/* * OMAP7xx SPI 100k controller driver * Author: Fabrice Crohas * from original omap1_mcspi driver * * Copyright (C) 2005, 2006 Nokia Corporation * Author: Samuel Ortiz and * Juha Yrj�l� * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define OMAP1_SPI100K_MAX_FREQ 48000000 #define ICR_SPITAS (OMAP7XX_ICR_BASE + 0x12) #define SPI_SETUP1 0x00 #define SPI_SETUP2 0x02 #define SPI_CTRL 0x04 #define SPI_STATUS 0x06 #define SPI_TX_LSB 0x08 #define SPI_TX_MSB 0x0a #define SPI_RX_LSB 0x0c #define SPI_RX_MSB 0x0e #define SPI_SETUP1_INT_READ_ENABLE (1UL << 5) #define SPI_SETUP1_INT_WRITE_ENABLE (1UL << 4) #define SPI_SETUP1_CLOCK_DIVISOR(x) ((x) << 1) #define SPI_SETUP1_CLOCK_ENABLE (1UL << 0) #define SPI_SETUP2_ACTIVE_EDGE_FALLING (0UL << 0) #define SPI_SETUP2_ACTIVE_EDGE_RISING (1UL << 0) #define SPI_SETUP2_NEGATIVE_LEVEL (0UL << 5) #define SPI_SETUP2_POSITIVE_LEVEL (1UL << 5) #define SPI_SETUP2_LEVEL_TRIGGER (0UL << 10) #define SPI_SETUP2_EDGE_TRIGGER (1UL << 10) #define SPI_CTRL_SEN(x) ((x) << 7) #define SPI_CTRL_WORD_SIZE(x) (((x) - 1) << 2) #define SPI_CTRL_WR (1UL << 1) #define SPI_CTRL_RD (1UL << 0) #define SPI_STATUS_WE (1UL << 1) #define SPI_STATUS_RD (1UL << 0) #define WRITE 0 #define READ 1 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and * cache operations; better heuristics consider wordsize and bitrate. */ #define DMA_MIN_BYTES 8 #define SPI_RUNNING 0 #define SPI_SHUTDOWN 1 struct omap1_spi100k { struct work_struct work; /* lock protects queue and registers */ spinlock_t lock; struct list_head msg_queue; struct spi_master *master; struct clk *ick; struct clk *fck; /* Virtual base address of the controller */ void __iomem *base; /* State of the SPI */ unsigned int state; }; struct omap1_spi100k_cs { void __iomem *base; int word_len; }; static struct workqueue_struct *omap1_spi100k_wq; #define MOD_REG_BIT(val, mask, set) do { \ if (set) \ val |= mask; \ else \ val &= ~mask; \ } while (0) static void spi100k_enable_clock(struct spi_master *master) { unsigned int val; struct omap1_spi100k *spi100k = spi_master_get_devdata(master); /* enable SPI */ val = readw(spi100k->base + SPI_SETUP1); val |= SPI_SETUP1_CLOCK_ENABLE; writew(val, spi100k->base + SPI_SETUP1); } static void spi100k_disable_clock(struct spi_master *master) { unsigned int val; struct omap1_spi100k *spi100k = spi_master_get_devdata(master); /* disable SPI */ val = readw(spi100k->base + SPI_SETUP1); val &= ~SPI_SETUP1_CLOCK_ENABLE; writew(val, spi100k->base + SPI_SETUP1); } static void spi100k_write_data(struct spi_master *master, int len, int data) { struct omap1_spi100k *spi100k = spi_master_get_devdata(master); /* write 16-bit word, shifting 8-bit data if necessary */ if (len <= 8) { data <<= 8; len = 16; } spi100k_enable_clock(master); writew( data , spi100k->base + SPI_TX_MSB); writew(SPI_CTRL_SEN(0) | SPI_CTRL_WORD_SIZE(len) | SPI_CTRL_WR, spi100k->base + SPI_CTRL); /* Wait for bit ack send change */ while((readw(spi100k->base + SPI_STATUS) & SPI_STATUS_WE) != SPI_STATUS_WE); udelay(1000); spi100k_disable_clock(master); } static int spi100k_read_data(struct spi_master *master, int len) { int dataH,dataL; struct omap1_spi100k *spi100k = spi_master_get_devdata(master); /* Always do at least 16 bits */ if (len <= 8) len = 16; spi100k_enable_clock(master); writew(SPI_CTRL_SEN(0) | SPI_CTRL_WORD_SIZE(len) | SPI_CTRL_RD, spi100k->base + SPI_CTRL); while((readw(spi100k->base + SPI_STATUS) & SPI_STATUS_RD) != SPI_STATUS_RD); udelay(1000); dataL = readw(spi100k->base + SPI_RX_LSB); dataH = readw(spi100k->base + SPI_RX_MSB); spi100k_disable_clock(master); return dataL; } static void spi100k_open(struct spi_master *master) { /* get control of SPI */ struct omap1_spi100k *spi100k = spi_master_get_devdata(master); writew(SPI_SETUP1_INT_READ_ENABLE | SPI_SETUP1_INT_WRITE_ENABLE | SPI_SETUP1_CLOCK_DIVISOR(0), spi100k->base + SPI_SETUP1); /* configure clock and interrupts */ writew(SPI_SETUP2_ACTIVE_EDGE_FALLING | SPI_SETUP2_NEGATIVE_LEVEL | SPI_SETUP2_LEVEL_TRIGGER, spi100k->base + SPI_SETUP2); } static void omap1_spi100k_force_cs(struct omap1_spi100k *spi100k, int enable) { if (enable) writew(0x05fc, spi100k->base + SPI_CTRL); else writew(0x05fd, spi100k->base + SPI_CTRL); } static unsigned omap1_spi100k_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer) { struct omap1_spi100k *spi100k; struct omap1_spi100k_cs *cs = spi->controller_state; unsigned int count, c; int word_len; spi100k = spi_master_get_devdata(spi->master); count = xfer->len; c = count; word_len = cs->word_len; if (word_len <= 8) { u8 *rx; const u8 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; do { c-=1; if (xfer->tx_buf != NULL) spi100k_write_data(spi->master, word_len, *tx++); if (xfer->rx_buf != NULL) *rx++ = spi100k_read_data(spi->master, word_len); } while(c); } else if (word_len <= 16) { u16 *rx; const u16 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; do { c-=2; if (xfer->tx_buf != NULL) spi100k_write_data(spi->master,word_len, *tx++); if (xfer->rx_buf != NULL) *rx++ = spi100k_read_data(spi->master,word_len); } while(c); } else if (word_len <= 32) { u32 *rx; const u32 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; do { c-=4; if (xfer->tx_buf != NULL) spi100k_write_data(spi->master,word_len, *tx); if (xfer->rx_buf != NULL) *rx = spi100k_read_data(spi->master,word_len); } while(c); } return count - c; } /* called only when no transfer is active to this device */ static int omap1_spi100k_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct omap1_spi100k *spi100k = spi_master_get_devdata(spi->master); struct omap1_spi100k_cs *cs = spi->controller_state; u8 word_len = spi->bits_per_word; if (t != NULL && t->bits_per_word) word_len = t->bits_per_word; if (!word_len) word_len = 8; if (spi->bits_per_word > 32) return -EINVAL; cs->word_len = word_len; /* SPI init before transfer */ writew(0x3e , spi100k->base + SPI_SETUP1); writew(0x00 , spi100k->base + SPI_STATUS); writew(0x3e , spi100k->base + SPI_CTRL); return 0; } /* the spi->mode bits understood by this driver: */ #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH) static int omap1_spi100k_setup(struct spi_device *spi) { int ret; struct omap1_spi100k *spi100k; struct omap1_spi100k_cs *cs = spi->controller_state; if (spi->bits_per_word < 4 || spi->bits_per_word > 32) { dev_dbg(&spi->dev, "setup: unsupported %d bit words\n", spi->bits_per_word); return -EINVAL; } spi100k = spi_master_get_devdata(spi->master); if (!cs) { cs = kzalloc(sizeof *cs, GFP_KERNEL); if (!cs) return -ENOMEM; cs->base = spi100k->base + spi->chip_select * 0x14; spi->controller_state = cs; } spi100k_open(spi->master); clk_enable(spi100k->ick); clk_enable(spi100k->fck); ret = omap1_spi100k_setup_transfer(spi, NULL); clk_disable(spi100k->ick); clk_disable(spi100k->fck); return ret; } static void omap1_spi100k_work(struct work_struct *work) { struct omap1_spi100k *spi100k; int status = 0; spi100k = container_of(work, struct omap1_spi100k, work); spin_lock_irq(&spi100k->lock); clk_enable(spi100k->ick); clk_enable(spi100k->fck); /* We only enable one channel at a time -- the one whose message is * at the head of the queue -- although this controller would gladly * arbitrate among multiple channels. This corresponds to "single * channel" master mode. As a side effect, we need to manage the * chipselect with the FORCE bit ... CS != channel enable. */ while (!list_empty(&spi100k->msg_queue)) { struct spi_message *m; struct spi_device *spi; struct spi_transfer *t = NULL; int cs_active = 0; struct omap1_spi100k_cs *cs; int par_override = 0; m = container_of(spi100k->msg_queue.next, struct spi_message, queue); list_del_init(&m->queue); spin_unlock_irq(&spi100k->lock); spi = m->spi; cs = spi->controller_state; list_for_each_entry(t, &m->transfers, transfer_list) { if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) { status = -EINVAL; break; } if (par_override || t->speed_hz || t->bits_per_word) { par_override = 1; status = omap1_spi100k_setup_transfer(spi, t); if (status < 0) break; if (!t->speed_hz && !t->bits_per_word) par_override = 0; } if (!cs_active) { omap1_spi100k_force_cs(spi100k, 1); cs_active = 1; } if (t->len) { unsigned count; count = omap1_spi100k_txrx_pio(spi, t); m->actual_length += count; if (count != t->len) { status = -EIO; break; } } if (t->delay_usecs) udelay(t->delay_usecs); /* ignore the "leave it on after last xfer" hint */ if (t->cs_change) { omap1_spi100k_force_cs(spi100k, 0); cs_active = 0; } } /* Restore defaults if they were overriden */ if (par_override) { par_override = 0; status = omap1_spi100k_setup_transfer(spi, NULL); } if (cs_active) omap1_spi100k_force_cs(spi100k, 0); m->status = status; m->complete(m->context); spin_lock_irq(&spi100k->lock); } clk_disable(spi100k->ick); clk_disable(spi100k->fck); spin_unlock_irq(&spi100k->lock); if (status < 0) printk(KERN_WARNING "spi transfer failed with %d\n", status); } static int omap1_spi100k_transfer(struct spi_device *spi, struct spi_message *m) { struct omap1_spi100k *spi100k; unsigned long flags; struct spi_transfer *t; m->actual_length = 0; m->status = -EINPROGRESS; spi100k = spi_master_get_devdata(spi->master); /* Don't accept new work if we're shutting down */ if (spi100k->state == SPI_SHUTDOWN) return -ESHUTDOWN; /* reject invalid messages and transfers */ if (list_empty(&m->transfers) || !m->complete) return -EINVAL; list_for_each_entry(t, &m->transfers, transfer_list) { const void *tx_buf = t->tx_buf; void *rx_buf = t->rx_buf; unsigned len = t->len; if (t->speed_hz > OMAP1_SPI100K_MAX_FREQ || (len && !