/* * Freescale i.MX28 LRADC driver * * Copyright (c) 2012 DENX Software Engineering, GmbH. * Marek Vasut * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "mxs-lradc" #define LRADC_MAX_DELAY_CHANS 4 #define LRADC_MAX_MAPPED_CHANS 8 #define LRADC_MAX_TOTAL_CHANS 16 #define LRADC_DELAY_TIMER_HZ 2000 /* * Make this runtime configurable if necessary. Currently, if the buffered mode * is enabled, the LRADC takes LRADC_DELAY_TIMER_LOOP samples of data before * triggering IRQ. The sampling happens every (LRADC_DELAY_TIMER_PER / 2000) * seconds. The result is that the samples arrive every 500mS. */ #define LRADC_DELAY_TIMER_PER 200 #define LRADC_DELAY_TIMER_LOOP 5 static const char * const mxs_lradc_irq_name[] = { "mxs-lradc-touchscreen", "mxs-lradc-thresh0", "mxs-lradc-thresh1", "mxs-lradc-channel0", "mxs-lradc-channel1", "mxs-lradc-channel2", "mxs-lradc-channel3", "mxs-lradc-channel4", "mxs-lradc-channel5", "mxs-lradc-channel6", "mxs-lradc-channel7", "mxs-lradc-button0", "mxs-lradc-button1", }; struct mxs_lradc_chan { uint8_t slot; uint8_t flags; }; struct mxs_lradc { struct device *dev; void __iomem *base; int irq[13]; uint32_t *buffer; struct iio_trigger *trig; struct mutex lock; uint8_t enable; struct completion completion; }; #define LRADC_CTRL0 0x00 #define LRADC_CTRL0_TOUCH_DETECT_ENABLE (1 << 23) #define LRADC_CTRL0_TOUCH_SCREEN_TYPE (1 << 22) #define LRADC_CTRL1 0x10 #define LRADC_CTRL1_LRADC_IRQ(n) (1 << (n)) #define LRADC_CTRL1_LRADC_IRQ_MASK 0x1fff #define LRADC_CTRL1_LRADC_IRQ_EN(n) (1 << ((n) + 16)) #define LRADC_CTRL1_LRADC_IRQ_EN_MASK (0x1fff << 16) #define LRADC_CTRL2 0x20 #define LRADC_CTRL2_TEMPSENSE_PWD (1 << 15) #define LRADC_CH(n) (0x50 + (0x10 * (n))) #define LRADC_CH_ACCUMULATE (1 << 29) #define LRADC_CH_NUM_SAMPLES_MASK (0x1f << 24) #define LRADC_CH_NUM_SAMPLES_OFFSET 24 #define LRADC_CH_VALUE_MASK 0x3ffff #define LRADC_CH_VALUE_OFFSET 0 #define LRADC_DELAY(n) (0xd0 + (0x10 * (n))) #define LRADC_DELAY_TRIGGER_LRADCS_MASK (0xff << 24) #define LRADC_DELAY_TRIGGER_LRADCS_OFFSET 24 #define LRADC_DELAY_KICK (1 << 20) #define LRADC_DELAY_TRIGGER_DELAYS_MASK (0xf << 16) #define LRADC_DELAY_TRIGGER_DELAYS_OFFSET 16 #define LRADC_DELAY_LOOP_COUNT_MASK (0x1f << 11) #define LRADC_DELAY_LOOP_COUNT_OFFSET 11 #define LRADC_DELAY_DELAY_MASK 0x7ff #define LRADC_DELAY_DELAY_OFFSET 0 #define LRADC_CTRL4 0x140 #define LRADC_CTRL4_LRADCSELECT_MASK(n) (0xf << ((n) * 4)) #define LRADC_CTRL4_LRADCSELECT_OFFSET(n) ((n) * 4) /* * Raw I/O operations */ static int mxs_lradc_read_raw(struct iio_dev *iio_dev, const struct iio_chan_spec *chan, int *val, int *val2, long m) { struct mxs_lradc *lradc = iio_priv(iio_dev); int ret; if (m != IIO_CHAN_INFO_RAW) return -EINVAL; /* Check for invalid channel */ if (chan->channel > LRADC_MAX_TOTAL_CHANS) return -EINVAL; /* * See if there is no buffered operation in progess. If there is, simply * bail out. This can be improved to support both buffered and raw IO at * the same time, yet the code becomes horribly complicated. Therefore I * applied KISS principle here. */ ret = mutex_trylock(&lradc->lock); if (!ret) return -EBUSY; INIT_COMPLETION(lradc->completion); /* * No buffered operation in progress, map the channel and trigger it. * Virtual channel 0 is always used here as the others are always not * used if doing raw sampling. */ writel(LRADC_CTRL1_LRADC_IRQ_EN_MASK, lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR); writel(0xff, lradc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR); writel(chan->channel, lradc->base + LRADC_CTRL4); writel(0, lradc->base + LRADC_CH(0)); /* Enable the IRQ and start sampling the channel. */ writel(LRADC_CTRL1_LRADC_IRQ_EN(0), lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET); writel(1 << 0, lradc->base + LRADC_CTRL0 + STMP_OFFSET_REG_SET); /* Wait for completion on the channel, 1 second max. */ ret = wait_for_completion_killable_timeout(&lradc->completion, HZ); if (!ret) ret = -ETIMEDOUT; if (ret < 0) goto err; /* Read the data. */ *val = readl(lradc->base + LRADC_CH(0)) & LRADC_CH_VALUE_MASK; ret = IIO_VAL_INT; err: writel(LRADC_CTRL1_LRADC_IRQ_EN(0), lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR); mutex_unlock(&lradc->lock); return ret; } static const struct iio_info mxs_lradc_iio_info = { .driver_module = THIS_MODULE, .read_raw = mxs_lradc_read_raw, }; /* * IRQ Handling */ static irqreturn_t mxs_lradc_handle_irq(int irq, void *data) { struct iio_dev *iio = data; struct mxs_lradc *lradc = iio_priv(iio); unsigned long reg = readl(lradc->base + LRADC_CTRL1); if (!(reg & LRADC_CTRL1_LRADC_IRQ_MASK)) return IRQ_NONE; /* * Touchscreen IRQ handling code shall probably have priority * and therefore shall be placed here. */ if (iio_buffer_enabled(iio)) iio_trigger_poll(iio->trig, iio_get_time_ns()); else if (reg & LRADC_CTRL1_LRADC_IRQ(0)) complete(&lradc->completion); writel(reg & LRADC_CTRL1_LRADC_IRQ_MASK, lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR); return IRQ_HANDLED; } /* * Trigger handling */ static irqreturn_t mxs_lradc_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *iio = pf->indio_dev; struct mxs_lradc *lradc = iio_priv(iio); struct iio_buffer *buffer = iio->buffer; const uint32_t chan_value = LRADC_CH_ACCUMULATE | ((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET); int i, j = 0; for_each_set_bit(i, iio->active_scan_mask, iio->masklength) { lradc->buffer[j] = readl(lradc->base + LRADC_CH(j)); writel(chan_value, lradc->base + LRADC_CH(j)); lradc->buffer[j] &= LRADC_CH_VALUE_MASK; lradc->buffer[j] /= LRADC_DELAY_TIMER_LOOP; j++; } if (iio->scan_timestamp) { s64 *timestamp = (s64 *)((u8 *)lradc->buffer + ALIGN(j, sizeof(s64))); *timestamp = pf->timestamp; } iio_push_to_buffer(buffer, (u8 *)lradc->buffer, pf->timestamp); iio_trigger_notify_done(iio->trig); return IRQ_HANDLED; } static int mxs_lradc_configure_trigger(struct iio_trigger *trig, bool state) { struct iio_dev *iio = trig->private_data; struct mxs_lradc *lradc = iio_priv(iio); const uint32_t st = state ? STMP_OFFSET_REG_SET : STMP_OFFSET_REG_CLR; writel(LRADC_DELAY_KICK, lradc->base + LRADC_DELAY(0) + st); return 0; } static const struct iio_trigger_ops mxs_lradc_trigger_ops = { .owner = THIS_MODULE, .set_trigger_state = &mxs_lradc_configure_trigger, }; static int mxs_lradc_trigger_init(struct iio_dev *iio) { int ret; struct iio_trigger *trig; trig = iio_trigger_alloc("%s-dev%i", iio->name, iio->id); if (trig == NULL) return -ENOMEM; trig->dev.parent = iio->dev.parent; trig->private_data = iio; trig->ops = &mxs_lradc_trigger_ops; ret = iio_trigger_register(trig); if (ret) { iio_trigger_free(trig); return ret; } iio->trig = trig; return 0; } static void mxs_lradc_trigger_remove(struct iio_dev *iio) { iio_trigger_unregister(iio->trig); iio_trigger_free(iio->trig); } static int mxs_lradc_buffer_preenable(struct iio_dev *iio) { struct mxs_lradc *lradc = iio_priv(iio); struct iio_buffer *buffer = iio->buffer; int ret = 0, chan, ofs = 0, enable = 0; uint32_t ctrl4 = 0; uint32_t ctrl1_irq = 0; const uint32_t chan_value = LRADC_CH_ACCUMULATE | ((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET); const int len = bitmap_weight(buffer->scan_mask, LRADC_MAX_TOTAL_CHANS); if (!len) return -EINVAL; /* * Lock the driver so raw access can not be done during buffered * operation. This simplifies the code a lot. */ ret = mutex_trylock(&lradc->lock); if (!ret) return -EBUSY; lradc->buffer = kmalloc(len * sizeof(*lradc->buffer), GFP_KERNEL); if (!lradc->buffer) { ret = -ENOMEM; goto err_mem; } ret = iio_sw_buffer_preenable(iio); if (ret < 0) goto err_buf; writel(LRADC_CTRL1_LRADC_IRQ_EN_MASK, lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR); writel(0xff, lradc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR); for_each_set_bit(chan, buffer->scan_mask, LRADC_MAX_TOTAL_CHANS) { ctrl4 |= chan << LRADC_CTRL4_LRADCSELECT_OFFSET(ofs); ctrl1_irq |= LRADC_CTRL1_LRADC_IRQ_EN(ofs); writel(chan_value, lradc->base + LRADC_CH(ofs)); enable |= 1 << ofs; ofs++; }; writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK, lradc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR); writel(ctrl4, lradc->base + LRADC_CTRL4); writel(ctrl1_irq, lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET); writel(enable << LRADC_DELAY_TRIGGER_LRADCS_OFFSET, lradc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_SET); return 0; err_buf: kfree(lradc->buffer); err_mem: mutex_unlock(&lradc->lock); return ret; } static int mxs_lradc_buffer_postdisable(struct iio_dev *iio) { struct mxs_lradc *lradc = iio_priv(iio); writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK, lradc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR); writel(0xff, lradc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR); writel(LRADC_CTRL1_LRADC_IRQ_EN_MASK, lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR); kfree(lradc->buffer); mutex_unlock(&lradc->lock); return 0; } static bool mxs_lradc_validate_scan_mask(struct iio_dev *iio, const unsigned long *mask) { const int mw = bitmap_weight(mask, iio->masklength); return mw <= LRADC_MAX_MAPPED_CHANS; } static const struct iio_buffer_setup_ops mxs_lradc_buffer_ops = { .preenable = &mxs_lradc_buffer_preenable, .postenable = &iio_triggered_buffer_postenable, .predisable = &iio_triggered_buffer_predisable, .postdisable = &mxs_lradc_buffer_postdisable, .validate_scan_mask = &mxs_lradc_validate_scan_mask, }; /* * Driver initialization */ #define MXS_ADC_CHAN(idx, chan_type) { \ .type = (chan_type), \ .indexed = 1, \ .scan_index = (idx), \ .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT, \ .channel = (idx), \ .scan_type = { \ .sign = 'u', \ .realbits = 18, \ .storagebits = 32, \ }, \ } static const struct iio_chan_spec mxs_lradc_chan_spec[] = { MXS_ADC_CHAN(0, IIO_VOLTAGE), MXS_ADC_CHAN(1, IIO_VOLTAGE), MXS_ADC_CHAN(2, IIO_VOLTAGE), MXS_ADC_CHAN(3, IIO_VOLTAGE), MXS_ADC_CHAN(4, IIO_VOLTAGE), MXS_ADC_CHAN(5, IIO_VOLTAGE), MXS_ADC_CHAN(6, IIO_VOLTAGE), MXS_ADC_CHAN(7, IIO_VOLTAGE), /* VBATT */ MXS_ADC_CHAN(8, IIO_TEMP), /* Temp sense 0 */ MXS_ADC_CHAN(9, IIO_TEMP), /* Temp sense 1 */ MXS_ADC_CHAN(10, IIO_VOLTAGE), /* VDDIO */ MXS_ADC_CHAN(11, IIO_VOLTAGE), /* VTH */ MXS_ADC_CHAN(12, IIO_VOLTAGE), /* VDDA */ MXS_ADC_CHAN(13, IIO_VOLTAGE), /* VDDD */ MXS_ADC_CHAN(14, IIO_VOLTAGE), /* VBG */ MXS_ADC_CHAN(15, IIO_VOLTAGE), /* VDD5V */ }; static void mxs_lradc_hw_init(struct mxs_lradc *lradc) { int i; const uint32_t cfg = (LRADC_DELAY_TIMER_PER << LRADC_DELAY_DELAY_OFFSET); stmp_reset_block(lradc->base); for (i = 0; i < LRADC_MAX_DELAY_CHANS; i++) writel(cfg | (1 << (LRADC_DELAY_TRIGGER_DELAYS_OFFSET + i)), lradc->base + LRADC_DELAY(i)); /* Start internal temperature sensing. */ writel(0, lradc->base + LRADC_CTRL2); } static void mxs_lradc_hw_stop(struct mxs_lradc *lradc) { int i; writel(LRADC_CTRL1_LRADC_IRQ_EN_MASK, lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR); for (i = 0; i < LRADC_MAX_DELAY_CHANS; i++) writel(0, lradc->base + LRADC_DELAY(i)); } static int __devinit mxs_lradc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mxs_lradc *lradc; struct iio_dev *iio; struct resource *iores; int ret = 0; int i; /* Allocate the IIO device. */ iio = iio_device_alloc(sizeof(*lradc)); if (!iio) { dev_err(dev, "Failed to allocate IIO device\n"); return -ENOMEM; } lradc = iio_priv(iio); /* Grab the memory area */ iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); lradc->dev = &pdev->dev; lradc->base = devm_request_and_ioremap(dev, iores); if (!lradc->base) { ret = -EADDRNOTAVAIL; goto err_addr; } /* Grab all IRQ sources */ for (i = 0; i < 13; i++) { lradc->irq[i] = platform_get_irq(pdev, i); if (lradc->irq[i] < 0) { ret = -EINVAL; goto err_addr; } ret = devm_request_irq(dev, lradc->irq[i], mxs_lradc_handle_irq, 0, mxs_lradc_irq_name[i], iio); if (ret) goto err_addr; } platform_set_drvdata(pdev, iio); init_completion(&lradc->completion); mutex_init(&lradc->lock); iio->name = pdev->name; iio->dev.parent = &pdev->dev; iio->info = &mxs_lradc_iio_info; iio->modes = INDIO_DIRECT_MODE; iio->channels = mxs_lradc_chan_spec; iio->num_channels = ARRAY_SIZE(mxs_lradc_chan_spec); ret = iio_triggered_buffer_setup(iio, &iio_pollfunc_store_time, &mxs_lradc_trigger_handler, &mxs_lradc_buffer_ops); if (ret) goto err_addr; ret = mxs_lradc_trigger_init(iio); if (ret) goto err_trig; /* Register IIO device. */ ret = iio_device_register(iio); if (ret) { dev_err(dev, "Failed to register IIO device\n"); goto err_dev; } /* Configure the hardware. */ mxs_lradc_hw_init(lradc); return 0; err_dev: mxs_lradc_trigger_remove(iio); err_trig: iio_triggered_buffer_cleanup(iio); err_addr: iio_device_free(iio); return ret; } static int __devexit mxs_lradc_remove(struct platform_device *pdev) { struct iio_dev *iio = platform_get_drvdata(pdev); struct mxs_lradc *lradc = iio_priv(iio); mxs_lradc_hw_stop(lradc); iio_device_unregister(iio); iio_triggered_buffer_cleanup(iio); mxs_lradc_trigger_remove(iio); iio_device_free(iio); return 0; } static const struct of_device_id mxs_lradc_dt_ids[] = { { .compatible = "fsl,imx28-lradc", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxs_lradc_dt_ids); static struct platform_driver mxs_lradc_driver = { .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, .of_match_table = mxs_lradc_dt_ids, }, .probe = mxs_lradc_probe, .remove = __devexit_p(mxs_lradc_remove), }; module_platform_driver(mxs_lradc_driver); MODULE_AUTHOR("Marek Vasut "); MODULE_DESCRIPTION("Freescale i.MX28 LRADC driver"); MODULE_LICENSE("GPL v2");