/* * File: bf5xx_sport.c * Based on: * Author: Roy Huang * * Created: Tue Sep 21 10:52:42 CEST 2004 * Description: * Blackfin SPORT Driver * * Copyright 2004-2007 Analog Devices Inc. * * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include "bf5xx-sport.h" /* delay between frame sync pulse and first data bit in multichannel mode */ #define FRAME_DELAY (1<<12) /* note: multichannel is in units of 8 channels, * tdm_count is # channels NOT / 8 ! */ int sport_set_multichannel(struct sport_device *sport, int tdm_count, u32 mask, int packed) { pr_debug("%s tdm_count=%d mask:0x%08x packed=%d\n", __func__, tdm_count, mask, packed); if ((sport->regs->tcr1 & TSPEN) || (sport->regs->rcr1 & RSPEN)) return -EBUSY; if (tdm_count & 0x7) return -EINVAL; if (tdm_count > 32) return -EINVAL; /* Only support less than 32 channels now */ if (tdm_count) { sport->regs->mcmc1 = ((tdm_count>>3)-1) << 12; sport->regs->mcmc2 = FRAME_DELAY | MCMEN | \ (packed ? (MCDTXPE|MCDRXPE) : 0); sport->regs->mtcs0 = mask; sport->regs->mrcs0 = mask; sport->regs->mtcs1 = 0; sport->regs->mrcs1 = 0; sport->regs->mtcs2 = 0; sport->regs->mrcs2 = 0; sport->regs->mtcs3 = 0; sport->regs->mrcs3 = 0; } else { sport->regs->mcmc1 = 0; sport->regs->mcmc2 = 0; sport->regs->mtcs0 = 0; sport->regs->mrcs0 = 0; } sport->regs->mtcs1 = 0; sport->regs->mtcs2 = 0; sport->regs->mtcs3 = 0; sport->regs->mrcs1 = 0; sport->regs->mrcs2 = 0; sport->regs->mrcs3 = 0; SSYNC(); return 0; } EXPORT_SYMBOL(sport_set_multichannel); int sport_config_rx(struct sport_device *sport, unsigned int rcr1, unsigned int rcr2, unsigned int clkdiv, unsigned int fsdiv) { if ((sport->regs->tcr1 & TSPEN) || (sport->regs->rcr1 & RSPEN)) return -EBUSY; sport->regs->rcr1 = rcr1; sport->regs->rcr2 = rcr2; sport->regs->rclkdiv = clkdiv; sport->regs->rfsdiv = fsdiv; SSYNC(); return 0; } EXPORT_SYMBOL(sport_config_rx); int sport_config_tx(struct sport_device *sport, unsigned int tcr1, unsigned int tcr2, unsigned int clkdiv, unsigned int fsdiv) { if ((sport->regs->tcr1 & TSPEN) || (sport->regs->rcr1 & RSPEN)) return -EBUSY; sport->regs->tcr1 = tcr1; sport->regs->tcr2 = tcr2; sport->regs->tclkdiv = clkdiv; sport->regs->tfsdiv = fsdiv; SSYNC(); return 0; } EXPORT_SYMBOL(sport_config_tx); static void setup_desc(struct dmasg *desc, void *buf, int fragcount, size_t fragsize, unsigned int cfg, unsigned int x_count, unsigned int ycount, size_t wdsize) { int i; for (i = 0; i < fragcount; ++i) { desc[i].next_desc_addr = &(desc[i + 1]); desc[i].start_addr = (unsigned long)buf + i*fragsize; desc[i].cfg = cfg; desc[i].x_count = x_count; desc[i].x_modify = wdsize; desc[i].y_count = ycount; desc[i].y_modify = wdsize; } /* make circular */ desc[fragcount-1].next_desc_addr = desc; pr_debug("setup desc: desc0=%p, next0=%p, desc1=%p," "next1=%p\nx_count=%x,y_count=%x,addr=0x%lx,cfs=0x%x\n", desc, desc[0].next_desc_addr, desc+1, desc[1].next_desc_addr, desc[0].x_count, desc[0].y_count, desc[0].start_addr, desc[0].cfg); } static int sport_start(struct sport_device *sport) { enable_dma(sport->dma_rx_chan); enable_dma(sport->dma_tx_chan); sport->regs->rcr1 |= RSPEN; sport->regs->tcr1 |= TSPEN; SSYNC(); return 0; } static int sport_stop(struct