(rx_buf || tx_buf)) || (t->bits_per_word && ( t->bits_per_word < 4 || t->bits_per_word > 32))) { dev_dbg(&spi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n", t->speed_hz, len, tx_buf ? "tx" : "", rx_buf ? "rx" : "", t->bits_per_word); return -EINVAL; } if (t->speed_hz && t->speed_hz < OMAP1_SPI100K_MAX_FREQ/(1<<16)) { dev_dbg(&spi->dev, "%d Hz max exceeds %d\n", t->speed_hz, OMAP1_SPI100K_MAX_FREQ/(1<<16)); return -EINVAL; } } spin_lock_irqsave(&spi100k->lock, flags); list_add_tail(&m->queue, &spi100k->msg_queue); queue_work(omap1_spi100k_wq, &spi100k->work); spin_unlock_irqrestore(&spi100k->lock, flags); return 0; } static int __init omap1_spi100k_reset(struct omap1_spi100k *spi100k) { return 0; } static int __devinit omap1_spi100k_probe(struct platform_device *pdev) { struct spi_master *master; struct omap1_spi100k *spi100k; int status = 0; if (!pdev->id) return -EINVAL; master = spi_alloc_master(&pdev->dev, sizeof *spi100k); if (master == NULL) { dev_dbg(&pdev->dev, "master allocation failed\n"); return -ENOMEM; } if (pdev->id != -1) master->bus_num = pdev->id; master->setup = omap1_spi100k_setup; master->transfer = omap1_spi100k_transfer; master->cleanup = NULL; master->num_chipselect = 2; master->mode_bits = MODEBITS; dev_set_drvdata(&pdev->dev, master); spi100k = spi_master_get_devdata(master); spi100k->master = master; /* * The memory region base address is taken as the platform_data. * You should allocate this with ioremap() before initializing * the SPI. */ spi100k->base = (void __iomem *) pdev->dev.platform_data; INIT_WORK(&spi100k->work, omap1_spi100k_work); spin_lock_init(&spi100k->lock); INIT_LIST_HEAD(&spi100k->msg_queue); spi100k->ick = clk_get(&pdev->dev, "ick"); if (IS_ERR(spi100k->ick)) { dev_dbg(&pdev->dev, "can't get spi100k_ick\n"); status = PTR_ERR(spi100k->ick); goto err1; } spi100k->fck = clk_get(&pdev->dev, "fck"); if (IS_ERR(spi100k->fck)) { dev_dbg(&pdev->dev, "can't get spi100k_fck\n"); status = PTR_ERR(spi100k->fck); goto err2; } if (omap1_spi100k_reset(spi100k) < 0) goto err3; status = spi_register_master(master); if (status < 0) goto err3; spi100k->state = SPI_RUNNING; return status; err3: clk_put(spi100k->fck); err2: clk_put(spi100k->ick); err1: spi_master_put(master); return status; } static int __exit omap1_spi100k_remove(struct platform_device *pdev) { struct spi_master *master; struct omap1_spi100k *spi100k; struct resource *r; unsigned limit = 500; unsigned long flags; int status = 0; master = dev_get_drvdata(&pdev->dev); spi100k = spi_master_get_devdata(master); spin_lock_irqsave(&spi100k->lock, flags); spi100k->state = SPI_SHUTDOWN; while (!list_empty(&spi100k->msg_queue) && limit--) { spin_unlock_irqrestore(&spi100k->lock, flags); msleep(10); spin_lock_irqsave(&spi100k->lock, flags); } if (!list_empty(&spi100k->msg_queue)) status = -EBUSY; spin_unlock_irqrestore(&spi100k->lock, flags); if (status != 0) return status; clk_put(spi100k->fck); clk_put(spi100k->ick); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); spi_unregister_master(master); return 0; } static struct platform_driver omap1_spi100k_driver = { .driver = { .name = "omap1_spi100k", .owner = THIS_MODULE, }, .remove = __exit_p(omap1_spi100k_remove), }; static int __init omap1_spi100k_init(void) { omap1_spi100k_wq = create_singlethread_workqueue( omap1_spi100k_driver.driver.name); if (omap1_spi100k_wq == NULL) return -1; return platform_driver_probe(&omap1_spi100k_driver, omap1_spi100k_probe); } static void __exit omap1_spi100k_exit(void) { platform_driver_unregister(&omap1_spi100k_driver); destroy_workqueue(omap1_spi100k_wq); } module_init(omap1_spi100k_init); module_exit(omap1_spi100k_exit); MODULE_DESCRIPTION("OMAP7xx SPI 100k controller driver"); MODULE_AUTHOR("Fabrice Crohas "); MODULE_LICENSE("GPL");