/* Copyright (C) 2004 - 2008 rt2x00 SourceForge Project This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2x00lib Abstract: rt2x00 generic device routines. */ #include #include #include "rt2x00.h" #include "rt2x00lib.h" #include "rt2x00dump.h" /* * Link tuning handlers */ void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev) { if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) return; /* * Reset link information. * Both the currently active vgc level as well as * the link tuner counter should be reset. Resetting * the counter is important for devices where the * device should only perform link tuning during the * first minute after being enabled. */ rt2x00dev->link.count = 0; rt2x00dev->link.vgc_level = 0; /* * Reset the link tuner. */ rt2x00dev->ops->lib->reset_tuner(rt2x00dev); } static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev) { /* * Clear all (possibly) pre-existing quality statistics. */ memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual)); /* * The RX and TX percentage should start at 50% * this will assure we will get at least get some * decent value when the link tuner starts. * The value will be dropped and overwritten with * the correct (measured )value anyway during the * first run of the link tuner. */ rt2x00dev->link.qual.rx_percentage = 50; rt2x00dev->link.qual.tx_percentage = 50; rt2x00lib_reset_link_tuner(rt2x00dev); queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work, LINK_TUNE_INTERVAL); } static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev) { cancel_delayed_work_sync(&rt2x00dev->link.work); } /* * Radio control handlers. */ int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) { int status; /* * Don't enable the radio twice. * And check if the hardware button has been disabled. */ if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) || test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags)) return 0; /* * Initialize all data queues. */ rt2x00queue_init_rx(rt2x00dev); rt2x00queue_init_tx(rt2x00dev); /* * Enable radio. */ status = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); if (status) return status; rt2x00leds_led_radio(rt2x00dev, true); rt2x00led_led_activity(rt2x00dev, true); __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags); /* * Enable RX. */ rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON); /* * Start the TX queues. */ ieee80211_start_queues(rt2x00dev->hw); return 0; } void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) { if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) return; /* * Stop all scheduled work. */ if (work_pending(&rt2x00dev->intf_work)) cancel_work_sync(&rt2x00dev->intf_work); if (work_pending(&rt2x00dev->filter_work)) cancel_work_sync(&rt2x00dev->filter_work); /* * Stop the TX queues. */ ieee80211_stop_queues(rt2x00dev->hw); /* * Disable RX. */ rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF); /* * Disable radio. */ rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); rt2x00led_led_activity(rt2x00dev, false); rt2x00leds_led_radio(rt2x00dev, false); } void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state) { /* * When we are disabling the RX, we should also stop the link tuner. */ if (state == STATE_RADIO_RX_OFF) rt2x00lib_stop_link_tuner(rt2x00dev); rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); /* * When we are enabling the RX, we should also start the link tuner. */ if (state == STATE_RADIO_RX_ON && (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count)) rt2x00lib_start_link_tuner(rt2x00dev); } static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev) { enum antenna rx = rt2x00dev->link.ant.active.rx; enum antenna tx = rt2x00dev->link.ant.active.tx; int sample_a = rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A); int sample_b = rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B); /* * We are done sampling. Now we should evaluate the results. */ rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE; /* * During the last period we have sampled the RSSI * from both antenna's. It now is time to determine * which antenna demonstrated the best performance. * When we are already on the antenna with the best * performance, then there really is nothing for us * left to do. */ if (sample_a == sample_b) return; if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B; if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B; rt2x00lib_config_antenna(rt2x00dev, rx, tx); } static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev) { enum antenna rx = rt2x00dev->link.ant.active.rx; enum antenna tx = rt2x00dev->link.ant.active.tx; int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link); int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr); /* * Legacy driver indicates that we should swap antenna's * when the difference in RSSI is greater that 5. This * also should be done when the RSSI was actually better * then the previous sample. * When the difference exceeds the threshold we should * sample the rssi from the other antenna to make a valid * comparison between the 2 antennas. */ if (abs(rssi_curr - rssi_old) < 5) return; rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE; if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A; if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A; rt2x00lib_config_antenna(rt2x00dev, rx, tx); } static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev) { /* * Determine if software diversity is enabled for * either the TX or RX antenna (or both). * Always perform this check since within the link * tuner interval the configuration might have changed. */ rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY; rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY; if (rt2x00dev->hw->conf.antenna_sel_rx == 0 && rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY; if (rt2x00dev->hw->conf.antenna_sel_tx == 0 && rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY; if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) && !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) { rt2x00dev->link.ant.flags = 0; return; } /* * If we have only sampled the data over the last period * we should now harvest the data. Otherwise just evaluate * the data. The latter should only be performed once * every 2 seconds. */ if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE) rt2x00lib_evaluate_antenna_sample(rt2x00dev); else if (rt2x00dev->link.count & 1) rt2x00lib_evaluate_antenna_eval(rt2x00dev); } static void rt2x00lib_update_link_stats(struct link *link, int rssi) { int avg_rssi = rssi; /* * Update global RSSI */ if (link->qual.avg_rssi) avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8); link->qual.avg_rssi = avg_rssi; /* * Update antenna RSSI */ if (link->ant.rssi_ant) rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8); link->ant.rssi_ant = rssi; } static void rt2x00lib_precalculate_link_signal(struct link_qual *qual) { if (qual->rx_failed || qual->rx_success) qual->rx_percentage = (qual->rx_success * 100) / (qual->rx_failed + qual->rx_success); else qual->rx_percentage = 50; if (qual->tx_failed || qual->tx_success) qual->tx_percentage = (qual->tx_success * 100) / (qual->tx_failed + qual->tx_success); else qual->tx_percentage = 50; qual->rx_success = 0; qual->rx_failed = 0; qual->tx_success = 0; qual->tx_failed = 0; } static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev, int rssi) { int rssi_percentage = 0; int signal; /* * We need a positive value for the RSSI. */ if (rssi < 0) rssi += rt2x00dev->rssi_offset; /* * Calculate the different percentages, * which will be used for the signal. */ if (rt2x00dev->rssi_offset) rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset; /* * Add the individual percentages and use the WEIGHT * defines to calculate the current link signal. */ signal = ((WEIGHT_RSSI * rssi_percentage) + (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) + (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100; return (signal > 100) ? 