/* * linux/fs/ext4/crypto_fname.c * * Copyright (C) 2015, Google, Inc. * * This contains functions for filename crypto management in ext4 * * Written by Uday Savagaonkar, 2014. * * This has not yet undergone a rigorous security audit. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ext4.h" #include "ext4_crypto.h" #include "xattr.h" /** * ext4_dir_crypt_complete() - */ static void ext4_dir_crypt_complete(struct crypto_async_request *req, int res) { struct ext4_completion_result *ecr = req->data; if (res == -EINPROGRESS) return; ecr->res = res; complete(&ecr->completion); } bool ext4_valid_filenames_enc_mode(uint32_t mode) { return (mode == EXT4_ENCRYPTION_MODE_AES_256_CTS); } /** * ext4_fname_encrypt() - * * This function encrypts the input filename, and returns the length of the * ciphertext. Errors are returned as negative numbers. We trust the caller to * allocate sufficient memory to oname string. */ static int ext4_fname_encrypt(struct ext4_fname_crypto_ctx *ctx, const struct qstr *iname, struct ext4_str *oname) { u32 ciphertext_len; struct ablkcipher_request *req = NULL; DECLARE_EXT4_COMPLETION_RESULT(ecr); struct crypto_ablkcipher *tfm = ctx->ctfm; int res = 0; char iv[EXT4_CRYPTO_BLOCK_SIZE]; struct scatterlist sg[1]; int padding = 4 << (ctx->flags & EXT4_POLICY_FLAGS_PAD_MASK); char *workbuf; if (iname->len <= 0 || iname->len > ctx->lim) return -EIO; ciphertext_len = (iname->len < EXT4_CRYPTO_BLOCK_SIZE) ? EXT4_CRYPTO_BLOCK_SIZE : iname->len; ciphertext_len = ext4_fname_crypto_round_up(ciphertext_len, padding); ciphertext_len = (ciphertext_len > ctx->lim) ? ctx->lim : ciphertext_len; /* Allocate request */ req = ablkcipher_request_alloc(tfm, GFP_NOFS); if (!req) { printk_ratelimited( KERN_ERR "%s: crypto_request_alloc() failed\n", __func__); return -ENOMEM; } ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, ext4_dir_crypt_complete, &ecr); /* Map the workpage */ workbuf = kmap(ctx->workpage); /* Copy the input */ memcpy(workbuf, iname->name, iname->len); if (iname->len < ciphertext_len) memset(workbuf + iname->len, 0, ciphertext_len - iname->len); /* Initialize IV */ memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE); /* Create encryption request */ sg_init_table(sg, 1); sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0); ablkcipher_request_set_crypt(req, sg, sg, ciphertext_len, iv); res = crypto_ablkcipher_encrypt(req); if (res == -EINPROGRESS || res == -EBUSY) { BUG_ON(req->base.data != &ecr); wait_for_completion(&ecr.completion); res = ecr.res; } if (res >= 0) { /* Copy the result to output */ memcpy(oname->name, workbuf, ciphertext_len); res = ciphertext_len; } kunmap(ctx->workpage); ablkcipher_request_free(req); if (res < 0) { printk_ratelimited( KERN_ERR "%s: Error (error code %d)\n", __func__, res); } oname->len = ciphertext_len; return res; } /* * ext4_fname_decrypt() * This function decrypts the input filename, and returns * the length of the plaintext. * Errors are returned as negative numbers. * We trust the caller to allocate sufficient memory to oname string. */ static int ext4_fname_decrypt(struct ext4_fname_crypto_ctx *ctx, const struct ext4_str *iname, struct ext4_str *oname) { struct ext4_str tmp_in[2], tmp_out[1]; struct ablkcipher_request *req = NULL; DECLARE_EXT4_COMPLETION_RESULT(ecr); struct scatterlist sg[1]; struct crypto_ablkcipher *tfm = ctx->ctfm; int