/* * adis16400.c support Analog Devices ADIS16400/5 * 3d 2g Linear Accelerometers, * 3d Gyroscopes, * 3d Magnetometers via SPI * * Copyright (c) 2009 Manuel Stahl * Copyright (c) 2007 Jonathan Cameron * Copyright (c) 2011 Analog Devices Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "adis16400.h" enum adis16400_chip_variant { ADIS16300, ADIS16334, ADIS16350, ADIS16360, ADIS16362, ADIS16364, ADIS16400, }; /** * adis16400_spi_write_reg_8() - write single byte to a register * @dev: device associated with child of actual device (iio_dev or iio_trig) * @reg_address: the address of the register to be written * @val: the value to write */ static int adis16400_spi_write_reg_8(struct iio_dev *indio_dev, u8 reg_address, u8 val) { int ret; struct adis16400_state *st = iio_priv(indio_dev); mutex_lock(&st->buf_lock); st->tx[0] = ADIS16400_WRITE_REG(reg_address); st->tx[1] = val; ret = spi_write(st->us, st->tx, 2); mutex_unlock(&st->buf_lock); return ret; } /** * adis16400_spi_write_reg_16() - write 2 bytes to a pair of registers * @dev: device associated with child of actual device (iio_dev or iio_trig) * @reg_address: the address of the lower of the two registers. Second register * is assumed to have address one greater. * @val: value to be written * * At the moment the spi framework doesn't allow global setting of cs_change. * This means that use cannot be made of spi_write. */ static int adis16400_spi_write_reg_16(struct iio_dev *indio_dev, u8 lower_reg_address, u16 value) { int ret; struct spi_message msg; struct adis16400_state *st = iio_priv(indio_dev); struct spi_transfer xfers[] = { { .tx_buf = st->tx, .bits_per_word = 8, .len = 2, .cs_change = 1, }, { .tx_buf = st->tx + 2, .bits_per_word = 8, .len = 2, }, }; mutex_lock(&st->buf_lock); st->tx[0] = ADIS16400_WRITE_REG(lower_reg_address); st->tx[1] = value & 0xFF; st->tx[2] = ADIS16400_WRITE_REG(lower_reg_address + 1); st->tx[3] = (value >> 8) & 0xFF; spi_message_init(&msg); spi_message_add_tail(&xfers[0], &msg); spi_message_add_tail(&xfers[1], &msg); ret = spi_sync(st->us, &msg); mutex_unlock(&st->buf_lock); return ret; } /** * adis16400_spi_read_reg_16() - read 2 bytes from a 16-bit register * @indio_dev: iio device * @reg_address: the address of the lower of the two registers. Second register * is assumed to have address one greater. * @val: somewhere to pass back the value read * * At the moment the spi framework doesn't allow global setting of cs_change. * This means that use cannot be made of spi_read. **/ static int adis16400_spi_read_reg_16(struct iio_dev *indio_dev, u8 lower_reg_address, u16 *val) { struct spi_message msg; struct adis16400_state *st = iio_priv(indio_dev); int ret; struct spi_transfer xfers[] = { { .tx_buf = st->tx, .bits_per_word = 8, .len = 2, .cs_change = 1, }, { .rx_buf = st->rx, .bits_per_word = 8, .len = 2, }, }; mutex_lock(&st->buf_lock); st->tx[0] = ADIS16400_READ_REG(lower_reg_address); st->tx[1] = 0; spi_message_init(&msg); spi_message_add_tail(&xfers[0], &msg); spi_message_add_tail(&xfers[1], &msg); ret = spi_sync(st->us, &msg); if (ret) { dev_err(&st->us->dev, "problem when reading 16 bit register 0x%02X", lower_reg_address); goto error_ret; } *val = (st->rx[0] << 8) | st->rx[1]; error_ret: mutex_unlock(&st->buf_lock); return ret; } static int adis16334_get_freq(struct iio_dev *indio_dev) { int ret; u16 t; ret = adis16400_spi_read_reg_16(indio_dev, ADIS16400_SMPL_PRD, &t); if (ret < 0) return ret; t >>= ADIS16334_RATE_DIV_SHIFT; return (8192 >> t) / 10; } static int adis16334_set_freq(struct iio_dev *indio_dev, unsigned int freq) { unsigned int t; t = ilog2(8192 / (freq * 10)); if (t > 0x31) t = 0x31; t <<= ADIS16334_RATE_DIV_SHIFT; t |= ADIS16334_RATE_INT_CLK; return adis16400_spi_write_reg_16(indio_dev, ADIS16400_SMPL_PRD, t); } static int adis16400_get_freq(struct iio_dev *indio_dev) { int sps, ret; u16 t; ret = adis16400_spi_read_reg_16(indio_dev, ADIS16400_SMPL_PRD, &t); if (ret < 0) return ret; sps = (t & ADIS16400_SMPL_PRD_TIME_BASE) ? 