8-4: Index into device's station table for recipient station * 3-0: Traffic ID (tid), range 0-15 * * Driver should clear this entire area (size 32 bytes) to 0 after receiving * "Alive" notification from uCode. To update a 16-bit map value, driver * must read a dword-aligned value from device SRAM, replace the 16-bit map * value of interest, and write the dword value back into device SRAM. */ #define SCD_TRANSLATE_TBL_OFFSET 0x500 /* Find translation table dword to read/write for given queue */ #define SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \ ((SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffffffc) #define SCD_TXFIFO_POS_TID (0) #define SCD_TXFIFO_POS_RA (4) #define SCD_QUEUE_RA_TID_MAP_RATID_MSK (0x01FF) /*********************** END TX SCHEDULER *************************************/ static inline u8 iwl4965_hw_get_rate(__le32 rate_n_flags) { return le32_to_cpu(rate_n_flags) & 0xFF; } static inline u16 iwl4965_hw_get_rate_n_flags(__le32 rate_n_flags) { return le32_to_cpu(rate_n_flags) & 0xFFFF; } static inline __le32 iwl4965_hw_set_rate_n_flags(u8 rate, u16 flags) { return cpu_to_le32(flags|(u16)rate); } /** * Tx/Rx Queues * * Most communication between driver and 4965 is via queues of data buffers. * For example, all commands that the driver issues to device's embedded * controller (uCode) are via the command queue (one of the Tx queues). All * uCode command responses/replies/notifications, including Rx frames, are * conveyed from uCode to driver via the Rx queue. * * Most support for these queues, including handshake support, resides in * structures in host DRAM, shared between the driver and the device. When * allocating this memory, the driver must make sure that data written by * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's * cache memory), so DRAM and cache are consistent, and the device can * immediately see changes made by the driver. * * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array * in DRAM containing 256 Transmit Frame Descriptors (TFDs). */ #define IWL4965_MAX_WIN_SIZE 64 #define IWL4965_QUEUE_SIZE 256 #define IWL4965_NUM_FIFOS 7 #define IWL4965_MAX_NUM_QUEUES 16 /** * struct iwl4965_tfd_frame_data * * Describes up to 2 buffers containing (contiguous) portions of a Tx frame. * Each buffer must be on dword boundary. * Up to 10 iwl_tfd_frame_data structures, describing up to 20 buffers, * may be filled within a TFD (iwl_tfd_frame). * * Bit fields in tb1_addr: * 31- 0: Tx buffer 1 address bits [31:0] * * Bit fields in val1: * 31-16: Tx buffer 2 address bits [15:0] * 15- 4: Tx buffer 1 length (bytes) * 3- 0: Tx buffer 1 address bits [32:32] * * Bit fields in val2: * 31-20: Tx buffer 2 length (bytes) * 19- 0: Tx buffer 2 address bits [35:16] */ struct iwl4965_tfd_frame_data { __le32 tb1_addr; __le32 val1; /* __le32 ptb1_32_35:4; */ #define IWL_tb1_addr_hi_POS 0 #define IWL_tb1_addr_hi_LEN 4 #define IWL_tb1_addr_hi_SYM val1 /* __le32 tb_len1:12; */ #define IWL_tb1_len_POS 4 #define IWL_tb1_len_LEN 12 #define IWL_tb1_len_SYM val1 /* __le32 ptb2_0_15:16; */ #define IWL_tb2_addr_lo16_POS 16 #define IWL_tb2_addr_lo16_LEN 16 #define IWL_tb2_addr_lo16_SYM val1 __le32 val2; /* __le32 ptb2_16_35:20; */ #define IWL_tb2_addr_hi20_POS 0 #define IWL_tb2_addr_hi20_LEN 20 #define IWL_tb2_addr_hi20_SYM val2 /* __le32 tb_len2:12; */ #define IWL_tb2_len_POS 20 #define IWL_tb2_len_LEN 12 #define IWL_tb2_len_SYM val2 } __attribute__ ((packed)); /** * struct iwl4965_tfd_frame * * Transmit Frame Descriptor (TFD) * * 4965 supports up to 16 Tx queues resident in host DRAM. * Each Tx queue uses a circular buffer of 256 TFDs stored in host DRAM. * Both driver and device share these circular buffers, each of which must be * contiguous 256 TFDs x 128 bytes-per-TFD = 32 KBytes for 4965. * * Driver must indicate the physical address of the base of each * circular buffer via the 4965's FH_MEM_CBBC_QUEUE registers. * * Each TFD contains pointer/size information for up to 20 data buffers * in host DRAM. These buffers collectively contain the (one) frame described * by the TFD. Each buffer must be a single contiguous block of memory within * itself, but buffers may