/*****************************************************************************/ /* * devio.c -- User space communication with USB devices. * * Copyright (C) 1999-2000 Thomas Sailer (sailer@ife.ee.ethz.ch) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * This file implements the usbfs/x/y files, where * x is the bus number and y the device number. * * It allows user space programs/"drivers" to communicate directly * with USB devices without intervening kernel driver. * * Revision history * 22.12.1999 0.1 Initial release (split from proc_usb.c) * 04.01.2000 0.2 Turned into its own filesystem * 30.09.2005 0.3 Fix user-triggerable oops in async URB delivery * (CAN-2005-3055) */ /*****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hcd.h" /* for usbcore internals */ #include "usb.h" #define USB_MAXBUS 64 #define USB_DEVICE_MAX USB_MAXBUS * 128 /* Mutual exclusion for removal, open, and release */ DEFINE_MUTEX(usbfs_mutex); struct dev_state { struct list_head list; /* state list */ struct usb_device *dev; struct file *file; spinlock_t lock; /* protects the async urb lists */ struct list_head async_pending; struct list_head async_completed; wait_queue_head_t wait; /* wake up if a request completed */ unsigned int discsignr; struct pid *disc_pid; uid_t disc_uid, disc_euid; void __user *disccontext; unsigned long ifclaimed; u32 secid; }; struct async { struct list_head asynclist; struct dev_state *ps; struct pid *pid; uid_t uid, euid; unsigned int signr; unsigned int ifnum; void __user *userbuffer; void __user *userurb; struct urb *urb; int status; u32 secid; }; static int usbfs_snoop; module_param(usbfs_snoop, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(usbfs_snoop, "true to log all usbfs traffic"); #define snoop(dev, format, arg...) \ do { \ if (usbfs_snoop) \ dev_info(dev , format , ## arg); \ } while (0) #define USB_DEVICE_DEV MKDEV(USB_DEVICE_MAJOR, 0) #define MAX_USBFS_BUFFER_SIZE 16384 static inline int connected(struct dev_state *ps) { return (!list_empty(&ps->list) && ps->dev->state != USB_STATE_NOTATTACHED); } static loff_t usbdev_lseek(struct file *file, loff_t offset, int orig) { loff_t ret; lock_kernel(); switch (orig) { case 0: file->f_pos = offset; ret = file->f_pos; break; case 1: file->f_pos += offset; ret = file->f_pos; break; case 2: default: ret = -EINVAL; } unlock_kernel(); return ret; } static ssize_t usbdev_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct dev_state *ps = file->private_data; struct usb_device *dev = ps->dev; ssize_t ret = 0; unsigned len; loff_t pos; int i; pos = *ppos; usb_lock_device(dev); if (!connected(ps)) { ret = -ENODEV; goto err; } else if (pos < 0) { ret = -EINVAL; goto err; } if (pos < sizeof(struct usb_device_descriptor)) { /* 18 bytes - fits on the stack */ struct usb_device_descriptor temp_desc; memcpy(&temp_desc, &dev->descriptor, sizeof(dev->descriptor)); le16_to_cpus(&temp_desc.bcdUSB); le16_to_cpus(&temp_desc.idVendor); le16_to_cpus(&temp_desc.idProduct); le16_to_cpus(&temp_desc.bcdDevice); len = sizeof(struct usb_device_descriptor) - pos; if (len > nbytes) len = nbytes; if (copy_to_user(buf, ((char *)&temp_desc) + pos, len)) { ret = -EFAULT; goto err; } *ppos += len; buf += len; nbytes -= len; ret += len; } pos = sizeof(struct usb_device_descriptor); for (i = 0; nbytes && i < dev->descriptor.bNumConfigurations; i++) { struct usb_config_descriptor *config = (struct usb_config_descriptor *)dev->rawdescriptors[i]; unsigned int length = le16_to_cpu(config->wTotalLength); if (*ppos < pos + length) { /* The descriptor may claim to be longer than it * really is. Here is the actual allocated length. */ unsigned alloclen = le16_to_cpu(dev->config[i].desc.wTotalLength); len = length - (*ppos - pos); if (len > nbytes) len = nbytes; /* Simply don't write (skip over) unallocated parts */ if (alloclen > (*ppos - pos)) { alloclen -= (*ppos - pos); if (copy_to_user(buf, dev->rawdescriptors[i] + (*ppos - pos), min(len, alloclen))) { ret = -EFAULT; goto err; } } *ppos += len; buf += len; nbytes -= len; ret += len; } pos += length; } err: usb_unlock_device(dev); return ret; } /* * async list handling */ static struct async *alloc_async(unsigned int numisoframes) { struct async *as; as = kzalloc(sizeof(struct async), GFP_KERNEL); if (!as) return NULL; as->urb = usb_alloc_urb(numisoframes, GFP_KERNEL); if (!as->urb) { kfree(as); return NULL; } return as; } static void free_async(struct async *as) { put_pid(as->pid); kfree(as->urb->transfer_buffer); kfree(as->urb->setup_packet); usb_free_urb(as->urb); kfree(as); } static inline void async_newpending(struct async *as) { struct dev_state *ps = as->ps; unsigned long flags; spin_lock_irqsave(&ps->lock, flags); list_add_tail(&as->asynclist, &ps->async_pending); spin_unlock_irqrestore(&ps->lock, flags); } static inline void async_removepending(struct async *as) { struct dev_state *ps = as->ps; unsigned long flags; spin_lock_irqsave(&ps->lock, flags); list_del_init(&as->asynclist); spin_unlock_irqrestore(&ps->lock, flags); } static inline struct async *async_getcompleted(struct dev_state *ps) { unsigned long flags; struct async *as = NULL; spin_lock_irqsave(&ps->lock, flags); if (!list_empty(&ps->async_completed)) { as = list_entry(ps->async_completed.next, struct async, asynclist); list_del_init(&as->asynclist); } spin_unlock_irqrestore(&ps->lock, flags); return as; } static inline struct async *async_getpending(struct dev_state *ps, void __user *userurb) { unsigned long flags; struct async *as; spin_lock_irqsave(&ps->lock, flags); list_for_each_entry(as, &ps->async_pending, asynclist) if (as->userurb == userurb) { list_del_init(&as->asynclist); spin_unlock_irqrestore(&ps->lock, flags); return as; } spin_unlock_irqrestore(&ps->lock, flags); return NULL; } static void snoop_urb(struct urb *urb, void __user *userurb) { int j; unsigned char *data = urb->transfer_buffer; if (!usbfs_snoop) return; dev_info(&urb->dev->dev, "direction=%s\n", usb_urb_dir_in(urb) ? "IN" : "OUT"); dev_info(&urb->dev->dev, "userurb=%p\n", userurb); dev_info(&urb->dev->dev, "transfer_buffer_length=%d\n", urb->transfer_buffer_length); dev_info(&urb->dev->dev, "actual_length=%d\n", urb->actual_length); dev_info(&urb->dev->dev, "data: "); for (j = 0; j < urb->transfer_buffer_length; ++j) printk("%02x ", data[j]); printk("\n"); } static void async_completed(struct urb *urb) { struct async *as = urb->context; struct dev_state *ps = as->ps; struct siginfo sinfo; spin_lock(&ps->lock); list_move_tail(&as->asynclist, &ps->async_completed); spin_unlock(&ps->lock); as->status = urb->status; if (as->signr) { sinfo.si_signo = as->signr; sinfo.si_errno = as->status; sinfo.si_code = SI_ASYNCIO; sinfo.si_addr = as->userurb; kill_pid_info_as_uid(as->signr, &sinfo, as->pid, as->uid, as->euid, as->secid); } snoop(&urb->dev->dev, "urb complete\n"); snoop_urb(urb, as->userurb); wake_up(&ps->wait); } static void destroy_async(struct dev_state *ps, struct list_head *list) { struct async *as; unsigned long flags; spin_lock_irqsave(&ps->lock, flags); while (!list_empty(list)) { as = list_entry(list->next, struct async, asynclist); list_del_init(&as->asynclist); /* drop the spinlock so the completion handler can run */ spin_unlock_irqrestore(&ps->lock, flags); usb_kill_urb(as->urb); spin_lock_irqsave(&ps->lock, flags); } spin_unlock_irqrestore(&ps->lock, flags); as = async_getcompleted(ps); while (as) { free_async(as); as = async_getcompleted(ps); } } static void destroy_async_on_interface(struct dev_state *ps, unsigned int ifnum) { struct list_head *p, *q, hitlist; unsigned long flags; INIT_LIST_HEAD(&hitlist); spin_lock_irqsave(&ps->lock, flags); list_for_each_safe(p, q, &ps->async_pending) if (ifnum == list_entry(p, struct async, asynclist)->ifnum) list_move_tail(p, &hitlist); spin_unlock_irqrestore(&ps->lock, flags); destroy_async(ps, &hitlist); } static inline void destroy_all_async(struct dev_state *ps) { destroy_async(ps, &ps->async_pending); } /* * interface claims are made only at the request of user level code, * which can also release them (explicitly or by closing files). * they're also undone when devices disconnect. */ static int driver_probe(struct usb_interface *intf, const struct usb_device_id *id) { return -ENODEV; } static void driver_disconnect(struct usb_interface *intf) { struct dev_state *ps = usb_get_intfdata(intf); unsigned int ifnum = intf->altsetting->desc.bInterfaceNumber; if (!ps) return; /* NOTE: this relies on usbcore having canceled and completed * all pending I/O requests; 2.6 does that. */ if (likely(ifnum < 8*sizeof(ps->ifclaimed))) clear_bit(ifnum, &ps->ifclaimed); else dev_warn(&intf->dev, "interface number %u out of range\n", ifnum); usb_set_intfdata(intf, NULL); /* force async requests to complete */ destroy_async_on_interface(ps, ifnum); } /* The following routines are merely placeholders. There is no way * to inform a user task about suspend or resumes. */ static int driver_suspend(struct usb_interface *intf, pm_message_t msg) { return 0; } static int driver_resume(struct usb_interface *intf) { return 0; } struct usb_driver usbfs_driver = { .name = "usbfs", .probe = driver_probe, .disconnect = driver_disconnect, .suspend = driver_suspend, .resume = driver_resume, }; static int claimintf(struct dev_state *ps, unsigned int ifnum) { struct usb_device *dev = ps->dev; struct usb_interface *intf; int err; if (ifnum >= 8*sizeof(ps->ifclaimed)) return -EINVAL; /* already claimed */ if (test_bit(ifnum, &ps->ifclaimed)) return 0; intf = usb_ifnum_to_if(dev, ifnum); if (!intf) err = -ENOENT; else err = usb_driver_claim_interface(&usbfs_driver, intf, ps); if (err == 0) set_bit(ifnum, &ps->ifclaimed); return err; } static int releaseintf(struct dev_state *ps, unsigned int ifnum) { struct usb_device *dev; struct usb_interface *intf; int err; err = -EINVAL; if (ifnum >= 8*sizeof(ps->ifclaimed)) return err; dev = ps->dev; intf = usb_ifnum_to_if(dev, ifnum); if (!intf) err = -ENOENT; else if (test_and_clear_bit(ifnum, &ps->ifclaimed)) { usb_driver_release_interface(&usbfs_driver, intf); err = 0; } return err; } static int checkintf(struct dev_state *ps, unsigned int ifnum) { if (ps->dev->state != USB_STATE_CONFIGURED) return -EHOSTUNREACH; if (ifnum >= 8*sizeof(ps->ifclaimed)) return -EINVAL; if (test_bit(ifnum, &ps->ifclaimed)) return 0; /* if not yet claimed, claim it for the driver */ dev_warn(&ps->dev->dev, "usbfs: process %d (%s) did not claim " "interface %u before use\n", task_pid_nr(current), current->comm, ifnum); return claimintf(ps, ifnum); } static int findintfep(struct usb_device *dev, unsigned int ep) { unsigned int i, j, e; struct usb_interface *intf; struct usb_host_interface *alts; struct usb_endpoint_descriptor *endpt; if (ep & ~(USB_DIR_IN|0xf)) return -EINVAL; if (!dev->actconfig) return -ESRCH; for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { intf = dev->actconfig->interface[i]; for (j = 0; j < intf->num_altsetting; j++) { alts = &intf->altsetting[j]; for (e = 0; e < alts->desc.bNumEndpoints; e++) { endpt = &alts->endpoint[e].desc; if (endpt->bEndpointAddress == ep) return alts->desc.bInterfaceNumber; } } } return -ENOENT; } static int check_ctrlrecip(struct dev_state *ps, unsigned int requesttype, unsigned int index) { int ret = 0; if (ps->dev->state != USB_STATE_ADDRESS && ps->dev->state != USB_STATE_CONFIGURED) return -EHOSTUNREACH; if (USB_TYPE_VENDOR == (USB_TYPE_MASK & requesttype)) return 0; index &= 0xff; switch (requesttype & USB_RECIP_MASK) { case USB_RECIP_ENDPOINT: ret = findintfep(ps->dev, index); if (ret >= 0) ret = checkintf(ps, ret); break; case USB_RECIP_INTERFACE: ret = checkintf(ps, index); break; } return ret; } static int match_devt(struct device *dev, void *data) { return dev->devt == (dev_t) (unsigned long) data; } static struct usb_device *usbdev_lookup_by_devt(dev_t devt) { struct device *dev; dev = bus_find_device(&usb_bus_type, NULL, (void *) (unsigned long) devt, match_devt); if (!dev) return NULL; return container_of(dev, struct usb_device, dev); } /* * file operations */ static int usbdev_open(struct inode *inode, struct file *file) { struct usb_device *dev = NULL; struct dev_state *ps; int ret; lock_kernel(); /* Protect against simultaneous removal or release */ mutex_lock(&usbfs_mutex); ret = -ENOMEM; ps = kmalloc(sizeof(struct dev_state), GFP_KERNEL); if (!ps) goto out; ret = -ENOENT; /* usbdev device-node */ if (imajor(inode) == USB_DEVICE_MAJOR) dev = usbdev_lookup_by_devt(inode->i_rdev); #ifdef CONFIG_USB_DEVICEFS /* procfs file */ if (!dev) { dev = inode->i_private; if (dev && dev->usbfs_dentry && dev->usbfs_dentry->d_inode == inode) usb_get_dev(dev); else dev = NULL; } #endif if (!dev || dev->state == USB_STATE_NOTATTACHED) goto out; ret = usb_autoresume_device(dev); if (ret) goto out; ret = 0; ps->dev = dev; ps->file = file; spin_lock_init(&ps->lock); INIT_LIST_HEAD(&ps->list); INIT_LIST_HEAD(&ps->async_pending); INIT_LIST_HEAD(&ps->async_completed); init_waitqueue_head(&ps->wait); ps->discsignr = 0; ps->disc_pid = get_pid(task_pid(current)); ps->disc_uid = current->uid; ps->disc_euid = current->euid; ps->disccontext = NULL; ps->ifclaimed = 0; security_task_getsecid(current, &ps->secid); smp_wmb(); list_add_tail(&ps->list, &dev->filelist); file->private_data = ps; snoop(&dev->dev, "opened by process %d: %s\n", task_pid_nr(current), current->comm); out: if (ret) { kfree(ps); usb_put_dev(dev); } mutex_unlock(&usbfs_mutex); unlock_kernel(); return ret; } static int usbdev_release(struct inode *inode, struct file *file) { struct dev_state *ps = file->private_data; struct usb_device *dev = ps->dev; unsigned int ifnum; usb_lock_device(dev); /* Protect against simultaneous open */ mutex_lock(&usbfs_mutex); list_del_init(&ps->list); mutex_unlock(&usbfs_mutex); for (ifnum = 0; ps->ifclaimed && ifnum < 8*sizeof(ps->ifclaimed); ifnum++) { if (test_bit(ifnum, &ps->ifclaimed)) releaseintf(ps, ifnum); } destroy_all_async(ps); usb_autosuspend_device(dev); usb_unlock_device(dev); usb_put_dev(dev); put_pid(ps->disc_pid); kfree(ps); return 0; } static int proc_control(struct dev_state *ps, void __user *arg) { struct usb_device *dev = ps->dev; struct usbdevfs_ctrltransfer ctrl; unsigned int tmo; unsigned char *tbuf; unsigned wLength; int i, j, ret; if (copy_from_user(&ctrl, arg, sizeof(ctrl))) return -EFAULT; ret = check_ctrlrecip(ps, ctrl.bRequestType, ctrl.wIndex); if (ret) return ret; wLength = ctrl.wLength; /* To suppress 64k PAGE_SIZE warning */ if (wLength > PAGE_SIZE) return -EINVAL; tbuf = (unsigned char *)__get_free_page(GFP_KERNEL); if (!tbuf) return -ENOMEM; tmo = ctrl.timeout; if (ctrl.bRequestType & 0x80) { if (ctrl.wLength && !access_ok(VERIFY_WRITE, ctrl.data, ctrl.wLength)) { free_page((unsigned long)tbuf); return -EINVAL; } snoop(&dev->dev, "control read: bRequest=%02x " "bRrequestType=%02x wValue=%04x " "wIndex=%04x wLength=%04x\n", ctrl.bRequest, ctrl.bRequestType, ctrl.wValue, ctrl.wIndex, ctrl.wLength); usb_unlock_device(dev); i = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), ctrl.bRequest, ctrl.bRequestType, ctrl.wValue, ctrl.wIndex, tbuf, ctrl.wLength, tmo); usb_lock_device(dev); if ((i > 0) && ctrl.wLength) { if (usbfs_snoop) { dev_info(&dev->dev, "control read: data "); for (j = 0; j < i; ++j) printk("%02x ", (u8)(tbuf)[j]); printk("\n"); } if (copy_to_user(ctrl.data, tbuf, i)) { free_page((unsigned long)tbuf); return -EFAULT; } } } else { if (ctrl.wLength) { if (copy_from_user(tbuf, ctrl.data, ctrl.wLength)) { free_page((unsigned long)tbuf); return -EFAULT; } } snoop(&dev->dev, "control write: bRequest=%02x " "bRrequestType=%02x wValue=%04x " "wIndex=%04x wLength=%04x\n", ctrl.bRequest, ctrl.bRequestType, ctrl.wValue, ctrl.wIndex, ctrl.wLength); if (usbfs_snoop) { dev_info(&dev->dev, "control write: data: "); for (j = 0; j < ctrl.wLength; ++j) printk("%02x ", (unsigned char)(tbuf)[j]); printk("\n"); } usb_unlock_device(dev); i = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), ctrl.bRequest, ctrl.bRequestType, ctrl.wValue, ctrl.wIndex, tbuf, ctrl.wLength, tmo); usb_lock_device(dev); } free_page((unsigned long)tbuf); if (i < 0 && i != -EPIPE) { dev_printk(KERN_DEBUG, &dev->dev, "usbfs: USBDEVFS_CONTROL " "failed cmd %s rqt %u rq %u len %u ret %d\n", current->comm, ctrl.bRequestType, ctrl.bRequest, ctrl.wLength, i); } return i; } static int proc_bulk(struct dev_state *ps, void __user *arg) { struct usb_device *dev = ps->dev; struct usbdevfs_bulktransfer bulk; unsigned int tmo, len1, pipe; int len2; unsigned char *tbuf; int i, j, ret; if (copy_from_user(&bulk, arg, sizeof(bulk))) return -EFAULT; ret = findintfep(ps->dev, bulk.ep); if (ret < 0) return ret; ret = checkintf(ps, ret); if (ret) return ret; if (bulk.ep & USB_DIR_IN) pipe = usb_rcvbulkpipe(dev, bulk.ep & 0x7f); else pipe = usb_sndbulkpipe(dev, bulk.ep & 0x7f); if (!usb_maxpacket(dev, pipe, !(bulk.ep & USB_DIR_IN))) return -EINVAL; len1 = bulk.len; if (len1 > MAX_USBFS_BUFFER_SIZE) return -EINVAL; if (!(tbuf = kmalloc(len1, GFP_KERNEL))) return -ENOMEM; tmo = bulk.timeout; if (bulk.ep & 0x80) { if (len1 && !access_ok(VERIFY_WRITE, bulk.data, len1)) { kfree(tbuf); return -EINVAL; } snoop(&dev->dev, "bulk read: len=0x%02x timeout=%04d\n", bulk.len, bulk.timeout); usb_unlock_device(dev); i = usb_bulk_msg(dev, pipe, tbuf, len1, &len2, tmo); usb_lock_device(dev); if (!i && len2) { if (usbfs_snoop) { dev_info(&dev->dev, "bulk read: data "); for (j = 0; j < len2; ++j) printk("%02x ", (u8)(tbuf)[j]); printk("\n"); } if (copy_to_user(bulk.data, tbuf, len2)) { kfree(tbuf); return -EFAULT; } } } else { if (len1) { if (copy_from_user(tbuf, bulk.data, len1)) { kfree(tbuf); return -EFAULT; } } snoop(&dev->dev, "bulk write: len=0x%02x timeout=%04d\n", bulk.len, bulk.timeout); if (usbfs_snoop) { dev_info(&dev->dev, "bulk write: data: "); for (j = 0; j < len1; ++j) printk("%02x ", (unsigned char)(tbuf)[j]); printk("\n"); } usb_unlock_device(dev); i = usb_bulk_msg(dev, pipe, tbuf, len1, &len2, tmo); usb_lock_device(dev); } kfree(tbuf); if (i < 0) return i; return len2; } static int proc_resetep(struct dev_state *ps, void __user *arg) { unsigned int ep; int ret; if (get_user(ep, (unsigned int __user *)arg)) return -EFAULT; ret = findintfep(ps->dev, ep); if (ret < 0) return ret; ret = checkintf(ps, ret); if (ret) return ret; usb_settoggle(ps->dev, ep & 0xf, !(ep & USB_DIR_IN), 0); return 0; } static int proc_clearhalt(struct dev_state *ps, void __user *arg) { unsigned int ep; int pipe; int ret; if (get_user(ep, (unsigned int __user *)arg)) return -EFAULT; ret = findintfep(ps->dev, ep); if (ret < 0) return ret; ret = checkintf(ps, ret); if (ret) return ret; if (ep & USB_DIR_IN) pipe = usb_rcvbulkpipe(ps->dev, ep & 0x7f); else pipe = usb_sndbulkpipe(ps->dev, ep & 0x7f); return usb_clear_halt(ps->dev, pipe); } static int proc_getdriver(struct dev_state *ps, void __user *arg) { struct usbdevfs_getdriver gd; struct usb_interface *intf; int ret; if (copy_from_user(&gd, arg, sizeof(gd))) return -EFAULT; intf = usb_ifnum_to_if(ps->dev, gd.interface); if (!intf || !intf->dev.driver) ret = -ENODATA; else { strncpy(gd.driver, intf->dev.driver->name, sizeof(gd.driver)); ret = (copy_to_user(arg, &gd, sizeof(gd)) ? -EFAULT : 0); } return ret; } static int proc_connectinfo(struct dev_state *ps, void __user *arg) { struct usbdevfs_connectinfo ci; ci.devnum = ps->dev->devnum; ci.slow = ps->dev->speed == USB_SPEED_LOW; if (copy_to_user(arg, &ci, sizeof(ci))) return -EFAULT; return 0; } static int proc_resetdevice(struct dev_state *ps) { return usb_reset_device(ps->dev); } static int proc_setintf(struct dev_state *ps, void __user *arg) { struct usbdevfs_setinterface setintf; int ret; if (copy_from_user(&setintf, arg, sizeof(setintf))) return -EFAULT; if ((ret = checkintf(ps, setintf.interface))) return ret; return usb_set_interface(ps->dev, setintf.interface, setintf.altsetting); } static int proc_setconfig(struct dev_state *ps, void __user *arg) { int u; int status = 0; struct usb_host_config *actconfig; if (get_user(u, (int __user *)arg)) return -EFAULT; actconfig = ps->dev->actconfig; /* Don't touch the device if any interfaces are claimed. * It could interfere with other drivers' operations, and if * an interface is claimed by usbfs it could easily deadlock. */ if (actconfig) { int i; for (i = 0; i < actconfig->desc.bNumInterfaces; ++i) { if (usb_interface_claimed(actconfig->interface[i])) { dev_warn(&ps->dev->dev, "usbfs: interface %d claimed by %s " "while '%s' sets config #%d\n", actconfig->interface[i] ->cur_altsetting ->desc.bInterfaceNumber, actconfig->interface[i] ->dev.driver->name, current->comm, u); status = -EBUSY; break; } } } /* SET_CONFIGURATION is often abused as a "cheap" driver reset, * so avoid usb_set_configuration()'s kick to sysfs */ if (status == 0) { if (actconfig && actconfig->desc.bConfigurationValue == u) status = usb_reset_configuration(ps->dev); else status = usb_set_configuration(ps->dev, u); } return status; } static int proc_do_submiturb(struct dev_state *ps, struct usbdevfs_urb *uurb, struct usbdevfs_iso_packet_desc __user *iso_frame_desc, void __user *arg) { struct usbdevfs_iso_packet_desc *isopkt = NULL; struct usb_host_endpoint *ep; struct async *as; struct usb_ctrlrequest *dr = NULL; unsigned int u, totlen, isofrmlen; int ret, ifnum = -1; int is_in; if (uurb->flags & ~(USBDEVFS_URB_ISO_ASAP | USBDEVFS_URB_SHORT_NOT_OK | USBDEVFS_URB_NO_FSBR | USBDEVFS_URB_ZERO_PACKET | USBDEVFS_URB_NO_INTERRUPT)) return -EINVAL; if (!uurb->buffer) return -EINVAL; if (uurb->signr != 0 && (uurb->signr < SIGRTMIN || uurb->signr > SIGRTMAX)) return -EINVAL; if (!