53 : 1638; sps /= (t & ADIS16400_SMPL_PRD_DIV_MASK) + 1; return sps; } static int adis16400_set_freq(struct iio_dev *indio_dev, unsigned int freq) { struct adis16400_state *st = iio_priv(indio_dev); unsigned int t; t = 1638 / freq; if (t > 0) t--; t &= ADIS16400_SMPL_PRD_DIV_MASK; if ((t & ADIS16400_SMPL_PRD_DIV_MASK) >= 0x0A) st->us->max_speed_hz = ADIS16400_SPI_SLOW; else st->us->max_speed_hz = ADIS16400_SPI_FAST; return adis16400_spi_write_reg_8(indio_dev, ADIS16400_SMPL_PRD, t); } static ssize_t adis16400_read_frequency(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct adis16400_state *st = iio_priv(indio_dev); int ret, len = 0; ret = st->variant->get_freq(indio_dev); if (ret < 0) return ret; len = sprintf(buf, "%d SPS\n", ret); return len; } static const unsigned adis16400_3db_divisors[] = { [0] = 2, /* Special case */ [1] = 5, [2] = 10, [3] = 50, [4] = 200, }; static int adis16400_set_filter(struct iio_dev *indio_dev, int sps, int val) { int i, ret; u16 val16; for (i = ARRAY_SIZE(adis16400_3db_divisors) - 1; i >= 0; i--) if (sps/adis16400_3db_divisors[i] > val) break; if (i == -1) ret = -EINVAL; else { ret = adis16400_spi_read_reg_16(indio_dev, ADIS16400_SENS_AVG, &val16); if (ret < 0) goto error_ret; ret = adis16400_spi_write_reg_16(indio_dev, ADIS16400_SENS_AVG, (val16 & ~0x03) | i); } error_ret: return ret; } static ssize_t adis16400_write_frequency(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct adis16400_state *st = iio_priv(indio_dev); long val; int ret; ret = strict_strtol(buf, 10, &val); if (ret) return ret; if (val == 0) return -EINVAL; mutex_lock(&indio_dev->mlock); st->variant->set_freq(indio_dev, val); /* Also update the filter */ mutex_unlock(&indio_dev->mlock); return ret ? ret : len; } static int adis16400_reset(struct iio_dev *indio_dev) { int ret; ret = adis16400_spi_write_reg_8(indio_dev, ADIS16400_GLOB_CMD, ADIS16400_GLOB_CMD_SW_RESET); if (ret) dev_err(&indio_dev->dev, "problem resetting device"); return ret; } int adis16400_set_irq(struct iio_dev *indio_dev, bool enable) { int ret; u16 msc; ret = adis16400_spi_read_reg_16(indio_dev, ADIS16400_MSC_CTRL, &msc); if (ret) goto error_ret; msc |= ADIS16400_MSC_CTRL_DATA_RDY_POL_HIGH; if (enable) msc |= ADIS16400_MSC_CTRL_DATA_RDY_EN; else msc &= ~ADIS16400_MSC_CTRL_DATA_RDY_EN; ret = adis16400_spi_write_reg_16(indio_dev, ADIS16400_MSC_CTRL, msc); if (ret) goto error_ret; error_ret: return ret; } /* Power down the device */ static int adis16400_stop_device(struct iio_dev *indio_dev) { int ret; u16 val = ADIS16400_SLP_CNT_POWER_OFF; ret = adis16400_spi_write_reg_16(indio_dev, ADIS16400_SLP_CNT, val); if (ret) dev_err(&indio_dev->dev, "problem with turning device off: SLP_CNT"); return ret; } static int adis16400_check_status(struct iio_dev *indio_dev) { u16 status; int ret; struct device *dev = &indio_dev->dev; ret = adis16400_spi_read_reg_16(indio_dev, ADIS16400_DIAG_STAT, &status); if (ret < 0) { dev_err(dev, "Reading status failed\n"); goto error_ret; } ret = status; if (status & ADIS16400_DIAG_STAT_ZACCL_FAIL) dev_err(dev, "Z-axis accelerometer self-test failure\n"); if (status & ADIS16400_DIAG_STAT_YACCL_FAIL) dev_err(dev, "Y-axis accelerometer self-test failure\n"); if (status & ADIS16400_DIAG_STAT_XACCL_FAIL) dev_err(dev, "X-axis accelerometer self-test failure\n"); if (status & ADIS16400_DIAG_STAT_XGYRO_FAIL) dev_err(dev, "X-axis gyroscope self-test failure\n"); if (status & ADIS16400_DIAG_STAT_YGYRO_FAIL) dev_err(dev, "Y-axis gyroscope self-test failure\n"); if (status & ADIS16400_DIAG_STAT_ZGYRO_FAIL) dev_err(dev, "Z-axis gyroscope self-test failure\n"); if (status & ADIS16400_DIAG_STAT_ALARM2) dev_err(dev, "Alarm 2 active\n"); if (status & ADIS16400_DIAG_STAT_ALARM1) dev_err(dev, "Alarm 1 active\n"); if (status & ADIS16400_DIAG_STAT_FLASH_CHK) dev_err(dev, "Flash checksum error\n"); if (status & ADIS16400_DIAG_STAT_SELF_TEST) dev_err(dev, "Self test error\n"); if (status & ADIS16400_DIAG_STAT_OVERFLOW) dev_err(dev, "Sensor overrange\n"); if (status & ADIS16400_DIAG_STAT_SPI_FAIL) dev_err(dev, "SPI failure\n"); if (status & ADIS16400_DIAG_STAT_FLASH_UPT) dev_err(dev, "Flash update failed\n"); if (status & ADIS16400_DIAG_STAT_POWER_HIGH) dev_err(dev, "Power supply above 5.25V\n"); if (status & ADIS16400_DIAG_STAT_POWER_LOW) dev_err(dev, "Power supply below 4.75V\n"); error_ret: return ret; } static int adis16400_self_test(struct iio_dev *indio_dev) { int ret; ret = adis16400_spi_write_reg_16(indio_dev, ADIS16400_MSC_CTRL, ADIS16400_MSC_CTRL_MEM_TEST); if (ret) { dev_err(&indio_dev->dev, "problem starting self test"); goto err_ret; } msleep(ADIS16400_MTEST_DELAY); adis16400_check_status(indio_dev); err_ret: return ret; } static int adis16400_initial_setup(struct iio_dev *indio_dev) { int ret; u16 prod_id, smp_prd; unsigned int device_id; struct adis16400_state *st = iio_priv(indio_dev); /* use low spi speed for init if the device has a slow mode */ if (st->variant->flags & ADIS16400_HAS_SLOW_MODE) st->us->max_speed_hz = ADIS16400_SPI_SLOW; else st->us->max_speed_hz = ADIS16400_SPI_FAST; st->us->mode = SPI_MODE_3; spi_setup(st->us); ret = adis16400_set_irq(indio_dev, false); if (ret) { dev_err(&indio_dev->dev, "disable irq failed"); goto err_ret; } ret = adis16400_self_test(indio_dev); if (ret) { dev_err(&indio_dev->dev, "self test failure"); goto err_ret; } ret = adis16400_check_status(indio_dev); if (ret) { adis16400_reset(indio_dev); dev_err(&indio_dev->dev, "device not playing ball -> reset"); msleep(ADIS16400_STARTUP_DELAY); ret = adis16400_check_status(indio_dev); if (ret) { dev_err(&indio_dev->dev, "giving up"); goto err_ret; } } if (st->variant->flags & ADIS16400_HAS_PROD_ID) { ret = adis16400_spi_read_reg_16(indio_dev, ADIS16400_PRODUCT_ID, &prod_id); if (ret) goto err_ret; sscanf(indio_dev->name, "adis%u\n", &device_id); if (prod_id != device_id) dev_warn(&indio_dev->dev, "Device ID(%u) and product ID(%u) do not match.", device_id, prod_id); dev_info(&indio_dev->dev, "%s: prod_id 0x%04x at CS%d (irq %d)\n", indio_dev->name, prod_id, st->us->chip_select, st->us->irq); } /* use high spi speed if possible */ if (st->variant->flags & ADIS16400_HAS_SLOW_MODE) { ret = adis16400_spi_read_reg_16(indio_dev, ADIS16400_SMPL_PRD, &smp_prd); if (ret) goto err_ret; if ((smp_prd & ADIS16400_SMPL_PRD_DIV_MASK) < 0x0A) { st->us->max_speed_hz = ADIS16400_SPI_FAST; spi_setup(st->us); } } err_ret: return ret; } static IIO_DEV_ATTR_SAMP_FREQ(S_IWUSR | S_IRUGO, adis16400_read_frequency, adis16400_write_frequency); static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("409 546 819 1638"); enum adis16400_chan { in_supply, gyro_x, gyro_y, gyro_z, accel_x, accel_y, accel_z, magn_x, magn_y, magn_z, temp, temp0, temp1, temp2, in1, in2, incli_x, incli_y, }; static u8 adis16400_addresses[18][2] = { [in_supply] = { ADIS16400_SUPPLY_OUT }, [gyro_x] = { ADIS16400_XGYRO_OUT, ADIS16400_XGYRO_OFF }, [gyro_y] = { ADIS16400_YGYRO_OUT, ADIS16400_YGYRO_OFF }, [gyro_z] = { ADIS16400_ZGYRO_OUT, ADIS16400_ZGYRO_OFF }, [accel_x] = { ADIS16400_XACCL_OUT, ADIS16400_XACCL_OFF }, [accel_y] = { ADIS16400_YACCL_OUT, ADIS16400_YACCL_OFF }, [accel_z] = { ADIS16400_ZACCL_OUT, ADIS16400_ZACCL_OFF }, [magn_x] = { ADIS16400_XMAGN_OUT }, [magn_y] = { ADIS16400_YMAGN_OUT }, [magn_z] = { ADIS16400_ZMAGN_OUT }, [temp] = { ADIS16400_TEMP_OUT }, [temp0] = { ADIS16350_XTEMP_OUT }, [temp1] = { ADIS16350_YTEMP_OUT }, [temp2] = { ADIS16350_ZTEMP_OUT }, [in1] = { ADIS16300_AUX_ADC }, [in2] = { ADIS16400_AUX_ADC }, [incli_x] = { ADIS16300_PITCH_OUT }, [incli_y] = { ADIS16300_ROLL_OUT } }; static int adis16400_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct adis16400_state *st = iio_priv(indio_dev); int ret, sps; switch (mask) { case IIO_CHAN_INFO_CALIBBIAS: mutex_lock(&indio_dev->mlock); ret = adis16400_spi_write_reg_16(indio_dev, adis16400_addresses[chan->address][1], val); mutex_unlock(&indio_dev->mlock); return ret; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: /* Need to cache values so we can update if the frequency changes */ mutex_lock(&indio_dev->mlock); st->filt_int = val; /* Work out update to current value */ sps = st->variant->get_freq(indio_dev); if (sps < 0) { mutex_unlock(&indio_dev->mlock); return sps; } ret = adis16400_set_filter(indio_dev, sps, val); mutex_unlock(&indio_dev->mlock); return ret; default: return -EINVAL; } } static int adis16400_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct adis16400_state *st = iio_priv(indio_dev); int ret, shift; s16 val16; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&indio_dev->mlock); ret = adis16400_spi_read_reg_16(indio_dev, adis16400_addresses[chan->address][0], &val16); if (ret) { mutex_unlock(&indio_dev->mlock); return ret; } val16 &= (1 << chan->scan_type.realbits) - 1; if (chan->scan_type.sign == 's') { shift = 16 - chan->scan_type.realbits; val16 = (s16)(val16 << shift) >> shift; } *val = val16; mutex_unlock(&indio_dev->mlock); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: *val = 0; *val2 = st->variant->gyro_scale_micro; return IIO_VAL_INT_PLUS_MICRO; case IIO_VOLTAGE: *val = 0; if (chan->channel == 0) { *val = 2; *val2 = 418000; /* 2.418 mV */ } else { *val = 0; *val2 = 805800; /* 805.8 uV */ } return IIO_VAL_INT_PLUS_MICRO; case IIO_ACCEL: *val = 0; *val2 = st->variant->accel_scale_micro; return IIO_VAL_INT_PLUS_MICRO; case IIO_MAGN: *val = 0; *val2 = 500; /* 0.5 mgauss */ return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: *val = st->variant->temp_scale_nano / 1000000; *val2 = (st->variant->temp_scale_nano % 1000000); return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_CALIBBIAS: mutex_lock(&indio_dev->mlock); ret = adis16400_spi_read_reg_16(indio_dev, adis16400_addresses[chan->address][1], &val16); mutex_unlock(&indio_dev->mlock); if (ret) return ret; val16 = ((val16 & 0xFFF) << 4) >> 4; *val = val16; return IIO_VAL_INT; case IIO_CHAN_INFO_OFFSET: /* currently only temperature */ *val = st->variant->temp_offset; return IIO_VAL_INT; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: mutex_lock(&indio_dev->mlock); /* Need both the number of taps and the sampling frequency */ ret = adis16400_spi_read_reg_16(indio_dev, ADIS16400_SENS_AVG, &val16); if (ret < 0) { mutex_unlock(&indio_dev->mlock); return ret; } val16 = st->variant->get_freq(indio_dev); if (ret > 0) *val = ret/adis16400_3db_divisors[val16 & 0x03]; *val2 = 0; mutex_unlock(&indio_dev->mlock); if (ret < 0) return ret; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static const struct iio_chan_spec adis16400_channels[] = { { .type = IIO_VOLTAGE, .indexed = 1, .channel = 0, .extend_name = "supply", .