sport_device *sport) { sport->regs->tcr1 &= ~TSPEN; sport->regs->rcr1 &= ~RSPEN; SSYNC(); disable_dma(sport->dma_rx_chan); disable_dma(sport->dma_tx_chan); return 0; } static inline int sport_hook_rx_dummy(struct sport_device *sport) { struct dmasg *desc, temp_desc; unsigned long flags; BUG_ON(sport->dummy_rx_desc == NULL); BUG_ON(sport->curr_rx_desc == sport->dummy_rx_desc); /* Maybe the dummy buffer descriptor ring is damaged */ sport->dummy_rx_desc->next_desc_addr = sport->dummy_rx_desc + 1; local_irq_save(flags); desc = get_dma_next_desc_ptr(sport->dma_rx_chan); /* Copy the descriptor which will be damaged to backup */ temp_desc = *desc; desc->x_count = sport->dummy_count / 2; desc->y_count = 0; desc->next_desc_addr = sport->dummy_rx_desc; local_irq_restore(flags); /* Waiting for dummy buffer descriptor is already hooked*/ while ((get_dma_curr_desc_ptr(sport->dma_rx_chan) - sizeof(struct dmasg)) != sport->dummy_rx_desc) continue; sport->curr_rx_desc = sport->dummy_rx_desc; /* Restore the damaged descriptor */ *desc = temp_desc; return 0; } static inline int sport_rx_dma_start(struct sport_device *sport, int dummy) { if (dummy) { sport->dummy_rx_desc->next_desc_addr = sport->dummy_rx_desc; sport->curr_rx_desc = sport->dummy_rx_desc; } else sport->curr_rx_desc = sport->dma_rx_desc; set_dma_next_desc_addr(sport->dma_rx_chan, sport->curr_rx_desc); set_dma_x_count(sport->dma_rx_chan, 0); set_dma_x_modify(sport->dma_rx_chan, 0); set_dma_config(sport->dma_rx_chan, (DMAFLOW_LARGE | NDSIZE_9 | \ WDSIZE_32 | WNR)); set_dma_curr_addr(sport->dma_rx_chan, sport->curr_rx_desc->start_addr); SSYNC(); return 0; } static inline int sport_tx_dma_start(struct sport_device *sport, int dummy) { if (dummy) { sport->dummy_tx_desc->next_desc_addr = sport->dummy_tx_desc; sport->curr_tx_desc = sport->dummy_tx_desc; } else sport->curr_tx_desc = sport->dma_tx_desc; set_dma_next_desc_addr(sport->dma_tx_chan, sport->curr_tx_desc); set_dma_x_count(sport->dma_tx_chan, 0); set_dma_x_modify(sport->dma_tx_chan, 0); set_dma_config(sport->dma_tx_chan, (DMAFLOW_LARGE | NDSIZE_9 | WDSIZE_32)); set_dma_curr_addr(sport->dma_tx_chan, sport->curr_tx_desc->start_addr); SSYNC(); return 0; } int sport_rx_start(struct sport_device *sport) { unsigned long flags; pr_debug("%s enter\n", __func__); if (sport->rx_run) return -EBUSY; if (sport->tx_run) { /* tx is running, rx is not running */ BUG_ON(sport->dma_rx_desc == NULL); BUG_ON(sport->curr_rx_desc != sport->dummy_rx_desc); local_irq_save(flags); while ((get_dma_curr_desc_ptr(sport->dma_rx_chan) - sizeof(struct dmasg)) != sport->dummy_rx_desc) continue; sport->dummy_rx_desc->next_desc_addr = sport->dma_rx_desc; local_irq_restore(flags); sport->curr_rx_desc = sport->dma_rx_desc; } else { sport_tx_dma_start(sport, 1); sport_rx_dma_start(sport, 0); sport_start(sport); } sport->rx_run = 1; return 0; } EXPORT_SYMBOL(sport_rx_start); int sport_rx_stop(struct sport_device *sport) { pr_debug("%s enter\n", __func__); if (!sport->rx_run) return 0; if (sport->tx_run) { /* TX dma is still running, hook the dummy buffer */ sport_hook_rx_dummy(sport); } else { /* Both rx and tx dma will be stopped */ sport_stop(sport); sport->curr_rx_desc = NULL; sport->curr_tx_desc = NULL; } sport->rx_run = 0; return 0; } EXPORT_SYMBOL(sport_rx_stop); static inline int sport_hook_tx_dummy(struct sport_device *sport) { struct dmasg *desc, temp_desc; unsigned long flags; BUG_ON(sport->dummy_tx_desc == NULL); BUG_ON(sport->curr_tx_desc == sport->dummy_tx_desc); sport->dummy_tx_desc->next_desc_addr = sport->dummy_tx_desc + 1; /* Shorten the time on last normal descriptor */ local_irq_save(flags); desc = get_dma_next_desc_ptr(sport->dma_tx_chan); /* Store the descriptor which will be damaged */ temp_desc = *desc; desc->x_count = sport->dummy_count / 2; desc->y_count = 0; desc->next_desc_addr = sport->dummy_tx_desc; local_irq_restore(flags); /* Waiting for dummy buffer descriptor is already hooked*/ while ((get_dma_curr_desc_ptr(sport->dma_tx_chan) - \ sizeof(struct dmasg)) != sport->dummy_tx_desc) continue; sport->curr_tx_desc = sport->dummy_tx_desc; /* Restore the damaged descriptor */ *desc = temp_desc; return 0; } int sport_tx_start(struct sport_device *sport) { unsigned long flags; pr_debug("%s: tx_run:%d, rx_run:%d\n", __func__, sport->tx_run, sport->rx_run); if (sport->tx_run) return -EBUSY; if (sport->rx_run) { BUG_ON(sport->dma_tx_desc == NULL); BUG_ON(sport->curr_tx_desc != sport->dummy_tx_desc); /* Hook the normal buffer descriptor */ local_irq_save(flags); while ((get_dma_curr_desc_ptr(sport->dma_tx_chan) - sizeof(struct dmasg)) != sport->dummy_tx_desc) continue; sport->dummy_tx_desc->next_desc_addr = sport->dma_tx_desc; local_irq_restore(flags); sport->curr_tx_desc = sport->dma_tx_desc; } else { sport_tx_dma_start(sport, 0); /* Let rx dma run the dummy buffer */ sport_rx_dma_start(sport, 1); sport_start(sport); } sport->tx_run = 1; return 0; } EXPORT_SYMBOL(sport_tx_start); int sport_tx_stop(struct sport_device *sport) { if (!sport->tx_run) return 0; if (sport->rx_run) { /* RX is still running, hook the dummy buffer */ sport_hook_tx_dummy(sport); } else { /* Both rx and tx dma stopped */ sport_stop(sport); sport->curr_rx_desc = NULL; sport->curr_tx_desc = NULL; } sport->tx_run = 0; return 0; } EXPORT_SYMBOL(sport_tx_stop); static inline int compute_wdsize(size_t wdsize) { switch (wdsize) { case 1: return WDSIZE_8; case 2: return WDSIZE_16; case 4: default: return WDSIZE_32; } } int sport_config_rx_dma(struct sport_device *sport, void *buf, int fragcount, size_t fragsize) { unsigned int x_count; unsigned int y_count; unsigned int cfg; dma_addr_t addr; pr_debug("%s buf:%p, frag:%d, fragsize:0x%lx\n", __func__, \ buf, fragcount, fragsize); x_count = fragsize / sport->wdsize; y_count = 0; /* for fragments larger than 64k words we use 2d dma, * denote fragecount as two numbers' mutliply and both of them * are less than 64k.