/* * zsmalloc memory allocator * * Copyright (C) 2011 Nitin Gupta * * This code is released using a dual license strategy: BSD/GPL * You can choose the license that better fits your requirements. * * Released under the terms of 3-clause BSD License * Released under the terms of GNU General Public License Version 2.0 */ #ifdef CONFIG_ZSMALLOC_DEBUG #define DEBUG #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zsmalloc.h" #include "zsmalloc_int.h" /* * A zspage's class index and fullness group * are encoded in its (first)page->mapping */ #define CLASS_IDX_BITS 28 #define FULLNESS_BITS 4 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1) #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1) /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ static DEFINE_PER_CPU(struct mapping_area, zs_map_area); static int is_first_page(struct page *page) { return test_bit(PG_private, &page->flags); } static int is_last_page(struct page *page) { return test_bit(PG_private_2, &page->flags); } static void get_zspage_mapping(struct page *page, unsigned int *class_idx, enum fullness_group *fullness) { unsigned long m; BUG_ON(!is_first_page(page)); m = (unsigned long)page->mapping; *fullness = m & FULLNESS_MASK; *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; } static void set_zspage_mapping(struct page *page, unsigned int class_idx, enum fullness_group fullness) { unsigned long m; BUG_ON(!is_first_page(page)); m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | (fullness & FULLNESS_MASK); page->mapping = (struct address_space *)m; } static int get_size_class_index(int size) { int idx = 0; if (likely(size > ZS_MIN_ALLOC_SIZE)) idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, ZS_SIZE_CLASS_DELTA); return idx; } static enum fullness_group get_fullness_group(struct page *page) { int inuse, max_objects; enum fullness_group fg; BUG_ON(!is_first_page(page)); inuse = page->inuse; max_objects = page->objects; if (inuse == 0) fg = ZS_EMPTY; else if (inuse == max_objects) fg = ZS_FULL; else if (inuse <= max_objects / fullness_threshold_frac) fg = ZS_ALMOST_EMPTY; else fg = ZS_ALMOST_FULL; return fg; } static void insert_zspage(struct page *page, struct size_class *class, enum fullness_group fullness) { struct page **head; BUG_ON(!is_first_page(page)); if (fullness >= _ZS_NR_FULLNESS_GROUPS) return; head = &class->fullness_list[fullness]; if (*head) list_add_tail(&page->lru, &(*head)->lru); *head = page; } static void remove_zspage(struct page *page, struct size_class *class, enum fullness_group fullness) { struct page **head; BUG_ON(!is_first_page(page)); if (fullness >= _ZS_NR_FULLNESS_GROUPS) return; head = &class->fullness_list[fullness]; BUG_ON(!*head); if (list_empty(&(*head)->lru)) *head = NULL; else if (*head == page) *head = (struct page *)list_entry((*head)->lru.next, struct page, lru); list_del_init(&page->lru); } static enum fullness_group fix_fullness_group(struct zs_pool *pool, struct page *page) { int class_idx; struct size_class *class; enum fullness_group currfg, newfg; BUG_ON(!is_first_page(page)); get_zspage_mapping(page, &class_idx, &currfg); newfg = get_fullness_group(page); if (newfg == currfg) goto out; class = &pool->size_class[class_idx]; remove_zspage(page, class, currfg); insert_zspage(page, class, newfg); set_zspage_mapping(page, class_idx, newfg); out: return newfg; } /* * We have to decide on how many pages to link together * to form a zspage for each size class. This is important * to reduce wastage due to unusable space left at end of * each zspage which is given as: * wastage = Zp - Zp % size_class * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... * * For example, for size class of 3/8 * PAGE_SIZE, we should * link together 3 PAGE_SIZE sized pages to form a zspage * since then we can perfectly fit in 8 such objects. */ static int get_zspage_order(int class_size) { int i, max_usedpc = 0; /* zspage order which gives maximum used size per KB */ int max_usedpc_order = 1; for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { int zspage_size; int