res = 0; char iv[EXT4_CRYPTO_BLOCK_SIZE]; char *workbuf; if (iname->len <= 0 || iname->len > ctx->lim) return -EIO; tmp_in[0].name = iname->name; tmp_in[0].len = iname->len; tmp_out[0].name = oname->name; /* Allocate request */ req = ablkcipher_request_alloc(tfm, GFP_NOFS); if (!req) { printk_ratelimited( KERN_ERR "%s: crypto_request_alloc() failed\n", __func__); return -ENOMEM; } ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, ext4_dir_crypt_complete, &ecr); /* Map the workpage */ workbuf = kmap(ctx->workpage); /* Copy the input */ memcpy(workbuf, iname->name, iname->len); /* Initialize IV */ memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE); /* Create encryption request */ sg_init_table(sg, 1); sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0); ablkcipher_request_set_crypt(req, sg, sg, iname->len, iv); res = crypto_ablkcipher_decrypt(req); if (res == -EINPROGRESS || res == -EBUSY) { BUG_ON(req->base.data != &ecr); wait_for_completion(&ecr.completion); res = ecr.res; } if (res >= 0) { /* Copy the result to output */ memcpy(oname->name, workbuf, iname->len); res = iname->len; } kunmap(ctx->workpage); ablkcipher_request_free(req); if (res < 0) { printk_ratelimited( KERN_ERR "%s: Error in ext4_fname_encrypt (error code %d)\n", __func__, res); return res; } oname->len = strnlen(oname->name, iname->len); return oname->len; } static const char *lookup_table = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,"; /** * ext4_fname_encode_digest() - * * Encodes the input digest using characters from the set [a-zA-Z0-9_+]. * The encoded string is roughly 4/3 times the size of the input string. */ static int digest_encode(const char *src, int len, char *dst) { int i = 0, bits = 0, ac = 0; char *cp = dst; while (i < len) { ac += (((unsigned char) src[i]) << bits); bits += 8; do { *cp++ = lookup_table[ac & 0x3f]; ac >>= 6; bits -= 6; } while (bits >= 6); i++; } if (bits) *cp++ = lookup_table[ac & 0x3f]; return cp - dst; } static int digest_decode(const char *src, int len, char *dst) { int i = 0, bits = 0, ac = 0; const char *p; char *cp = dst; while (i < len) { p = strchr(lookup_table, src[i]); if (p == NULL || src[i] == 0) return -2; ac += (p - lookup_table) << bits; bits += 6; if (bits >= 8) { *cp++ = ac & 0xff; ac >>= 8; bits -= 8; } i++; } if (ac) return -1; return cp - dst; } /** * ext4_free_fname_crypto_ctx() - * * Frees up a crypto context. */ void ext4_free_fname_crypto_ctx(struct ext4_fname_crypto_ctx *ctx) { if (ctx == NULL || IS_ERR(ctx)) return; if (ctx->ctfm && !IS_ERR(ctx->ctfm)) crypto_free_ablkcipher(ctx->ctfm); if (ctx->htfm && !IS_ERR(ctx->htfm)) crypto_free_hash(ctx->htfm); if (ctx->workpage && !IS_ERR(ctx->workpage)) __free_page(ctx->workpage); kfree(ctx); } /** * ext4_put_fname_crypto_ctx() - * * Return: The crypto context onto free list. If the free list is above a * threshold, completely frees up the context, and returns the memory. * * TODO: Currently we directly free the crypto context. Eventually we should * add code it to return to free list. Such an approach will increase * efficiency of directory lookup. */ void ext4_put_fname_crypto_ctx(struct ext4_fname_crypto_ctx **ctx) { if (*ctx == NULL || IS_ERR(*ctx)) return; ext4_free_fname_crypto_ctx(*ctx); *ctx = NULL; } /** * ext4_search_fname_crypto_ctx() - */ static struct ext4_fname_crypto_ctx *ext4_search_fname_crypto_ctx( const