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SEPARATE_BIT, .address = in_supply, .scan_index = ADIS16400_SCAN_SUPPLY, .scan_type = IIO_ST('u', 14, 16, 0), }, { .type = IIO_ANGL_VEL, .modified = 1, .channel2 = IIO_MOD_X, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = gyro_x, .scan_index = ADIS16400_SCAN_GYRO_X, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ANGL_VEL, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = gyro_y, .scan_index = ADIS16400_SCAN_GYRO_Y, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ANGL_VEL, .modified = 1, .channel2 = IIO_MOD_Z, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = gyro_z, .scan_index = ADIS16400_SCAN_GYRO_Z, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_X, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_x, .scan_index = ADIS16400_SCAN_ACC_X, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_y, .scan_index = ADIS16400_SCAN_ACC_Y, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_Z, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_z, .scan_index = ADIS16400_SCAN_ACC_Z, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_MAGN, .modified = 1, .channel2 = IIO_MOD_X, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = magn_x, .scan_index = ADIS16400_SCAN_MAGN_X, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_MAGN, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = magn_y, .scan_index = ADIS16400_SCAN_MAGN_Y, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_MAGN, .modified = 1, .channel2 = IIO_MOD_Z, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = magn_z, .scan_index = ADIS16400_SCAN_MAGN_Z, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_TEMP, .indexed = 1, .channel = 0, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_OFFSET_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SEPARATE_BIT, .address = temp, .scan_index = ADIS16400_SCAN_TEMP, .scan_type = IIO_ST('s', 12, 16, 0), }, { .type = IIO_VOLTAGE, .indexed = 1, .channel = 1, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SEPARATE_BIT, .address = in2, .scan_index = ADIS16400_SCAN_ADC_0, .scan_type = IIO_ST('s', 12, 16, 0), }, IIO_CHAN_SOFT_TIMESTAMP(12) }; static const struct iio_chan_spec adis16350_channels[] = { { .type = IIO_VOLTAGE, .indexed = 1, .channel = 0, .extend_name = "supply", .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SEPARATE_BIT, .address = in_supply, .scan_index = ADIS16400_SCAN_SUPPLY, .scan_type = IIO_ST('u', 12, 16, 0), }, { .type = IIO_ANGL_VEL, .modified = 1, .channel2 = IIO_MOD_X, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = gyro_x, .scan_index = ADIS16400_SCAN_GYRO_X, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ANGL_VEL, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = gyro_y, .scan_index = ADIS16400_SCAN_GYRO_Y, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ANGL_VEL, .modified = 1, .channel2 = IIO_MOD_Z, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = gyro_z, .scan_index = ADIS16400_SCAN_GYRO_Z, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_X, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_x, .scan_index = ADIS16400_SCAN_ACC_X, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_y, .scan_index = ADIS16400_SCAN_ACC_Y, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_Z, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_z, .scan_index = ADIS16400_SCAN_ACC_Z, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_TEMP, .indexed = 1, .channel = 0, .extend_name = "x", .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_OFFSET_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SEPARATE_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = temp0, .scan_index = ADIS16350_SCAN_TEMP_X, .scan_type = IIO_ST('s', 12, 16, 0), }, { .type = IIO_TEMP, .indexed = 1, .channel = 1, .extend_name = "y", .