*/ if (x_count >= 0x10000) { int i, count = x_count; for (i = 16; i > 0; i--) { x_count = 1 << i; if ((count & (x_count - 1)) == 0) { y_count = count >> i; if (y_count < 0x10000) break; } } if (i == 0) return -EINVAL; } pr_debug("%s(x_count:0x%x, y_count:0x%x)\n", __func__, x_count, y_count); if (sport->dma_rx_desc) dma_free_coherent(NULL, sport->rx_desc_bytes, sport->dma_rx_desc, 0); /* Allocate a new descritor ring as current one. */ sport->dma_rx_desc = dma_alloc_coherent(NULL, \ fragcount * sizeof(struct dmasg), &addr, 0); sport->rx_desc_bytes = fragcount * sizeof(struct dmasg); if (!sport->dma_rx_desc) { pr_err("Failed to allocate memory for rx desc\n"); return -ENOMEM; } sport->rx_buf = buf; sport->rx_fragsize = fragsize; sport->rx_frags = fragcount; cfg = 0x7000 | DI_EN | compute_wdsize(sport->wdsize) | WNR | \ (DESC_ELEMENT_COUNT << 8); /* large descriptor mode */ if (y_count != 0) cfg |= DMA2D; setup_desc(sport->dma_rx_desc, buf, fragcount, fragsize, cfg|DMAEN, x_count, y_count, sport->wdsize); return 0; } EXPORT_SYMBOL(sport_config_rx_dma); int sport_config_tx_dma(struct sport_device *sport, void *buf, \ int fragcount, size_t fragsize) { unsigned int x_count; unsigned int y_count; unsigned int cfg; dma_addr_t addr; pr_debug("%s buf:%p, fragcount:%d, fragsize:0x%lx\n", __func__, buf, fragcount, fragsize); x_count = fragsize/sport->wdsize; y_count = 0; /* for fragments larger than 64k words we use 2d dma, * denote fragecount as two numbers' mutliply and both of them * are less than 64k.*/ if (x_count >= 0x10000) { int i, count = x_count; for (i = 16; i > 0; i--) { x_count = 1 << i; if ((count & (x_count - 1)) == 0) { y_count = count >> i; if (y_count < 0x10000) break; } } if (i == 0) return -EINVAL; } pr_debug("%s x_count:0x%x, y_count:0x%x\n", __func__, x_count, y_count); if (sport->dma_tx_desc) { dma_free_coherent(NULL, sport->tx_desc_bytes, \ sport->dma_tx_desc, 0); } sport->dma_tx_desc = dma_alloc_coherent(NULL, \ fragcount * sizeof(struct dmasg), &addr, 0); sport->tx_desc_bytes = fragcount * sizeof(struct dmasg); if (!sport->dma_tx_desc) { pr_err("Failed to allocate memory for tx desc\n"); return -ENOMEM; } sport->tx_buf = buf; sport->tx_fragsize = fragsize; sport->tx_frags = fragcount; cfg = 0x7000 | DI_EN | compute_wdsize(sport->wdsize) | \ (DESC_ELEMENT_COUNT << 8); /* large descriptor mode */ if (y_count != 0) cfg |= DMA2D; setup_desc(sport->dma_tx_desc, buf, fragcount, fragsize, cfg|DMAEN, x_count, y_count, sport->wdsize); return 0; } EXPORT_SYMBOL(sport_config_tx_dma); /* setup dummy dma descriptor ring, which don't generate interrupts, * the x_modify is set to 0 */ static int sport_config_rx_dummy(struct sport_device *sport) { struct dmasg *desc; unsigned config; pr_debug("%s entered\n", __func__); if (L1_DATA_A_LENGTH) desc = l1_data_sram_zalloc(2 * sizeof(*desc)); else { dma_addr_t addr; desc = dma_alloc_coherent(NULL, 2 * sizeof(*desc), &addr, 0); memset(desc, 0, 2 * sizeof(*desc)); } if (desc == NULL) { pr_err("Failed to allocate memory for dummy rx desc\n"); return -ENOMEM; } sport->dummy_rx_desc = desc; desc->start_addr = (unsigned long)sport->dummy_buf; config = DMAFLOW_LARGE | NDSIZE_9 | compute_wdsize(sport->wdsize) | WNR | DMAEN; desc->cfg = config; desc->x_count = sport->dummy_count/sport->wdsize; desc->x_modify = sport->wdsize; desc->y_count = 0; desc->y_modify = 0; memcpy(desc+1, desc, sizeof(*desc)); desc->next_desc_addr = desc + 1; desc[1].next_desc_addr = desc; return 0; } static int sport_config_tx_dummy(struct sport_device *sport) { struct dmasg *desc; unsigned int config; pr_debug("%s entered\n", __func__); if (L1_DATA_A_LENGTH) desc = l1_data_sram_zalloc(2 * sizeof(*desc)); else { dma_addr_t addr; desc = dma_alloc_coherent(NULL, 2 * sizeof(*desc), &addr, 0); memset(desc, 0, 2 * sizeof(*desc)); } if (!desc) { pr_err("Failed to allocate memory for dummy tx desc\n"); return -ENOMEM; } sport->dummy_tx_desc = desc; desc->start_addr = (unsigned long)sport->dummy_buf + \ sport->dummy_count; config = DMAFLOW_LARGE | NDSIZE_9 | compute_wdsize(sport->wdsize) | DMAEN; desc->cfg = config; desc->x_count = sport->dummy_count/sport->wdsize; desc->x_modify = sport->wdsize; desc->y_count = 0; desc->y_modify = 0; memcpy(desc+1, desc, sizeof(*desc)); desc->next_desc_addr = desc + 1; desc[1].next_desc_addr = desc; return 0; } unsigned long sport_curr_offset_rx(struct sport_device *sport) { unsigned long curr = get_dma_curr_addr(sport->dma_rx_chan); return (unsigned char *)curr - sport->rx_buf; } EXPORT_SYMBOL(sport_curr_offset_rx); unsigned long sport_curr_offset_tx(struct sport_device *sport) { unsigned long curr = get_dma_curr_addr(sport->dma_tx_chan); return (unsigned char *)curr - sport->tx_buf; } EXPORT_SYMBOL(sport_curr_offset_tx); void sport_incfrag(struct sport_device *sport, int *frag, int tx) { ++(*frag); if (tx == 1 && *frag == sport->tx_frags) *frag = 0; if (tx == 0 && *frag == sport->rx_frags) *frag = 0; } EXPORT_SYMBOL(sport_incfrag); void sport_decfrag(struct sport_device *sport, int *frag, int tx) { --(*frag); if (tx == 1 && *frag == 0) *frag = sport->tx_frags; if (tx == 0 && *frag == 0) *frag = sport->rx_frags; } EXPORT_SYMBOL(sport_decfrag); static int sport_check_status(struct sport_device *sport, unsigned int *sport_stat, unsigned int *rx_stat, unsigned int *tx_stat) { int status = 0; if (sport_stat) { SSYNC(); status = sport->regs->stat; if (status & (TOVF|TUVF|ROVF|RUVF)) sport->regs->stat = (status & (TOVF|TUVF|ROVF|RUVF)); SSYNC(); *sport_stat = status; } if (rx_stat) { SSYNC(); status = get_dma_curr_irqstat(sport->dma_rx_chan); if (status & (DMA_DONE|DMA_ERR)) clear_dma_irqstat(sport->dma_rx_chan); SSYNC(); *rx_stat = status; } if (tx_stat) { SSYNC(); status = get_dma_curr_irqstat(sport->dma_tx_chan); if (status & (DMA_DONE|DMA_ERR)) clear_dma_irqstat(sport->dma_tx_chan); SSYNC(); *tx_stat = status; } return 0; } int sport_dump_stat(struct sport_device *sport, char *buf, size_t len) { int ret; ret = snprintf(buf, len, "sts: 0x%04x\n" "rx dma %d sts: 0x%04x tx dma %d sts: 0x%04x\n", sport->regs->stat, sport->dma_rx_chan, get_dma_curr_irqstat(sport->dma_rx_chan), sport->dma_tx_chan, get_dma_curr_irqstat(sport->dma_tx_chan)); buf += ret; len -= ret; ret += snprintf(buf, len, "curr_rx_desc:0x%p, curr_tx_desc:0x%p\n" "dma_rx_desc:0x%p, dma_tx_desc:0x%p\n" "dummy_rx_desc:0x%p, dummy_tx_desc:0x%p\n", sport->curr_rx_desc, sport->curr_tx_desc, sport->dma_rx_desc, sport->dma_tx_desc, sport->dummy_rx_desc, sport->dummy_tx_desc); return ret; } static irqreturn_t rx_handler(int irq, void *dev_id) { unsigned int rx_stat; struct sport_device *sport = dev_id; pr_debug("%s enter\n", __func__); sport_check_status(sport, NULL, &rx_stat, NULL); if (!