waste, usedpc; zspage_size = i * PAGE_SIZE; waste = zspage_size % class_size; usedpc = (zspage_size - waste) * 100 / zspage_size; if (usedpc > max_usedpc) { max_usedpc = usedpc; max_usedpc_order = i; } } return max_usedpc_order; } /* * A single 'zspage' is composed of many system pages which are * linked together using fields in struct page. This function finds * the first/head page, given any component page of a zspage. */ static struct page *get_first_page(struct page *page) { if (is_first_page(page)) return page; else return page->first_page; } static struct page *get_next_page(struct page *page) { struct page *next; if (is_last_page(page)) next = NULL; else if (is_first_page(page)) next = (struct page *)page->private; else next = list_entry(page->lru.next, struct page, lru); return next; } /* Encode as a single handle value */ static void *obj_location_to_handle(struct page *page, unsigned long obj_idx) { unsigned long handle; if (!page) { BUG_ON(obj_idx); return NULL; } handle = page_to_pfn(page) << OBJ_INDEX_BITS; handle |= (obj_idx & OBJ_INDEX_MASK); return (void *)handle; } /* Decode pair from the given object handle */ static void obj_handle_to_location(void *handle, struct page **page, unsigned long *obj_idx) { unsigned long hval = (unsigned long)handle; *page = pfn_to_page(hval >> OBJ_INDEX_BITS); *obj_idx = hval & OBJ_INDEX_MASK; } static unsigned long obj_idx_to_offset(struct page *page, unsigned long obj_idx, int class_size) { unsigned long off = 0; if (!is_first_page(page)) off = page->index; return off + obj_idx * class_size; } static void reset_page(struct page *page) { clear_bit(PG_private, &page->flags); clear_bit(PG_private_2, &page->flags); set_page_private(page, 0); page->mapping = NULL; page->freelist = NULL; reset_page_mapcount(page); } static void free_zspage(struct page *first_page) { struct page *nextp, *tmp, *head_extra; BUG_ON(!is_first_page(first_page)); BUG_ON(first_page->inuse); head_extra = (struct page *)page_private(first_page); reset_page(first_page); __free_page(first_page); /* zspage with only 1 system page */ if (!head_extra) return; list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { list_del(&nextp->lru); reset_page(nextp); __free_page(nextp); } reset_page(head_extra); __free_page(head_extra); } /* Initialize a newly allocated zspage */ static void init_zspage(struct page *first_page, struct size_class *class) { unsigned long off = 0; struct page *page = first_page; BUG_ON(!is_first_page(first_page)); while (page) { struct page *next_page; struct link_free *link; unsigned int i, objs_on_page; /* * page->index stores offset of first object starting * in the page. For the first page, this is always 0, * so we use first_page->index (aka ->freelist) to store * head of corresponding zspage's freelist. */ if (page != first_page) page->index = off; link = (struct link_free *)kmap_atomic(page) + off / sizeof(*link); objs_on_page = (PAGE_SIZE - off) / class->size; for (i = 1; i <= objs_on_page; i++) { off += class->size; if (off < PAGE_SIZE) { link->next = obj_location_to_handle(page, i); link += class->size / sizeof(*link); } } /* * We now come to the last (full or partial) object on this * page, which must point to the first object on the next * page (if present) */ next_page = get_next_page(page); link->next = obj_location_to_handle(next_page, 0); kunmap_atomic(link); page = next_page; off = (off + class->size) % PAGE_SIZE; } } /* * Allocate a zspage for the given size class */ static struct page *alloc_zspage(struct size_class *class, gfp_t flags) { int i, error; struct page *first_page = NULL; /* * Allocate individual pages and link them together as: * 1. first page->private = first sub-page * 2. all sub-pages are linked together using page->lru * 3. each sub-page is linked to the first page using page->first_page * * For each size class, First/Head pages are linked together using * page->lru. Also, we set PG_private to identify the first page * (i.e. no other sub-page has this flag set) and PG_private_2 to * identify the last page. */ error = -ENOMEM; for (i = 