struct ext4_encryption_key *key) { return NULL; } /** * ext4_alloc_fname_crypto_ctx() - */ struct ext4_fname_crypto_ctx *ext4_alloc_fname_crypto_ctx( const struct ext4_encryption_key *key) { struct ext4_fname_crypto_ctx *ctx; ctx = kmalloc(sizeof(struct ext4_fname_crypto_ctx), GFP_NOFS); if (ctx == NULL) return ERR_PTR(-ENOMEM); if (key->mode == EXT4_ENCRYPTION_MODE_INVALID) { /* This will automatically set key mode to invalid * As enum for ENCRYPTION_MODE_INVALID is zero */ memset(&ctx->key, 0, sizeof(ctx->key)); } else { memcpy(&ctx->key, key, sizeof(struct ext4_encryption_key)); } ctx->has_valid_key = (EXT4_ENCRYPTION_MODE_INVALID == key->mode) ? 0 : 1; ctx->ctfm_key_is_ready = 0; ctx->ctfm = NULL; ctx->htfm = NULL; ctx->workpage = NULL; return ctx; } /** * ext4_get_fname_crypto_ctx() - * * Allocates a free crypto context and initializes it to hold * the crypto material for the inode. * * Return: NULL if not encrypted. Error value on error. Valid pointer otherwise. */ struct ext4_fname_crypto_ctx *ext4_get_fname_crypto_ctx( struct inode *inode, u32 max_ciphertext_len) { struct ext4_fname_crypto_ctx *ctx; struct ext4_inode_info *ei = EXT4_I(inode); int res; /* Check if the crypto policy is set on the inode */ res = ext4_encrypted_inode(inode); if (res == 0) return NULL; if (!ext4_has_encryption_key(inode)) ext4_generate_encryption_key(inode); /* Get a crypto context based on the key. * A new context is allocated if no context matches the requested key. */ ctx = ext4_search_fname_crypto_ctx(&(ei->i_encryption_key)); if (ctx == NULL) ctx = ext4_alloc_fname_crypto_ctx(&(ei->i_encryption_key)); if (IS_ERR(ctx)) return ctx; ctx->flags = ei->i_crypt_policy_flags; if (ctx->has_valid_key) { if (ctx->key.mode != EXT4_ENCRYPTION_MODE_AES_256_CTS) { printk_once(KERN_WARNING "ext4: unsupported key mode %d\n", ctx->key.mode); return ERR_PTR(-ENOKEY); } /* As a first cut, we will allocate new tfm in every call. * later, we will keep the tfm around, in case the key gets * re-used */ if (ctx->ctfm == NULL) { ctx->ctfm = crypto_alloc_ablkcipher("cts(cbc(aes))", 0, 0); } if (IS_ERR(ctx->ctfm)) { res = PTR_ERR(ctx->ctfm); printk( KERN_DEBUG "%s: error (%d) allocating crypto tfm\n", __func__, res); ctx->ctfm = NULL; ext4_put_fname_crypto_ctx(&ctx); return ERR_PTR(res); } if (ctx->ctfm == NULL) { printk( KERN_DEBUG "%s: could not allocate crypto tfm\n", __func__); ext4_put_fname_crypto_ctx(&ctx); return ERR_PTR(-ENOMEM); } if (ctx->workpage == NULL) ctx->workpage = alloc_page(GFP_NOFS); if (IS_ERR(ctx->workpage)) { res = PTR_ERR(ctx->workpage); printk( KERN_DEBUG "%s: error (%d) allocating work page\n", __func__, res); ctx->workpage = NULL; ext4_put_fname_crypto_ctx(&ctx); return ERR_PTR(res); } if (ctx->workpage == NULL) { printk( KERN_DEBUG "%s: could not allocate work page\n", __func__); ext4_put_fname_crypto_ctx(&ctx); return ERR_PTR(-ENOMEM); } ctx->lim = max_ciphertext_len; crypto_ablkcipher_clear_flags(ctx->ctfm, ~0); crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctx->ctfm), CRYPTO_TFM_REQ_WEAK_KEY); /* If we are lucky, we will get a context that is already * set up with the right key. Else, we will have to * set the key */ if (!ctx->ctfm_key_is_ready) { /* Since our crypto objectives for filename encryption * are pretty weak, * we directly use the inode master key */ res = crypto_ablkcipher_setkey(ctx->ctfm, ctx->key.raw, ctx->key.size); if (res) { ext4_put_fname_crypto_ctx(&ctx); return ERR_PTR(-EIO); } ctx->ctfm_key_is_ready = 1; } else { /* In the current implementation, key should never be * marked "ready" for a context that has just been * allocated. So we should never reach here */ BUG(); } } if (ctx->htfm == NULL) ctx->htfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->htfm)) { res = PTR_ERR(ctx->htfm); printk(KERN_DEBUG "%s: error (%d) allocating hash tfm\n", __func__, res); ctx->htfm = NULL; ext4_put_fname_crypto_ctx(&ctx); return ERR_PTR(res); } if (ctx->htfm == NULL) { printk(KERN_DEBUG "%s: could not allocate hash tfm\n", __func__); ext4_put_fname_crypto_ctx(&ctx); return ERR_PTR(-ENOMEM); } return ctx; } /** * ext4_fname_crypto_round_up() - * * Return: The next multiple of block size */ u32 ext4_fname_crypto_round_up(u32 size, u32 blksize) { return ((size+blksize-1)/blksize)*blksize; } /** * ext4_fname_crypto_namelen_on_disk() - */ int ext4_fname_crypto_namelen_on_disk(struct ext4_fname_crypto_ctx *ctx, u32 namelen) { u32 ciphertext_len; int padding = 4 << (ctx->flags & EXT4_POLICY_FLAGS_PAD_MASK); if (ctx == NULL) return -EIO; if (!(ctx->has_valid_key)) return -EACCES; ciphertext_len = (namelen < EXT4_CRYPTO_BLOCK_SIZE) ? EXT4_CRYPTO_BLOCK_SIZE : namelen; ciphertext_len = ext4_fname_crypto_round_up(ciphertext_len, padding); ciphertext_len = (ciphertext_len > ctx->lim) ? ctx->lim : ciphertext_len; return (int) ciphertext_len; } /** * ext4_fname_crypto_alloc_obuff() - * * Allocates an output buffer that is sufficient for the crypto operation * specified by the context and the direction. */ int ext4_fname_crypto_alloc_buffer(struct ext4_fname_crypto_ctx *ctx, u32 ilen, struct ext4_str *crypto_str) { unsigned int olen; int padding = 4 << (ctx->flags & EXT4_POLICY_FLAGS_PAD_MASK); if (!ctx) return -EIO; if (padding < EXT4_CRYPTO_BLOCK_SIZE) padding = EXT4_CRYPTO_BLOCK_SIZE; olen = ext4_fname_crypto_round_up(ilen, padding); crypto_str->len = olen; if (olen < EXT4_FNAME_CRYPTO_DIGEST_SIZE*2) olen = EXT4_FNAME_CRYPTO_DIGEST_SIZE*2; /* Allocated buffer can hold one more character to null-terminate the * string */ crypto_str->name = kmalloc(olen+1, GFP_NOFS); if (!(crypto_str->name)) return -ENOMEM; return 0; } /** * ext4_fname_crypto_free_buffer() - * * Frees the buffer allocated for crypto operation. */ void ext4_fname_crypto_free_buffer(struct ext4_str *crypto_str) { if (!crypto_str) return; kfree(crypto_str->name); crypto_str->name = NULL; } /** * ext4_fname_disk_to_usr() - converts a filename from disk space to user space */ int _ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx, struct dx_hash_info *hinfo, const struct ext4_str *iname, struct ext4_str *oname) { char buf[24]; int ret; if (ctx == NULL) return -EIO; if (iname->len < 3) { /*Check for . and .. */ if (iname->name[0] == '.' && iname->name[iname->len-1] == '.') { oname->name[0] = '.'; oname->name[iname->len-1] = '.'; oname->len = iname->len; return oname->len; } } if (ctx->has_valid_key) return ext4_fname_decrypt(ctx, iname, oname); if (iname->len <= EXT4_FNAME_CRYPTO_DIGEST_SIZE) { ret = digest_encode(iname->name, iname->len, oname->name); oname->len = ret; return ret; } if (hinfo) { memcpy(buf, &hinfo->hash, 4); memcpy(buf+4, &hinfo->minor_hash, 4); } else memset(buf, 0, 8); memcpy(buf + 8, iname->name + iname->len - 