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_OFFSET_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SEPARATE_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = temp1, .scan_index = ADIS16350_SCAN_TEMP_Y, .scan_type = IIO_ST('s', 12, 16, 0), }, { .type = IIO_TEMP, .indexed = 1, .channel = 2, .extend_name = "z", .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_OFFSET_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SEPARATE_BIT, .address = temp2, .scan_index = ADIS16350_SCAN_TEMP_Z, .scan_type = IIO_ST('s', 12, 16, 0), }, { .type = IIO_VOLTAGE, .indexed = 1, .channel = 1, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SEPARATE_BIT, .address = in1, .scan_index = ADIS16350_SCAN_ADC_0, .scan_type = IIO_ST('s', 12, 16, 0), }, IIO_CHAN_SOFT_TIMESTAMP(11) }; static const struct iio_chan_spec adis16300_channels[] = { { .type = IIO_VOLTAGE, .indexed = 1, .channel = 0, .extend_name = "supply", .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SEPARATE_BIT, .address = in_supply, .scan_index = ADIS16400_SCAN_SUPPLY, .scan_type = IIO_ST('u', 12, 16, 0), }, { .type = IIO_ANGL_VEL, .modified = 1, .channel2 = IIO_MOD_X, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = gyro_x, .scan_index = ADIS16400_SCAN_GYRO_X, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_X, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_x, .scan_index = ADIS16400_SCAN_ACC_X, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_y, .scan_index = ADIS16400_SCAN_ACC_Y, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_Z, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_z, .scan_index = ADIS16400_SCAN_ACC_Z, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_TEMP, .indexed = 1, .channel = 0, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_OFFSET_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SEPARATE_BIT, .address = temp0, .scan_index = ADIS16400_SCAN_TEMP, .scan_type = IIO_ST('s', 12, 16, 0), }, { .type = IIO_VOLTAGE, .indexed = 1, .channel = 1, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SEPARATE_BIT, .address = in1, .scan_index = ADIS16350_SCAN_ADC_0, .scan_type = IIO_ST('s', 12, 16, 0), }, { .type = IIO_INCLI, .modified = 1, .channel2 = IIO_MOD_X, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT, .address = incli_x, .scan_index = ADIS16300_SCAN_INCLI_X, .scan_type = IIO_ST('s', 13, 16, 0), }, { .type = IIO_INCLI, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT, .address = incli_y, .scan_index = ADIS16300_SCAN_INCLI_Y, .scan_type = IIO_ST('s', 13, 16, 0), }, IIO_CHAN_SOFT_TIMESTAMP(14) }; static const struct iio_chan_spec adis16334_channels[] = { { .type = IIO_ANGL_VEL, .modified = 1, .channel2 = IIO_MOD_X, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = gyro_x, .scan_index = ADIS16400_SCAN_GYRO_X, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ANGL_VEL, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = gyro_y, .scan_index = ADIS16400_SCAN_GYRO_Y, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ANGL_VEL, .modified = 1, .channel2 = IIO_MOD_Z, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = gyro_z, .scan_index = ADIS16400_SCAN_GYRO_Z, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_X, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_x, .scan_index = ADIS16400_SCAN_ACC_X, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_Y, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_y, .scan_index = ADIS16400_SCAN_ACC_Y, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_ACCEL, .modified = 1, .channel2 = IIO_MOD_Z, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_CALIBBIAS_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT | IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY_SHARED_BIT, .address = accel_z, .scan_index = ADIS16400_SCAN_ACC_Z, .scan_type = IIO_ST('s', 14, 16, 0), }, { .type = IIO_TEMP, .indexed = 1, .channel = 0, .