0; i < class->zspage_order; i++) { struct page *page, *prev_page; page = alloc_page(flags); if (!page) goto cleanup; INIT_LIST_HEAD(&page->lru); if (i == 0) { /* first page */ set_bit(PG_private, &page->flags); set_page_private(page, 0); first_page = page; first_page->inuse = 0; } if (i == 1) first_page->private = (unsigned long)page; if (i >= 1) page->first_page = first_page; if (i >= 2) list_add(&page->lru, &prev_page->lru); if (i == class->zspage_order - 1) /* last page */ set_bit(PG_private_2, &page->flags); prev_page = page; } init_zspage(first_page, class); first_page->freelist = obj_location_to_handle(first_page, 0); /* Maximum number of objects we can store in this zspage */ first_page->objects = class->zspage_order * PAGE_SIZE / class->size; error = 0; /* Success */ cleanup: if (unlikely(error) && first_page) { free_zspage(first_page); first_page = NULL; } return first_page; } static struct page *find_get_zspage(struct size_class *class) { int i; struct page *page; for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { page = class->fullness_list[i]; if (page) break; } return page; } /* * If this becomes a separate module, register zs_init() with * module_init(), zs_exit with module_exit(), and remove zs_initialized */ static int zs_initialized; static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, void *pcpu) { int cpu = (long)pcpu; struct mapping_area *area; switch (action) { case CPU_UP_PREPARE: area = &per_cpu(zs_map_area, cpu); if (area->vm) break; area->vm = alloc_vm_area(2 * PAGE_SIZE, area->vm_ptes); if (!area->vm) return notifier_from_errno(-ENOMEM); break; case CPU_DEAD: case CPU_UP_CANCELED: area = &per_cpu(zs_map_area, cpu); if (area->vm) free_vm_area(area->vm); area->vm = NULL; break; } return NOTIFY_OK; } static struct notifier_block zs_cpu_nb = { .notifier_call = zs_cpu_notifier }; static void zs_exit(void) { int cpu; for_each_online_cpu(cpu) zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); unregister_cpu_notifier(&zs_cpu_nb); } static int zs_init(void) { int cpu, ret; register_cpu_notifier(&zs_cpu_nb); for_each_online_cpu(cpu) { ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); if (notifier_to_errno(ret)) goto fail; } return 0; fail: zs_exit(); return notifier_to_errno(ret); } struct zs_pool *zs_create_pool(const char *name, gfp_t flags) { int i, error, ovhd_size; struct zs_pool *pool; if (!name) return NULL; ovhd_size = roundup(sizeof(*pool), PAGE_SIZE); pool = kzalloc(ovhd_size, GFP_KERNEL); if (!pool) return NULL; for (i = 0; i < ZS_SIZE_CLASSES; i++) { int size; struct size_class *class; size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; if (size > ZS_MAX_ALLOC_SIZE) size = ZS_MAX_ALLOC_SIZE; class = &pool->size_class[i]; class->size = size; class->index = i; spin_lock_init(&class->lock); class->zspage_order = get_zspage_order(size); } /* * If this becomes a separate module, register zs_init with * module_init, and remove this block */ if (!zs_initialized) { error = zs_init(); if (error) goto cleanup; zs_initialized = 1; } pool->flags = flags; pool->name = name; error = 0; /* Success */ cleanup: if (error) { zs_destroy_pool(pool); pool = NULL; } return pool; } EXPORT_SYMBOL_GPL(zs_create_pool); void zs_destroy_pool(struct zs_pool *pool) { int i; for (i = 0; i < ZS_SIZE_CLASSES; i++) { int fg; struct size_class *class = &pool->size_class[i]; for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { if (class->fullness_list[fg]) { pr_info("Freeing non-empty class with size " "%db, fullness group %d\n", class->size, fg); } } } kfree(pool); } EXPORT_SYMBOL_GPL(zs_destroy_pool); /** * zs_malloc - Allocate block of given size from pool. * @pool: pool to allocate from * @size: size of block to allocate * @page: page no. that holds the object * @offset: location of object within page * * On success, identifies block allocated * and 0 is returned. On failure, is set to * 0 and -ENOMEM is returned. * * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. */ void *zs_malloc(struct zs_pool *pool, size_t size) { void *obj; struct link_free *link; int