be scattered in host DRAM. Each buffer has max size * of (4K - 4). The 4965 concatenates all of a TFD's buffers into a single * Tx frame, up to 8 KBytes in size. * * Bit fields in the control dword (val0): * 31-30: # dwords (0-3) of padding required at end of frame for 16-byte bound * 29: reserved * 28-24: # Transmit Buffer Descriptors in TFD * 23- 0: reserved * * A maximum of 255 (not 256!) TFDs may be on a queue waiting for Tx. */ struct iwl4965_tfd_frame { __le32 val0; /* __le32 rsvd1:24; */ /* __le32 num_tbs:5; */ #define IWL_num_tbs_POS 24 #define IWL_num_tbs_LEN 5 #define IWL_num_tbs_SYM val0 /* __le32 rsvd2:1; */ /* __le32 padding:2; */ struct iwl4965_tfd_frame_data pa[10]; __le32 reserved; } __attribute__ ((packed)); /** * struct iwl4965_queue_byte_cnt_entry * * Byte Count Table Entry * * Bit fields: * 15-12: reserved * 11- 0: total to-be-transmitted byte count of frame (does not include command) */ struct iwl4965_queue_byte_cnt_entry { __le16 val; /* __le16 byte_cnt:12; */ #define IWL_byte_cnt_POS 0 #define IWL_byte_cnt_LEN 12 #define IWL_byte_cnt_SYM val /* __le16 rsvd:4; */ } __attribute__ ((packed)); /** * struct iwl4965_sched_queue_byte_cnt_tbl * * Byte Count table * * Each Tx queue uses a byte-count table containing 320 entries: * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that * duplicate the first 64 entries (to avoid wrap-around within a Tx window; * max Tx window is 64 TFDs). * * When driver sets up a new TFD, it must also enter the total byte count * of the frame to be transmitted into the corresponding entry in the byte * count table for the chosen Tx queue. If the TFD index is 0-63, the driver * must duplicate the byte count entry in corresponding index 256-319. * * "dont_care" padding puts each byte count table on a 1024-byte boundary; * 4965 assumes tables are separated by 1024 bytes. */ struct iwl4965_sched_queue_byte_cnt_tbl { struct iwl4965_queue_byte_cnt_entry tfd_offset[IWL4965_QUEUE_SIZE + IWL4965_MAX_WIN_SIZE]; u8 dont_care[1024 - (IWL4965_QUEUE_SIZE + IWL4965_MAX_WIN_SIZE) * sizeof(__le16)]; } __attribute__ ((packed)); /** * struct iwl4965_shared - handshake area for Tx and Rx * * For convenience in allocating memory, this structure combines 2 areas of * DRAM which must be shared between driver and 4965. These do not need to * be combined, if better allocation would result from keeping them separate: * * 1) The Tx byte count tables occupy 1024 bytes each (16 KBytes total for * 16 queues). Driver uses SCD_DRAM_BASE_ADDR to tell 4965 where to find * the first of these tables. 4965 assumes tables are 1024 bytes apart. * * 2) The Rx status (val0 and val1) occupies only 8 bytes. Driver uses * FH_RSCSR_CHNL0_STTS_WPTR_REG to tell 4965 where to find this area. * Driver reads val0 to determine the latest Receive Buffer Descriptor (RBD) * that has been filled by the 4965. * * Bit fields val0: * 31-12: Not used * 11- 0: Index of last filled Rx buffer descriptor (4965 writes, driver reads) * * Bit fields val1: * 31- 0: Not used */ struct iwl4965_shared { struct iwl4965_sched_queue_byte_cnt_tbl queues_byte_cnt_tbls[IWL4965_MAX_NUM_QUEUES]; __le32 rb_closed; /* __le32 rb_closed_stts_rb_num:12; */ #define IWL_rb_closed_stts_rb_num_POS 0 #define IWL_rb_closed_stts_rb_num_LEN 12 #define IWL_rb_closed_stts_rb_num_SYM rb_closed /* __le32 rsrv1:4; */ /* __le32 rb_closed_stts_rx_frame_num:12; */ #define IWL_rb_closed_stts_rx_frame_num_POS 16 #define IWL_rb_closed_stts_rx_frame_num_LEN 12 #define IWL_rb_closed_stts_rx_frame_num_SYM rb_closed /* __le32 rsrv2:4; */ __le32 frm_finished; /* __le32 frame_finished_stts_rb_num:12; */ #define IWL_frame_finished_stts_rb_num_POS 0 #define IWL_frame_finished_stts_rb_num_LEN 12 #define IWL_frame_finished_stts_rb_num_SYM frm_finished /* __le32 rsrv3:4; */ /* __le32 frame_finished_stts_rx_frame_num:12; */ #define IWL_frame_finished_stts_rx_frame_num_POS 16 #define IWL_frame_finished_stts_rx_frame_num_LEN 12 #define IWL_frame_finished_stts_rx_frame_num_SYM frm_finished /* __le32 rsrv4:4; */ __le32 padding1; /* so that allocation will be aligned to 16B */ __le32 padding2; } __attribute__ ((packed)); #endif /* __iwl4965_4965_hw_h__ */