16, 16); oname->name[0] = '_'; ret = digest_encode(buf, 24, oname->name+1); oname->len = ret + 1; return ret + 1; } int ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx, struct dx_hash_info *hinfo, const struct ext4_dir_entry_2 *de, struct ext4_str *oname) { struct ext4_str iname = {.name = (unsigned char *) de->name, .len = de->name_len }; return _ext4_fname_disk_to_usr(ctx, hinfo, &iname, oname); } /** * ext4_fname_usr_to_disk() - converts a filename from user space to disk space */ int ext4_fname_usr_to_disk(struct ext4_fname_crypto_ctx *ctx, const struct qstr *iname, struct ext4_str *oname) { int res; if (ctx == NULL) return -EIO; if (iname->len < 3) { /*Check for . and .. */ if (iname->name[0] == '.' && iname->name[iname->len-1] == '.') { oname->name[0] = '.'; oname->name[iname->len-1] = '.'; oname->len = iname->len; return oname->len; } } if (ctx->has_valid_key) { res = ext4_fname_encrypt(ctx, iname, oname); return res; } /* Without a proper key, a user is not allowed to modify the filenames * in a directory. Consequently, a user space name cannot be mapped to * a disk-space name */ return -EACCES; } /* * Calculate the htree hash from a filename from user space */ int ext4_fname_usr_to_hash(struct ext4_fname_crypto_ctx *ctx, const struct qstr *iname, struct dx_hash_info *hinfo) { struct ext4_str tmp; int ret = 0; char buf[EXT4_FNAME_CRYPTO_DIGEST_SIZE+1]; if (!ctx || ((iname->name[0] == '.') && ((iname->len == 1) || ((iname->name[1] == '.') && (iname->len == 2))))) { ext4fs_dirhash(iname->name, iname->len, hinfo); return 0; } if (!ctx->has_valid_key && iname->name[0] == '_') { if (iname->len != 33) return -ENOENT; ret = digest_decode(iname->name+1, iname->len, buf); if (ret != 24) return -ENOENT; memcpy(&hinfo->hash, buf, 4); memcpy(&hinfo->minor_hash, buf + 4, 4); return 0; } if (!ctx->has_valid_key && iname->name[0] != '_') { if (iname->len > 43) return -ENOENT; ret = digest_decode(iname->name, iname->len, buf); ext4fs_dirhash(buf, ret, hinfo); return 0; } /* First encrypt the plaintext name */ ret = ext4_fname_crypto_alloc_buffer(ctx, iname->len, &tmp); if (ret < 0) return ret; ret = ext4_fname_encrypt(ctx, iname, &tmp); if (ret >= 0) { ext4fs_dirhash(tmp.name, tmp.len, hinfo); ret = 0; } ext4_fname_crypto_free_buffer(&tmp); return ret; } int ext4_fname_match(struct ext4_fname_crypto_ctx *ctx, struct ext4_str *cstr, int len, const char * const name, struct ext4_dir_entry_2 *de) { int ret = -ENOENT; int bigname = (*name == '_'); if (ctx->has_valid_key) { if (cstr->name == NULL) { struct qstr istr; ret = ext4_fname_crypto_alloc_buffer(ctx, len, cstr); if (ret < 0) goto errout; istr.name = name; istr.len = len; ret = ext4_fname_encrypt(ctx, &istr, cstr); if (ret < 0) goto errout; } } else { if (cstr->name == NULL) { cstr->name = kmalloc(32, GFP_KERNEL); if (cstr->name == NULL) return -ENOMEM; if ((bigname && (len != 33)) || (!bigname && (len > 43))) goto errout; ret = digest_decode(name+bigname, len-bigname, cstr->name); if (ret < 0) { ret = -ENOENT; goto errout; } cstr->len = ret; } if (bigname) { if (de->name_len < 16) return 0; ret = memcmp(de->name + de->name_len - 16, cstr->name + 8, 16); return (ret == 0) ? 1 : 0; } } if (de->name_len != cstr->len) return 0; ret = memcmp(de->name, cstr->name, cstr->len); return (ret == 0) ? 1 : 0; errout: kfree(cstr->name); cstr->name = NULL; return ret; }