class_idx; struct size_class *class; struct page *first_page, *m_page; unsigned long m_objidx, m_offset; if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) return NULL; class_idx = get_size_class_index(size); class = &pool->size_class[class_idx]; BUG_ON(class_idx != class->index); spin_lock(&class->lock); first_page = find_get_zspage(class); if (!first_page) { spin_unlock(&class->lock); first_page = alloc_zspage(class, pool->flags); if (unlikely(!first_page)) return NULL; set_zspage_mapping(first_page, class->index, ZS_EMPTY); spin_lock(&class->lock); class->pages_allocated += class->zspage_order; } obj = first_page->freelist; obj_handle_to_location(obj, &m_page, &m_objidx); m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); link = (struct link_free *)kmap_atomic(m_page) + m_offset / sizeof(*link); first_page->freelist = link->next; memset(link, POISON_INUSE, sizeof(*link)); kunmap_atomic(link); first_page->inuse++; /* Now move the zspage to another fullness group, if required */ fix_fullness_group(pool, first_page); spin_unlock(&class->lock); return obj; } EXPORT_SYMBOL_GPL(zs_malloc); void zs_free(struct zs_pool *pool, void *obj) { struct link_free *link; struct page *first_page, *f_page; unsigned long f_objidx, f_offset; int class_idx; struct size_class *class; enum fullness_group fullness; if (unlikely(!obj)) return; obj_handle_to_location(obj, &f_page, &f_objidx); first_page = get_first_page(f_page); get_zspage_mapping(first_page, &class_idx, &fullness); class = &pool->size_class[class_idx]; f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); spin_lock(&class->lock); /* Insert this object in containing zspage's freelist */ link = (struct link_free *)((unsigned char *)kmap_atomic(f_page) + f_offset); link->next = first_page->freelist; kunmap_atomic(link); first_page->freelist = obj; first_page->inuse--; fullness = fix_fullness_group(pool, first_page); if (fullness == ZS_EMPTY) class->pages_allocated -= class->zspage_order; spin_unlock(&class->lock); if (fullness == ZS_EMPTY) free_zspage(first_page); } EXPORT_SYMBOL_GPL(zs_free); void *zs_map_object(struct zs_pool *pool, void *handle) { struct page *page; unsigned long obj_idx, off; unsigned int class_idx; enum fullness_group fg; struct size_class *class; struct mapping_area *area; BUG_ON(!handle); obj_handle_to_location(handle, &page, &obj_idx); get_zspage_mapping(get_first_page(page), &class_idx, &fg); class = &pool->size_class[class_idx]; off = obj_idx_to_offset(page, obj_idx, class->size); area = &get_cpu_var(zs_map_area); if (off + class->size <= PAGE_SIZE) { /* this object is contained entirely within a page */ area->vm_addr = kmap_atomic(page); } else { /* this object spans two pages */ struct page *nextp; nextp = get_next_page(page); BUG_ON(!nextp); set_pte(area->vm_ptes[0], mk_pte(page, PAGE_KERNEL)); set_pte(area->vm_ptes[1], mk_pte(nextp, PAGE_KERNEL)); /* We pre-allocated VM area so mapping can never fail */ area->vm_addr = area->vm->addr; } return area->vm_addr + off; } EXPORT_SYMBOL_GPL(zs_map_object); void zs_unmap_object(struct zs_pool *pool, void *handle) { struct page *page; unsigned long obj_idx, off; unsigned int class_idx; enum fullness_group fg; struct size_class *class; struct mapping_area *area; BUG_ON(!handle); obj_handle_to_location(handle, &page, &obj_idx); get_zspage_mapping(get_first_page(page), &class_idx, &fg); class = &pool->size_class[class_idx]; off = obj_idx_to_offset(page, obj_idx, class->size); area = &__get_cpu_var(zs_map_area); if (off + class->size <= PAGE_SIZE) { kunmap_atomic(area->vm_addr); } else { set_pte(area->vm_ptes[0], __pte(0)); set_pte(area->vm_ptes[1], __pte(0)); __flush_tlb_one((unsigned long)area->vm_addr); __flush_tlb_one((unsigned long)area->vm_addr + PAGE_SIZE); } put_cpu_var(zs_map_area); } EXPORT_SYMBOL_GPL(zs_unmap_object); u64 zs_get_total_size_bytes(struct zs_pool *pool) { int i; u64 npages = 0; for (i = 0; i < ZS_SIZE_CLASSES; i++) npages += pool->size_class[i].pages_allocated; return npages << PAGE_SHIFT; } EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);