100 : signal; } static void rt2x00lib_link_tuner(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, link.work.work); /* * When the radio is shutting down we should * immediately cease all link tuning. */ if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) return; /* * Update statistics. */ rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual); rt2x00dev->low_level_stats.dot11FCSErrorCount += rt2x00dev->link.qual.rx_failed; /* * Only perform the link tuning when Link tuning * has been enabled (This could have been disabled from the EEPROM). */ if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags)) rt2x00dev->ops->lib->link_tuner(rt2x00dev); /* * Precalculate a portion of the link signal which is * in based on the tx/rx success/failure counters. */ rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual); /* * Send a signal to the led to update the led signal strength. */ rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi); /* * Evaluate antenna setup, make this the last step since this could * possibly reset some statistics. */ rt2x00lib_evaluate_antenna(rt2x00dev); /* * Increase tuner counter, and reschedule the next link tuner run. */ rt2x00dev->link.count++; queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work, LINK_TUNE_INTERVAL); } static void rt2x00lib_packetfilter_scheduled(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, filter_work); rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter); } static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rt2x00_dev *rt2x00dev = data; struct rt2x00_intf *intf = vif_to_intf(vif); struct sk_buff *skb; struct ieee80211_tx_control control; struct ieee80211_bss_conf conf; int delayed_flags; /* * Copy all data we need during this action under the protection * of a spinlock. Otherwise race conditions might occur which results * into an invalid configuration. */ spin_lock(&intf->lock); memcpy(&conf, &intf->conf, sizeof(conf)); delayed_flags = intf->delayed_flags; intf->delayed_flags = 0; spin_unlock(&intf->lock); if (delayed_flags & DELAYED_UPDATE_BEACON) { skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control); if (skb && rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb, &control)) dev_kfree_skb(skb); } if (delayed_flags & DELAYED_CONFIG_ERP) rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf); if (delayed_flags & DELAYED_LED_ASSOC) rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated); } static void rt2x00lib_intf_scheduled(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, intf_work); /* * Iterate over each interface and perform the * requested configurations. */ ieee80211_iterate_active_interfaces(rt2x00dev->hw, rt2x00lib_intf_scheduled_iter, rt2x00dev); } /* * Interrupt context handlers. */ static void rt2x00lib_beacondone_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rt2x00_intf *intf = vif_to_intf(vif); if (vif->type != IEEE80211_IF_TYPE_AP && vif->type != IEEE80211_IF_TYPE_IBSS) return; spin_lock(&intf->lock); intf->delayed_flags |= DELAYED_UPDATE_BEACON; spin_unlock(&intf->lock); } void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) { if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) return; ieee80211_iterate_active_interfaces(rt2x00dev->hw, rt2x00lib_beacondone_iter, rt2x00dev); queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work); } EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); void rt2x00lib_txdone(struct queue_entry *entry, struct txdone_entry_desc *txdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct skb_frame_desc *skbdesc; struct ieee80211_tx_status tx_status; int success = !!(txdesc->status == TX_SUCCESS || txdesc->status == TX_SUCCESS_RETRY); int fail = !!(txdesc->status == TX_FAIL_RETRY || txdesc->status == TX_FAIL_INVALID || txdesc->status == TX_FAIL_OTHER); /* * Update TX statistics. */ rt2x00dev->link.qual.tx_success += success; rt2x00dev->link.qual.tx_failed += txdesc->retry + fail; /* * Initialize TX status */ tx_status.flags = 0; tx_status.ack_signal = 0; tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY); tx_status.retry_count = txdesc->retry; memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control)); if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) { if (success) tx_status.flags |= IEEE80211_TX_STATUS_ACK; else rt2x00dev->low_level_stats.dot11ACKFailureCount++; } tx_status.queue_length = entry->queue->limit; tx_status.queue_number = tx_status.control.queue; if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) { if (success) rt2x00dev->low_level_stats.dot11RTSSuccessCount++; else rt2x00dev->low_level_stats.dot11RTSFailureCount++; } /* * Send the tx_status to debugfs. Only send the status report * to mac80211 when the frame originated from there. If this was * a extra frame coming through a mac80211 library call (RTS/CTS) * then we should not send the status report back. * If send to mac80211, mac80211 will clean