(uurb->type == USBDEVFS_URB_TYPE_CONTROL && (uurb->endpoint & ~USB_ENDPOINT_DIR_MASK) == 0)) { ifnum = findintfep(ps->dev, uurb->endpoint); if (ifnum < 0) return ifnum; ret = checkintf(ps, ifnum); if (ret) return ret; } if ((uurb->endpoint & USB_ENDPOINT_DIR_MASK) != 0) { is_in = 1; ep = ps->dev->ep_in[uurb->endpoint & USB_ENDPOINT_NUMBER_MASK]; } else { is_in = 0; ep = ps->dev->ep_out[uurb->endpoint & USB_ENDPOINT_NUMBER_MASK]; } if (!ep) return -ENOENT; switch(uurb->type) { case USBDEVFS_URB_TYPE_CONTROL: if (!usb_endpoint_xfer_control(&ep->desc)) return -EINVAL; /* min 8 byte setup packet, * max 8 byte setup plus an arbitrary data stage */ if (uurb->buffer_length < 8 || uurb->buffer_length > (8 + MAX_USBFS_BUFFER_SIZE)) return -EINVAL; dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); if (!dr) return -ENOMEM; if (copy_from_user(dr, uurb->buffer, 8)) { kfree(dr); return -EFAULT; } if (uurb->buffer_length < (le16_to_cpup(&dr->wLength) + 8)) { kfree(dr); return -EINVAL; } ret = check_ctrlrecip(ps, dr->bRequestType, le16_to_cpup(&dr->wIndex)); if (ret) { kfree(dr); return ret; } uurb->number_of_packets = 0; uurb->buffer_length = le16_to_cpup(&dr->wLength); uurb->buffer += 8; if ((dr->bRequestType & USB_DIR_IN) && uurb->buffer_length) { is_in = 1; uurb->endpoint |= USB_DIR_IN; } else { is_in = 0; uurb->endpoint &= ~USB_DIR_IN; } if (!access_ok(is_in ? VERIFY_WRITE : VERIFY_READ, uurb->buffer, uurb->buffer_length)) { kfree(dr); return -EFAULT; } snoop(&ps->dev->dev, "control urb: bRequest=%02x " "bRrequestType=%02x wValue=%04x " "wIndex=%04x wLength=%04x\n", dr->bRequest, dr->bRequestType, __le16_to_cpup(&dr->wValue), __le16_to_cpup(&dr->wIndex), __le16_to_cpup(&dr->wLength)); break; case USBDEVFS_URB_TYPE_BULK: switch (usb_endpoint_type(&ep->desc)) { case USB_ENDPOINT_XFER_CONTROL: case USB_ENDPOINT_XFER_ISOC: return -EINVAL; /* allow single-shot interrupt transfers, at bogus rates */ } uurb->number_of_packets = 0; if (uurb->buffer_length > MAX_USBFS_BUFFER_SIZE) return -EINVAL; if (!access_ok(is_in ? VERIFY_WRITE : VERIFY_READ, uurb->buffer, uurb->buffer_length)) return -EFAULT; snoop(&ps->dev->dev, "bulk urb\n"); break; case USBDEVFS_URB_TYPE_ISO: /* arbitrary limit */ if (uurb->number_of_packets < 1 || uurb->number_of_packets > 128) return -EINVAL; if (!usb_endpoint_xfer_isoc(&ep->desc)) return -EINVAL; isofrmlen = sizeof(struct usbdevfs_iso_packet_desc) * uurb->number_of_packets; if (!(isopkt = kmalloc(isofrmlen, GFP_KERNEL))) return -ENOMEM; if (copy_from_user(isopkt, iso_frame_desc, isofrmlen)) { kfree(isopkt); return -EFAULT; } for (totlen = u = 0; u < uurb->number_of_packets; u++) { /* arbitrary limit, * sufficient for USB 2.0 high-bandwidth iso */ if (isopkt[u].length > 8192) { kfree(isopkt); return -EINVAL; } totlen += isopkt[u].length; } if (totlen > 32768) { kfree(isopkt); return -EINVAL; } uurb->buffer_length = totlen; snoop(&ps->dev->dev, "iso urb\n"); break; case USBDEVFS_URB_TYPE_INTERRUPT: uurb->number_of_packets = 0; if (!usb_endpoint_xfer_int(&ep->desc)) return -EINVAL; if (uurb->buffer_length > MAX_USBFS_BUFFER_SIZE) return -EINVAL; if (!access_ok(is_in ? VERIFY_WRITE : VERIFY_READ, uurb->buffer, uurb->buffer_length)) return -EFAULT; snoop(&ps->dev->dev, "interrupt urb\n"); break; default: return -EINVAL; } as = alloc_async(uurb->number_of_packets); if (!as) { kfree(isopkt); kfree(dr); return -ENOMEM; } as->urb->transfer_buffer = kmalloc(uurb->buffer_length, GFP_KERNEL); if (!as->urb->transfer_buffer) { kfree(isopkt); kfree(dr); free_async(as); return -ENOMEM; } as->urb->dev = ps->dev; as->urb->pipe = (uurb->type << 30) | __create_pipe(ps->dev, uurb->endpoint & 0xf) | (uurb->endpoint & USB_DIR_IN); /* This tedious sequence is necessary because the URB_* flags * are internal to the kernel and subject to change, whereas * the USBDEVFS_URB_* flags are a user API and must not be changed. */ u = (is_in ? URB_DIR_IN : URB_DIR_OUT); if (uurb->flags & USBDEVFS_URB_ISO_ASAP) u |= URB_ISO_ASAP; if (uurb->flags & USBDEVFS_URB_SHORT_NOT_OK) u |= URB_SHORT_NOT_OK; if (uurb->flags & USBDEVFS_URB_NO_FSBR) u |= URB_NO_FSBR; if (uurb->flags & USBDEVFS_URB_ZERO_PACKET) u |= URB_ZERO_PACKET; if (uurb->flags & USBDEVFS_URB_NO_INTERRUPT) u |= URB_NO_INTERRUPT; as->urb->transfer_flags = u; as->urb->transfer_buffer_length = uurb->buffer_length; as->urb->setup_packet = (unsigned char *)dr; as->urb->start_frame = uurb->start_frame; as->urb->number_of_packets = uurb->number_of_packets; if (uurb->type == USBDEVFS_URB_TYPE_ISO || ps->dev->speed == USB_SPEED_HIGH) as->urb->interval = 1 << min(15, ep->desc.bInterval - 1); else as->urb->interval = ep->desc.bInterval; as->urb->context = as; as->urb->complete = async_completed; for (totlen = u = 0; u < uurb->number_of_packets; u++) { as->urb->iso_frame_desc[u].offset = totlen; as->urb->iso_frame_desc[u].length = isopkt[u].length; totlen += isopkt[u].length; } kfree(isopkt); as->ps = ps; as->userurb = arg; if (uurb->endpoint & USB_DIR_IN) as->userbuffer = uurb->buffer; else as->userbuffer = NULL; as->signr = uurb->signr; as->ifnum = ifnum; as->pid = get_pid(task_pid(current)); as->uid = current->uid; as->euid = current->euid; security_task_getsecid(current, &as->secid); if (!is_in) { if (copy_from_user(as->urb->transfer_buffer, uurb->buffer, as->urb->transfer_buffer_length)) { free_async(as); return -EFAULT; } } snoop_urb(as->urb, as->userurb); async_newpending(as); if ((ret = usb_submit_urb(as->urb, GFP_KERNEL))) { dev_printk(KERN_DEBUG, &ps->dev->dev, "usbfs: usb_submit_urb returned %d\n", ret); async_removepending(as); free_async(as); return ret; } return 0; } static int proc_submiturb(struct dev_state *ps, void __user *arg) { struct usbdevfs_urb uurb; if (copy_from_user(&uurb, arg, sizeof(uurb))) return -EFAULT; return proc_do_submiturb(ps, &uurb, (((struct usbdevfs_urb __user *)arg)->iso_frame_desc), arg); } static int proc_unlinkurb(struct dev_state *ps, void __user *arg) { struct async *as; as = async_getpending(ps, arg); if (!as) return -EINVAL; usb_kill_urb(as->urb); return 0; } static int processcompl(struct async *as, void __user * __user *arg) { struct urb *urb = as->urb; struct usbdevfs_urb __user *userurb = as->userurb; void __user *addr = as->userurb; unsigned int i; if (as->userbuffer) if (copy_to_user(as->userbuffer, urb->transfer_buffer, urb->transfer_buffer_length)) return -EFAULT; if (put_user(as->status, &userurb->status)) return -EFAULT; if (put_user(urb->actual_length, &userurb->actual_length)) return -EFAULT; if (put_user(urb->error_count, &userurb->error_count)) return -EFAULT; if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { for (i = 0; i < urb->number_of_packets; i++) { if (put_user(urb->iso_frame_desc[i].actual_length, &userurb->iso_frame_desc[i].actual_length)) return -EFAULT; if (put_user(urb->iso_frame_desc[i].status, &userurb->iso_frame_desc[i].status)) return -EFAULT; } } free_async(as); if (put_user(addr, (void __user * __user *)arg)) return -EFAULT; return 0; } static struct async *reap_as(struct dev_state *ps) { DECLARE_WAITQUEUE(wait, current); struct async *as = NULL; struct usb_device *dev = ps->dev; add_wait_queue(&ps->wait, &wait); for (;;) { __set_current_state(TASK_INTERRUPTIBLE); as = async_getcompleted(ps); if (as) break; if (signal_pending(current)) break; usb_unlock_device(dev); schedule(); usb_lock_device(dev); } remove_wait_queue(&ps->wait, &wait); set_current_state(TASK_RUNNING); return as; } static int proc_reapurb(struct dev_state *ps, void __user *arg) { struct async *as = reap_as(ps); if (as) return processcompl(as, (void __user * __user *)arg); if (signal_pending(current)) return -EINTR; return -EIO; } static int proc_reapurbnonblock(struct dev_state *ps, void __user *arg) { struct async *as; if (!(as = async_getcompleted(ps))) return -EAGAIN; return processcompl(as, (void __user * __user *)arg); } #ifdef CONFIG_COMPAT static int get_urb32(struct usbdevfs_urb *kurb, struct usbdevfs_urb32 __user *uurb) { __u32 uptr; if (get_user(kurb->type, &uurb->type) || __get_user(kurb->endpoint, &uurb->endpoint) || __get_user(kurb->status, &uurb->status) || __get_user(kurb->flags, &uurb->flags) || __get_user(kurb->buffer_length, &uurb->buffer_length) || __get_user(kurb->actual_length, &uurb->actual_length) || __get_user(kurb->start_frame, &uurb->start_frame) || __get_user(kurb->number_of_packets, &uurb->number_of_packets) || __get_user(kurb->error_count, &uurb->error_count) || __get_user(kurb->signr, &uurb->signr)) return -EFAULT; if (__get_user(uptr, &uurb->buffer)) return -EFAULT; kurb->buffer = compat_ptr(uptr); if (__get_user(uptr, &uurb->buffer)) return -EFAULT; kurb->usercontext = compat_ptr(uptr); return 0; } static int proc_submiturb_compat(struct dev_state *ps, void __user *arg) { struct usbdevfs_urb uurb; if (get_urb32(&uurb, (struct usbdevfs_urb32 __user *)arg)) return -EFAULT; return proc_do_submiturb(ps, &uurb, ((struct usbdevfs_urb32 __user *)arg)->iso_frame_desc, arg); } static int processcompl_compat(struct async *as, void __user * __user *arg) { struct urb *urb = as->urb; struct usbdevfs_urb32 __user *userurb = as->userurb; void __user *addr = as->userurb; unsigned int i; if (as->userbuffer) if (copy_to_user(as->userbuffer, urb->transfer_buffer, urb->transfer_buffer_length)) return -EFAULT; if (put_user(as->status, &userurb->status)) return -EFAULT; if (put_user(urb->actual_length, &userurb->actual_length)) return -EFAULT; if (put_user(urb->error_count, &userurb->error_count)) return -EFAULT; if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { for (i = 0; i < urb->number_of_packets; i++) { if (put_user(urb->iso_frame_desc[i].actual_length, &userurb->iso_frame_desc[i].actual_length)) return -EFAULT; if (put_user(urb->iso_frame_desc[i].status, &userurb->iso_frame_desc[i].status)) return -EFAULT; } } free_async(as); if (put_user(ptr_to_compat(addr), (u32 __user *)arg)) return -EFAULT; return 0; } static int proc_reapurb_compat(struct dev_state *ps, void __user *arg) { struct async *as = reap_as(ps); if (as) return processcompl_compat(as, (void __user * __user *)arg); if (signal_pending(current)) return -EINTR; return -EIO; } static int proc_reapurbnonblock_compat(struct dev_state *ps, void __user *arg) { struct async *as; if (!