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | IIO_CHAN_INFO_OFFSET_SEPARATE_BIT | IIO_CHAN_INFO_SCALE_SHARED_BIT, .address = temp0, .scan_index = ADIS16400_SCAN_TEMP, .scan_type = IIO_ST('s', 14, 16, 0), }, IIO_CHAN_SOFT_TIMESTAMP(12) }; static struct attribute *adis16400_attributes[] = { &iio_dev_attr_sampling_frequency.dev_attr.attr, &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL }; static const struct attribute_group adis16400_attribute_group = { .attrs = adis16400_attributes, }; static struct adis16400_chip_info adis16400_chips[] = { [ADIS16300] = { .channels = adis16300_channels, .num_channels = ARRAY_SIZE(adis16300_channels), .flags = ADIS16400_HAS_SLOW_MODE, .gyro_scale_micro = IIO_DEGREE_TO_RAD(50000), /* 0.05 deg/s */ .accel_scale_micro = 5884, .temp_scale_nano = 140000000, /* 0.14 C */ .temp_offset = 25000000 / 140000, /* 25 C = 0x00 */ .default_scan_mask = (1 << ADIS16400_SCAN_SUPPLY) | (1 << ADIS16400_SCAN_GYRO_X) | (1 << ADIS16400_SCAN_ACC_X) | (1 << ADIS16400_SCAN_ACC_Y) | (1 << ADIS16400_SCAN_ACC_Z) | (1 << ADIS16400_SCAN_TEMP) | (1 << ADIS16400_SCAN_ADC_0) | (1 << ADIS16300_SCAN_INCLI_X) | (1 << ADIS16300_SCAN_INCLI_Y) | (1 << 14), .set_freq = adis16400_set_freq, .get_freq = adis16400_get_freq, }, [ADIS16334] = { .channels = adis16334_channels, .num_channels = ARRAY_SIZE(adis16334_channels), .flags = ADIS16400_HAS_PROD_ID, .gyro_scale_micro = IIO_DEGREE_TO_RAD(50000), /* 0.05 deg/s */ .accel_scale_micro = IIO_G_TO_M_S_2(1000), /* 1 mg */ .temp_scale_nano = 67850000, /* 0.06785 C */ .temp_offset = 25000000 / 67850, /* 25 C = 0x00 */ .default_scan_mask = (1 << ADIS16400_SCAN_GYRO_X) | (1 << ADIS16400_SCAN_GYRO_Y) | (1 << ADIS16400_SCAN_GYRO_Z) | (1 << ADIS16400_SCAN_ACC_X) | (1 << ADIS16400_SCAN_ACC_Y) | (1 << ADIS16400_SCAN_ACC_Z), .set_freq = adis16334_set_freq, .get_freq = adis16334_get_freq, }, [ADIS16350] = { .channels = adis16350_channels, .num_channels = ARRAY_SIZE(adis16350_channels), .gyro_scale_micro = IIO_DEGREE_TO_RAD(73260), /* 0.07326 deg/s */ .accel_scale_micro = IIO_G_TO_M_S_2(2522), /* 0.002522 g */ .temp_scale_nano = 145300000, /* 0.1453 C */ .temp_offset = 25000000 / 145300, /* 25 C = 0x00 */ .default_scan_mask = 0x7FF, .flags = ADIS16400_NO_BURST | ADIS16400_HAS_SLOW_MODE, .set_freq = adis16400_set_freq, .get_freq = adis16400_get_freq, }, [ADIS16360] = { .channels = adis16350_channels, .num_channels = ARRAY_SIZE(adis16350_channels), .flags = ADIS16400_HAS_PROD_ID | ADIS16400_HAS_SLOW_MODE, .gyro_scale_micro = IIO_DEGREE_TO_RAD(50000), /* 0.05 deg/s */ .accel_scale_micro = IIO_G_TO_M_S_2(3333), /* 3.333 mg */ .temp_scale_nano = 136000000, /* 0.136 C */ .temp_offset = 25000000 / 136000, /* 25 C = 0x00 */ .default_scan_mask = 0x7FF, .set_freq = adis16400_set_freq, .get_freq = adis16400_get_freq, }, [ADIS16362] = { .channels = adis16350_channels, .num_channels = ARRAY_SIZE(adis16350_channels), .flags = ADIS16400_HAS_PROD_ID | ADIS16400_HAS_SLOW_MODE, .gyro_scale_micro = IIO_DEGREE_TO_RAD(50000), /* 0.05 deg/s */ .accel_scale_micro = IIO_G_TO_M_S_2(333), /* 0.333 mg */ .temp_scale_nano = 136000000, /* 0.136 C */ .temp_offset = 25000000 / 136000, /* 25 C = 0x00 */ .default_scan_mask = 0x7FF, .set_freq = adis16400_set_freq, .get_freq = adis16400_get_freq, }, [ADIS16364] = { .channels = adis16350_channels, .num_channels = ARRAY_SIZE(adis16350_channels), .flags = ADIS16400_HAS_PROD_ID | ADIS16400_HAS_SLOW_MODE, .gyro_scale_micro = IIO_DEGREE_TO_RAD(50000), /* 0.05 deg/s */ .accel_scale_micro = IIO_G_TO_M_S_2(1000), /* 1 mg */ .temp_scale_nano = 136000000, /* 0.136 C */ .temp_offset = 25000000 / 136000, /* 25 C = 0x00 */ .default_scan_mask = 0x7FF, .set_freq = adis16400_set_freq, .get_freq = adis16400_get_freq, }, [ADIS16400] = { .channels = adis16400_channels, .num_channels = ARRAY_SIZE(adis16400_channels), .flags = ADIS16400_HAS_PROD_ID | ADIS16400_HAS_SLOW_MODE, .gyro_scale_micro = IIO_DEGREE_TO_RAD(50000), /* 0.05 deg/s */ .accel_scale_micro = IIO_G_TO_M_S_2(3333), /* 3.333 mg */ .default_scan_mask = 0xFFF, .temp_scale_nano = 140000000, /* 0.14 C */ .temp_offset = 25000000 / 140000, /* 25 C = 0x00 */ .set_freq = adis16400_set_freq, .get_freq = adis16400_get_freq, } }; static const struct iio_info adis16400_info = { .driver_module = THIS_MODULE, .read_raw = &adis16400_read_raw, .write_raw = &adis16400_write_raw, .attrs = &adis16400_attribute_group, }; static int __devinit adis16400_probe(struct spi_device *spi) { int ret; struct adis16400_state *st; struct iio_dev *indio_dev = iio_device_alloc(sizeof(*st)); if (indio_dev == NULL) { ret = -ENOMEM; goto error_ret; } st = iio_priv(indio_dev); /* this is only used for removal purposes */ spi_set_drvdata(spi, indio_dev); st->us = spi; mutex_init(&st->buf_lock); /* setup the industrialio driver allocated elements */ st->variant = &adis16400_chips[spi_get_device_id(spi)->driver_data]; indio_dev->dev.parent = &spi->dev; indio_dev->name = spi_get_device_id(spi)->name; indio_dev->channels = st->variant->channels; indio_dev->num_channels = st->variant->num_channels; indio_dev->info = &adis16400_info; indio_dev->modes = INDIO_DIRECT_MODE; ret = adis16400_configure_ring(indio_dev); if (ret) goto error_free_dev; ret = iio_buffer_register(indio_dev, st->variant->channels, st->variant->num_channels); if (ret) { dev_err(&spi->dev, "failed to initialize the ring\n"); goto error_unreg_ring_funcs; } if (spi->irq) { ret = adis16400_probe_trigger(indio_dev); if (ret) goto error_uninitialize_ring; } /* Get the device into a sane initial state */ ret = adis16400_initial_setup(indio_dev); if (ret) goto error_remove_trigger; ret = iio_device_register(indio_dev); if (ret) goto error_remove_trigger; return 0; error_remove_trigger: if (spi->irq) adis16400_remove_trigger(indio_dev); error_uninitialize_ring: iio_buffer_unregister(indio_dev); error_unreg_ring_funcs: adis16400_unconfigure_ring(indio_dev); error_free_dev: iio_device_free(indio_dev); error_ret: return ret; } /* fixme, confirm ordering in this function */ static int __devexit adis16400_remove(struct spi_device *spi) { struct iio_dev *indio_dev = spi_get_drvdata(spi); iio_device_unregister(indio_dev); adis16400_stop_device(indio_dev); adis16400_remove_trigger(indio_dev); iio_buffer_unregister(indio_dev); adis16400_unconfigure_ring(indio_dev); iio_device_free(indio_dev); return 0; } static const struct spi_device_id adis16400_id[] = { {"adis16300", ADIS16300}, {"adis16334", ADIS16334}, {"adis16350", ADIS16350}, {"adis16354", ADIS16350}, {"adis16355", ADIS16350}, {"adis16360", ADIS16360}, {"adis16362", ADIS16362}, {"adis16364", ADIS16364}, {"adis16365", ADIS16360}, {"adis16400", ADIS16400}, {"adis16405", ADIS16400}, {} }; MODULE_DEVICE_TABLE(spi, adis16400_id); static struct spi_driver adis16400_driver = { .driver = { .name = "adis16400", .owner = THIS_MODULE, }, .id_table = adis16400_id, .probe = adis16400_probe, .remove = __devexit_p(adis16400_remove), }; module_spi_driver(adis16400_driver); MODULE_AUTHOR("Manuel Stahl "); MODULE_DESCRIPTION("Analog Devices ADIS16400/5 IMU SPI driver"); MODULE_LICENSE("GPL v2");