up the skb structure, * otherwise we have to do it ourself. */ skbdesc = get_skb_frame_desc(entry->skb); skbdesc->frame_type = DUMP_FRAME_TXDONE; rt2x00debug_dump_frame(rt2x00dev, entry->skb); if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED)) ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, &tx_status); else dev_kfree_skb(entry->skb); entry->skb = NULL; } EXPORT_SYMBOL_GPL(rt2x00lib_txdone); void rt2x00lib_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status; struct ieee80211_supported_band *sband; struct ieee80211_hdr *hdr; const struct rt2x00_rate *rate; unsigned int i; int idx = -1; u16 fc; /* * Update RX statistics. */ sband = &rt2x00dev->bands[rt2x00dev->curr_band]; for (i = 0; i < sband->n_bitrates; i++) { rate = rt2x00_get_rate(sband->bitrates[i].hw_value); if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) && (rate->plcp == rxdesc->signal)) || (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) && (rate->bitrate == rxdesc->signal))) { idx = i; break; } } if (idx < 0) { WARNING(rt2x00dev, "Frame received with unrecognized signal," "signal=0x%.2x, plcp=%d.\n", rxdesc->signal, !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP)); idx = 0; } /* * Only update link status if this is a beacon frame carrying our bssid. */ hdr = (struct ieee80211_hdr *)entry->skb->data; fc = le16_to_cpu(hdr->frame_control); if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS)) rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi); rt2x00dev->link.qual.rx_success++; rx_status->rate_idx = idx; rx_status->signal = rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi); rx_status->ssi = rxdesc->rssi; rx_status->flag = rxdesc->flags; rx_status->antenna = rt2x00dev->link.ant.active.rx; /* * Send frame to mac80211 & debugfs. * mac80211 will clean up the skb structure. */ get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE; rt2x00debug_dump_frame(rt2x00dev, entry->skb); ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status); entry->skb = NULL; } EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); /* * TX descriptor initializer */ void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb, struct ieee80211_tx_control *control) { struct txentry_desc txdesc; struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data; const struct rt2x00_rate *rate; int tx_rate; int length; int duration; int residual; u16 frame_control; u16 seq_ctrl; memset(&txdesc, 0, sizeof(txdesc)); txdesc.queue = skbdesc->entry->queue->qid; txdesc.cw_min = skbdesc->entry->queue->cw_min; txdesc.cw_max = skbdesc->entry->queue->cw_max; txdesc.aifs = skbdesc->entry->queue->aifs; /* * Read required fields from ieee80211 header. */ frame_control = le16_to_cpu(hdr->frame_control); seq_ctrl = le16_to_cpu(hdr->seq_ctrl); tx_rate = control->tx_rate->hw_value; /* * Check whether this frame is to be acked */ if (!(control->flags & IEEE80211_TXCTL_NO_ACK)) __set_bit(ENTRY_TXD_ACK, &txdesc.flags); /* * Check if this is a RTS/CTS frame */ if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) { __set_bit(ENTRY_TXD_BURST, &txdesc.flags); if (is_rts_frame(frame_control)) { __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags); __set_bit(ENTRY_TXD_ACK, &txdesc.flags); } else __clear_bit(ENTRY_TXD_ACK, &txdesc.flags); if (control->rts_cts_rate) tx_rate = control->rts_cts_rate->hw_value; } rate = rt2x00_get_rate(tx_rate); /* * Check if more fragments are pending */ if (ieee80211_get_morefrag(hdr)) { __set_bit(ENTRY_TXD_BURST, &txdesc.flags); __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags); } /* * Beacons and probe responses require the tsf timestamp * to be inserted into the frame. */ if (control->queue == RT2X00_BCN_QUEUE_BEACON || is_probe_resp(frame_control)) __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags); /* * Determine with what IFS priority this frame should be send. * Set ifs to IFS_SIFS when the this is not the first fragment, * or this fragment came after RTS/CTS. */ if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 || test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags)) txdesc.ifs = IFS_SIFS; else txdesc.ifs = IFS_BACKOFF; /* * PLCP setup * Length calculation depends on OFDM/CCK rate. */ txdesc.signal = rate->plcp; txdesc.service = 0x04; length = skbdesc->data_len + FCS_LEN; if (rate->flags & DEV_RATE_OFDM) { __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags); txdesc.length_high = (length >> 6) & 0x3f; txdesc.length_low = length & 0x3f; } else { /* * Convert length to microseconds. */ residual = get_duration_res(length, rate->bitrate); duration = get_duration(length, rate->bitrate); if (residual != 0) { duration++; /* * Check if we need to set the Length Extension */ if (rate->bitrate == 110 && residual <= 30) txdesc.service |= 0x80; } txdesc.length_high = (duration >> 8) & 0xff; txdesc.length_low = duration & 0xff; /* * When preamble is enabled we should set the * preamble bit for the signal. */ if (rt2x00_get_rate_preamble(tx_rate)) txdesc.signal |= 0x08; } rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control); /* * Update queue entry. */ skbdesc->entry->skb = skb; /* * The frame has been completely initialized and ready * for sending to the device. The caller will push the * frame to the device, but we are going to push the * frame to debugfs here. */ skbdesc->frame_type = DUMP_FRAME_TX; rt2x00debug_dump_frame(rt2x00dev, skb); } EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc); /* * Driver initialization handlers. */ const struct rt2x00_rate rt2x00_supported_rates[12] = { { .flags = DEV_RATE_CCK | DEV_RATE_BASIC, .bitrate = 10, .ratemask = BIT(0), .plcp = 0x00, }, { .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC, .bitrate = 20, .ratemask = BIT(1), .plcp = 0x01, }, { .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC, .bitrate = 55, .ratemask = BIT(2), .plcp = 0x02, }, { .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC, .bitrate = 110, .ratemask = BIT(3), .plcp = 0x03, }, { .flags = DEV_RATE_OFDM | DEV_RATE_BASIC, .bitrate = 60, .ratemask = BIT(4), .plcp = 0x0b, }, { .flags = DEV_RATE_OFDM, .bitrate = 90, .ratemask = BIT(5), .plcp = 0x0f, }, { .flags = DEV_RATE_OFDM | DEV_RATE_BASIC, .bitrate = 120, .ratemask = BIT(6), .plcp = 0x0a, }, { .flags = DEV_RATE_OFDM, .bitrate = 180, .ratemask = BIT(7), .plcp = 0x0e, }, { .flags = DEV_RATE_OFDM | DEV_RATE_BASIC, .bitrate = 240, .ratemask = BIT(8), .plcp = 0x09, }, { .flags = DEV_RATE_OFDM, .bitrate = 360, .ratemask = BIT(9), .plcp = 0x0d, }, { .flags = DEV_RATE_OFDM, .bitrate = 480, .ratemask = BIT(10), .plcp = 0x08, }, { .flags = DEV_RATE_OFDM, .bitrate = 540, .ratemask = BIT(11), .plcp = 0x0c, }, }; static void rt2x00lib_channel(struct ieee80211_channel *entry, const int channel, const int tx_power, const int value) { entry->center_freq = ieee80211_channel_to_frequency(channel); entry->hw_value = value; entry->max_power = tx_power; entry->max_antenna_gain = 0xff; } static void rt2x00lib_rate(struct ieee80211_rate *entry, const u16 index, const struct rt2x00_rate *rate) { entry->flags = 0; entry->bitrate = rate->bitrate; entry->hw_value = rt2x00_create_rate_hw_value(index, 0); entry->hw_value_short = entry->hw_value; if (rate->flags & DEV_RATE_SHORT_PREAMBLE) { entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1); } } static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, struct hw_mode_spec *spec) { struct ieee80211_hw *hw = rt2x00dev->hw; struct ieee80211_channel *channels; struct ieee80211_rate *rates; unsigned int num_rates; unsigned int i; unsigned char tx_power; num_rates = 0; if (spec->supported_rates & SUPPORT_RATE_CCK) num_rates += 4; if (spec->supported_rates & SUPPORT_RATE_OFDM) num_rates += 8; channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL); if (!channels) return -ENOMEM; rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL); if (!rates) goto exit_free_channels; /* * Initialize Rate list. */ for (i = 0; i < num_rates; i++) rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); /* * Initialize Channel list. */ for (i = 0; i < spec->num_channels; i++) { if (spec->channels[i].channel <= 14) { if (spec->tx_power_bg) tx_power = spec->tx_power_bg[i]; else tx_power = spec->tx_power_default; } else { if (spec->tx_power_a) tx_power = spec->tx_power_a[i]; else tx_power = spec->tx_power_default; } rt2x00lib_channel(&channels[i], spec->channels[i].channel, tx_power, i); } /* * Intitialize 802.11b, 802.11g * Rates: CCK, OFDM. * Channels: 2.4 GHz */ if (spec->supported_bands & SUPPORT_BAND_2GHZ) { rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14; rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates; rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels; rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates; hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; } /* * Intitialize 802.11a * Rates: OFDM. * Channels: OFDM, UNII, HiperLAN2. */ if (spec->supported_bands & SUPPORT_BAND_5GHZ) { rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels = spec->num_channels - 14; rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates = num_rates - 4; rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14]; rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; } return 0; exit_free_channels: kfree(channels); ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); return -ENOMEM; } static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) { if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags)) ieee80211_unregister_hw(rt2x00dev->hw); if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; } } static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; int status; /* * Initialize HW modes. */ status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); if (status) return status; /* * Register HW. */ status = ieee80211_register_hw(rt2x00dev->hw); if (status) { rt2x00lib_remove_hw(rt2x00dev); return status; } __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags); return 0; } /* * Initialization/uninitialization handlers. */ static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) { if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) return; /* * Unregister extra components. */ rt2x00rfkill_unregister(rt2x00dev); /* * Allow the HW to uninitialize. */ rt2x00dev->ops->lib->uninitialize(rt2x00dev); /* * Free allocated queue entries. */ rt2x00queue_uninitialize(rt2x00dev); } static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) { int status; if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) return 0; /* * Allocate all queue entries. */ status = rt2x00queue_initialize(rt2x00dev); if (status) return status; /* * Initialize the device. */ status = rt2x00dev->ops->lib->initialize(rt2x00dev); if (status) goto exit; __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags); /* * Register the extra components. */ rt2x00rfkill_register(rt2x00dev); return 0; exit: rt2x00lib_uninitialize(rt2x00dev); return status; } int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) { int retval; if (test_bit(DEVICE_STARTED, &rt2x00dev->flags)) return 0; /* * If this is the first interface which is added, * we should load the firmware now. */ retval = rt2x00lib_load_firmware(rt2x00dev); if (retval) return retval; /* * Initialize the device. */ retval = rt2x00lib_initialize(rt2x00dev); if (retval) return retval; /* * Enable radio. */ retval = rt2x00lib_enable_radio(rt2x00dev); if (retval) { rt2x00lib_uninitialize(rt2x00dev); return retval; } rt2x00dev->intf_ap_count = 0; rt2x00dev->intf_sta_count = 0; rt2x00dev->intf_associated = 0; __set_bit(DEVICE_STARTED, &rt2x00dev->flags); return 0; } void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) { if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags)) return; /* * Perhaps we can add something smarter here, * but for now just disabling the radio should do. */ rt2x00lib_disable_radio(rt2x00dev); rt2x00dev->intf_ap_count = 0; rt2x00dev->intf_sta_count = 0; rt2x00dev->intf_associated = 0; __clear_bit(DEVICE_STARTED, &rt2x00dev->flags); } /* * driver allocation handlers. */ int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) { int retval = -ENOMEM; /* * Make room for rt2x00_intf inside the per-interface * structure ieee80211_vif. */ rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); /* * Let the driver probe the device to detect the capabilities. */ retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); if (retval) { ERROR(rt2x00dev, "Failed to allocate device.\n"); goto exit; } /* * Initialize configuration work. */ INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled); INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner); /* * Allocate queue array. */ retval = rt2x00queue_allocate(rt2x00dev); if (retval) goto exit; /* * Initialize ieee80211 structure. */ retval = rt2x00lib_probe_hw(rt2x00dev); if (retval) { ERROR(rt2x00dev, "Failed to initialize hw.