(as = async_getcompleted(ps))) return -EAGAIN; return processcompl_compat(as, (void __user * __user *)arg); } #endif static int proc_disconnectsignal(struct dev_state *ps, void __user *arg) { struct usbdevfs_disconnectsignal ds; if (copy_from_user(&ds, arg, sizeof(ds))) return -EFAULT; if (ds.signr != 0 && (ds.signr < SIGRTMIN || ds.signr > SIGRTMAX)) return -EINVAL; ps->discsignr = ds.signr; ps->disccontext = ds.context; return 0; } static int proc_claiminterface(struct dev_state *ps, void __user *arg) { unsigned int ifnum; if (get_user(ifnum, (unsigned int __user *)arg)) return -EFAULT; return claimintf(ps, ifnum); } static int proc_releaseinterface(struct dev_state *ps, void __user *arg) { unsigned int ifnum; int ret; if (get_user(ifnum, (unsigned int __user *)arg)) return -EFAULT; if ((ret = releaseintf(ps, ifnum)) < 0) return ret; destroy_async_on_interface (ps, ifnum); return 0; } static int proc_ioctl(struct dev_state *ps, struct usbdevfs_ioctl *ctl) { int size; void *buf = NULL; int retval = 0; struct usb_interface *intf = NULL; struct usb_driver *driver = NULL; /* alloc buffer */ if ((size = _IOC_SIZE(ctl->ioctl_code)) > 0) { if ((buf = kmalloc(size, GFP_KERNEL)) == NULL) return -ENOMEM; if ((_IOC_DIR(ctl->ioctl_code) & _IOC_WRITE)) { if (copy_from_user(buf, ctl->data, size)) { kfree(buf); return -EFAULT; } } else { memset(buf, 0, size); } } if (!connected(ps)) { kfree(buf); return -ENODEV; } if (ps->dev->state != USB_STATE_CONFIGURED) retval = -EHOSTUNREACH; else if (!(intf = usb_ifnum_to_if(ps->dev, ctl->ifno))) retval = -EINVAL; else switch (ctl->ioctl_code) { /* disconnect kernel driver from interface */ case USBDEVFS_DISCONNECT: if (intf->dev.driver) { driver = to_usb_driver(intf->dev.driver); dev_dbg(&intf->dev, "disconnect by usbfs\n"); usb_driver_release_interface(driver, intf); } else retval = -ENODATA; break; /* let kernel drivers try to (re)bind to the interface */ case USBDEVFS_CONNECT: if (!intf->dev.driver) retval = device_attach(&intf->dev); else retval = -EBUSY; break; /* talk directly to the interface's driver */ default: if (intf->dev.driver) driver = to_usb_driver(intf->dev.driver); if (driver == NULL || driver->ioctl == NULL) { retval = -ENOTTY; } else { retval = driver->ioctl(intf, ctl->ioctl_code, buf); if (retval == -ENOIOCTLCMD) retval = -ENOTTY; } } /* cleanup and return */ if (retval >= 0 && (_IOC_DIR(ctl->ioctl_code) & _IOC_READ) != 0 && size > 0 && copy_to_user(ctl->data, buf, size) != 0) retval = -EFAULT; kfree(buf); return retval; } static int proc_ioctl_default(struct dev_state *ps, void __user *arg) { struct usbdevfs_ioctl ctrl; if (copy_from_user(&ctrl, arg, sizeof(ctrl))) return -EFAULT; return proc_ioctl(ps, &ctrl); } #ifdef CONFIG_COMPAT static int proc_ioctl_compat(struct dev_state *ps, compat_uptr_t arg) { struct usbdevfs_ioctl32 __user *uioc; struct usbdevfs_ioctl ctrl; u32 udata; uioc = compat_ptr((long)arg); if (get_user(ctrl.ifno, &uioc->ifno) || get_user(ctrl.ioctl_code, &uioc->ioctl_code) || __get_user(udata, &uioc->data)) return -EFAULT; ctrl.data = compat_ptr(udata); return proc_ioctl(ps, &ctrl); } #endif /* * NOTE: All requests here that have interface numbers as parameters * are assuming that somehow the configuration has been prevented from * changing. But there's no mechanism to ensure that... */ static int usbdev_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct dev_state *ps = file->private_data; struct usb_device *dev = ps->dev; void __user *p = (void __user *)arg; int ret = -ENOTTY; if (!(file->f_mode & FMODE_WRITE)) return -EPERM; usb_lock_device(dev); if (!connected(ps)) { usb_unlock_device(dev); return -ENODEV; } switch (cmd) { case USBDEVFS_CONTROL: snoop(&dev->dev, "%s: CONTROL\n", __func__); ret = proc_control(ps, p); if (ret >= 0) inode->i_mtime = CURRENT_TIME; break; case USBDEVFS_BULK: snoop(&dev->dev, "%s: BULK\n", __func__); ret = proc_bulk(ps, p); if (ret >= 0) inode->i_mtime = CURRENT_TIME; break; case USBDEVFS_RESETEP: snoop(&dev->dev, "%s: RESETEP\n", __func__); ret = proc_resetep(ps, p); if (ret >= 0) inode->i_mtime = CURRENT_TIME; break; case USBDEVFS_RESET: snoop(&dev->dev, "%s: RESET\n", __func__); ret = proc_resetdevice(ps); break; case USBDEVFS_CLEAR_HALT: snoop(&dev->dev, "%s: CLEAR_HALT\n", __func__); ret = proc_clearhalt(ps, p); if (ret >= 0) inode->i_mtime = CURRENT_TIME; break; case USBDEVFS_GETDRIVER: snoop(&dev->dev, "%s: GETDRIVER\n", __func__); ret = proc_getdriver(ps, p); break; case USBDEVFS_CONNECTINFO: snoop(&dev->dev, "%s: CONNECTINFO\n", __func__); ret = proc_connectinfo(ps, p); break; case USBDEVFS_SETINTERFACE: snoop(&dev->dev, "%s: SETINTERFACE\n", __func__); ret = proc_setintf(ps, p); break; case USBDEVFS_SETCONFIGURATION: snoop(&dev->dev, "%s: SETCONFIGURATION\n", __func__); ret = proc_setconfig(ps, p); break; case USBDEVFS_SUBMITURB: snoop(&dev->dev, "%s: SUBMITURB\n", __func__); ret = proc_submiturb(ps, p); if (ret >= 0) inode->i_mtime = CURRENT_TIME; break; #ifdef CONFIG_COMPAT case USBDEVFS_SUBMITURB32: snoop(&dev->dev, "%s: SUBMITURB32\n", __func__); ret = proc_submiturb_compat(ps, p); if (ret >= 0) inode->i_mtime = CURRENT_TIME; break; case USBDEVFS_REAPURB32: snoop(&dev->dev, "%s: REAPURB32\n", __func__); ret = proc_reapurb_compat(ps, p); break; case USBDEVFS_REAPURBNDELAY32: snoop(&dev->dev, "%s: REAPURBDELAY32\n", __func__); ret = proc_reapurbnonblock_compat(ps, p); break; case USBDEVFS_IOCTL32: snoop(&dev->dev, "%s: IOCTL\n", __func__); ret = proc_ioctl_compat(ps, ptr_to_compat(p)); break; #endif case USBDEVFS_DISCARDURB: snoop(&dev->dev, "%s: DISCARDURB\n", __func__); ret = proc_unlinkurb(ps, p); break; case USBDEVFS_REAPURB: snoop(&dev->dev, "%s: REAPURB\n", __func__); ret = proc_reapurb(ps, p); break; case USBDEVFS_REAPURBNDELAY: snoop(&dev->dev, "%s: REAPURBDELAY\n", __func__); ret = proc_reapurbnonblock(ps, p); break; case USBDEVFS_DISCSIGNAL: snoop(&dev->dev, "%s: DISCSIGNAL\n", __func__); ret = proc_disconnectsignal(ps, p); break; case USBDEVFS_CLAIMINTERFACE: snoop(&dev->dev, "%s: CLAIMINTERFACE\n", __func__); ret = proc_claiminterface(ps, p); break; case USBDEVFS_RELEASEINTERFACE: snoop(&dev->dev, "%s: RELEASEINTERFACE\n", __func__); ret = proc_releaseinterface(ps, p); break; case USBDEVFS_IOCTL: snoop(&dev->dev, "%s: IOCTL\n", __func__); ret = proc_ioctl_default(ps, p); break; } usb_unlock_device(dev); if (ret >= 0) inode->i_atime = CURRENT_TIME; return ret; } /* No kernel lock - fine */ static unsigned int usbdev_poll(struct file *file, struct poll_table_struct *wait) { struct dev_state *ps = file->private_data; unsigned int mask = 0; poll_wait(file, &ps->wait, wait); if (file->f_mode & FMODE_WRITE && !list_empty(&ps->async_completed)) mask |= POLLOUT | POLLWRNORM; if (!connected(ps)) mask |= POLLERR | POLLHUP; return mask; } const struct file_operations usbdev_file_operations = { .owner = THIS_MODULE, .llseek = usbdev_lseek, .read = usbdev_read, .poll = usbdev_poll, .ioctl = usbdev_ioctl, .open = usbdev_open, .release = usbdev_release, }; static void usbdev_remove(struct usb_device *udev) { struct dev_state *ps; struct siginfo sinfo; while (!list_empty(&udev->filelist)) { ps = list_entry(udev->filelist.next, struct dev_state, list); destroy_all_async(ps); wake_up_all(&ps->wait); list_del_init(&ps->list); if (ps->discsignr) { sinfo.si_signo = ps->discsignr; sinfo.si_errno = EPIPE; sinfo.si_code = SI_ASYNCIO; sinfo.si_addr = ps->disccontext; kill_pid_info_as_uid(ps->discsignr, &sinfo, ps->disc_pid, ps->disc_uid, ps->disc_euid, ps->secid); } } } #ifdef CONFIG_USB_DEVICE_CLASS static struct class *usb_classdev_class; static int usb_classdev_add(struct usb_device *dev) { struct device *cldev; cldev = device_create(usb_classdev_class, &dev->dev, dev->dev.devt, NULL, "usbdev%d.%d", dev->bus->busnum, dev->devnum); if (IS_ERR(cldev)) return PTR_ERR(cldev); dev->usb_classdev = cldev; return 0; } static void usb_classdev_remove(struct usb_device *dev) { if (dev->usb_classdev) device_unregister(dev->usb_classdev); } #else #define usb_classdev_add(dev) 0 #define usb_classdev_remove(dev) do {} while (0) #endif static int usbdev_notify(struct notifier_block *self, unsigned long action, void *dev) { switch (action) { case USB_DEVICE_ADD: if (usb_classdev_add(dev)) return NOTIFY_BAD; break; case USB_DEVICE_REMOVE: usb_classdev_remove(dev); usbdev_remove(dev); break; } return NOTIFY_OK; } static struct notifier_block usbdev_nb = { .notifier_call = usbdev_notify, }; static struct cdev usb_device_cdev; int __init usb_devio_init(void) { int retval; retval = register_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX, "usb_device"); if (retval) { printk(KERN_ERR "Unable to register minors for usb_device\n"); goto out; } cdev_init(&usb_device_cdev, &usbdev_file_operations); retval = cdev_add(&usb_device_cdev, USB_DEVICE_DEV, USB_DEVICE_MAX); if (retval) { printk(KERN_ERR "Unable to get usb_device major %d\n", USB_DEVICE_MAJOR); goto error_cdev; } #ifdef CONFIG_USB_DEVICE_CLASS usb_classdev_class = class_create(THIS_MODULE, "usb_device"); if (IS_ERR(usb_classdev_class)) { printk(KERN_ERR "Unable to register usb_device class\n"); retval = PTR_ERR(usb_classdev_class); cdev_del(&usb_device_cdev); usb_classdev_class = NULL; goto out; } /* devices of this class shadow the major:minor of their parent * device, so clear ->dev_kobj to prevent adding duplicate entries * to /sys/dev */ usb_classdev_class->dev_kobj = NULL; #endif usb_register_notify(&usbdev_nb); out: return retval; error_cdev: unregister_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX); goto out; } void usb_devio_cleanup(void) { usb_unregister_notify(&usbdev_nb); #ifdef CONFIG_USB_DEVICE_CLASS class_destroy(usb_classdev_class); #endif cdev_del(&usb_device_cdev); unregister_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX); }