\n"); goto exit; } /* * Register extra components. */ rt2x00leds_register(rt2x00dev); rt2x00rfkill_allocate(rt2x00dev); rt2x00debug_register(rt2x00dev); __set_bit(DEVICE_PRESENT, &rt2x00dev->flags); return 0; exit: rt2x00lib_remove_dev(rt2x00dev); return retval; } EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) { __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags); /* * Disable radio. */ rt2x00lib_disable_radio(rt2x00dev); /* * Uninitialize device. */ rt2x00lib_uninitialize(rt2x00dev); /* * Free extra components */ rt2x00debug_deregister(rt2x00dev); rt2x00rfkill_free(rt2x00dev); rt2x00leds_unregister(rt2x00dev); /* * Free ieee80211_hw memory. */ rt2x00lib_remove_hw(rt2x00dev); /* * Free firmware image. */ rt2x00lib_free_firmware(rt2x00dev); /* * Free queue structures. */ rt2x00queue_free(rt2x00dev); } EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); /* * Device state handlers */ #ifdef CONFIG_PM int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) { int retval; NOTICE(rt2x00dev, "Going to sleep.\n"); __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags); /* * Only continue if mac80211 has open interfaces. */ if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags)) goto exit; __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags); /* * Disable radio. */ rt2x00lib_stop(rt2x00dev); rt2x00lib_uninitialize(rt2x00dev); /* * Suspend/disable extra components. */ rt2x00leds_suspend(rt2x00dev); rt2x00rfkill_suspend(rt2x00dev); rt2x00debug_deregister(rt2x00dev); exit: /* * Set device mode to sleep for power management, * on some hardware this call seems to consistently fail. * From the specifications it is hard to tell why it fails, * and if this is a "bad thing". * Overall it is safe to just ignore the failure and * continue suspending. The only downside is that the * device will not be in optimal power save mode, but with * the radio and the other components already disabled the * device is as good as disabled. */ retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP); if (retval) WARNING(rt2x00dev, "Device failed to enter sleep state, " "continue suspending.\n"); return 0; } EXPORT_SYMBOL_GPL(rt2x00lib_suspend); static void rt2x00lib_resume_intf(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rt2x00_dev *rt2x00dev = data; struct rt2x00_intf *intf = vif_to_intf(vif); spin_lock(&intf->lock); rt2x00lib_config_intf(rt2x00dev, intf, vif->type, intf->mac, intf->bssid); /* * Master or Ad-hoc mode require a new beacon update. */ if (vif->type == IEEE80211_IF_TYPE_AP || vif->type == IEEE80211_IF_TYPE_IBSS) intf->delayed_flags |= DELAYED_UPDATE_BEACON; spin_unlock(&intf->lock); } int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) { int retval; NOTICE(rt2x00dev, "Waking up.\n"); /* * Restore/enable extra components. */ rt2x00debug_register(rt2x00dev); rt2x00rfkill_resume(rt2x00dev); rt2x00leds_resume(rt2x00dev); /* * Only continue if mac80211 had open interfaces. */ if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags)) return 0; /* * Reinitialize device and all active interfaces. */ retval = rt2x00lib_start(rt2x00dev); if (retval) goto exit; /* * Reconfigure device. */ rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1); if (!rt2x00dev->hw->conf.radio_enabled) rt2x00lib_disable_radio(rt2x00dev); /* * Iterator over each active interface to * reconfigure the hardware. */ ieee80211_iterate_active_interfaces(rt2x00dev->hw, rt2x00lib_resume_intf, rt2x00dev); /* * We are ready again to receive requests from mac80211. */ __set_bit(DEVICE_PRESENT, &rt2x00dev->flags); /* * It is possible that during that mac80211 has attempted * to send frames while we were suspending or resuming. * In that case we have disabled the TX queue and should * now enable it again */ ieee80211_start_queues(rt2x00dev->hw); /* * During interface iteration we might have changed the * delayed_flags, time to handles the event by calling * the work handler directly. */ rt2x00lib_intf_scheduled(&rt2x00dev->intf_work); return 0; exit: rt2x00lib_disable_radio(rt2x00dev); rt2x00lib_uninitialize(rt2x00dev); rt2x00debug_deregister(rt2x00dev); return retval; } EXPORT_SYMBOL_GPL(rt2x00lib_resume); #endif /* CONFIG_PM */ /* * rt2x00lib module information. */ MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("rt2x00 library"); MODULE_LICENSE("GPL");