(rx_stat & DMA_DONE)) pr_err("rx dma is already stopped\n"); if (sport->rx_callback) { sport->rx_callback(sport->rx_data); return IRQ_HANDLED; } return IRQ_NONE; } static irqreturn_t tx_handler(int irq, void *dev_id) { unsigned int tx_stat; struct sport_device *sport = dev_id; pr_debug("%s enter\n", __func__); sport_check_status(sport, NULL, NULL, &tx_stat); if (!(tx_stat & DMA_DONE)) { pr_err("tx dma is already stopped\n"); return IRQ_HANDLED; } if (sport->tx_callback) { sport->tx_callback(sport->tx_data); return IRQ_HANDLED; } return IRQ_NONE; } static irqreturn_t err_handler(int irq, void *dev_id) { unsigned int status = 0; struct sport_device *sport = dev_id; pr_debug("%s\n", __func__); if (sport_check_status(sport, &status, NULL, NULL)) { pr_err("error checking status ??"); return IRQ_NONE; } if (status & (TOVF|TUVF|ROVF|RUVF)) { pr_info("sport status error:%s%s%s%s\n", status & TOVF ? " TOVF" : "", status & TUVF ? " TUVF" : "", status & ROVF ? " ROVF" : "", status & RUVF ? " RUVF" : ""); if (status & TOVF || status & TUVF) { disable_dma(sport->dma_tx_chan); if (sport->tx_run) sport_tx_dma_start(sport, 0); else sport_tx_dma_start(sport, 1); enable_dma(sport->dma_tx_chan); } else { disable_dma(sport->dma_rx_chan); if (sport->rx_run) sport_rx_dma_start(sport, 0); else sport_rx_dma_start(sport, 1); enable_dma(sport->dma_rx_chan); } } status = sport->regs->stat; if (status & (TOVF|TUVF|ROVF|RUVF)) sport->regs->stat = (status & (TOVF|TUVF|ROVF|RUVF)); SSYNC(); if (sport->err_callback) sport->err_callback(sport->err_data); return IRQ_HANDLED; } int sport_set_rx_callback(struct sport_device *sport, void (*rx_callback)(void *), void *rx_data) { BUG_ON(rx_callback == NULL); sport->rx_callback = rx_callback; sport->rx_data = rx_data; return 0; } EXPORT_SYMBOL(sport_set_rx_callback); int sport_set_tx_callback(struct sport_device *sport, void (*tx_callback)(void *), void *tx_data) { BUG_ON(tx_callback == NULL); sport->tx_callback = tx_callback; sport->tx_data = tx_data; return 0; } EXPORT_SYMBOL(sport_set_tx_callback); int sport_set_err_callback(struct sport_device *sport, void (*err_callback)(void *), void *err_data) { BUG_ON(err_callback == NULL); sport->err_callback = err_callback; sport->err_data = err_data; return 0; } EXPORT_SYMBOL(sport_set_err_callback); static int sport_config_pdev(struct platform_device *pdev, struct sport_param *param) { /* Extract settings from platform data */ struct device *dev = &pdev->dev; struct bfin_snd_platform_data *pdata = dev->platform_data; struct resource *res; param->num = pdev->id; if (!pdata) { dev_err(dev, "no platform_data\n"); return -ENODEV; } param->pin_req = pdata->pin_req; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(dev, "no MEM resource\n"); return -ENODEV; } param->regs = (struct sport_register *)res->start; /* first RX, then TX */ res = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (!res) { dev_err(dev, "no rx DMA resource\n"); return -ENODEV; } param->dma_rx_chan = res->start; res = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (!res) { dev_err(dev, "no tx DMA resource\n"); return -ENODEV; } param->dma_tx_chan = res->start; res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res) { dev_err(dev, "no irq resource\n"); return -ENODEV; } param->err_irq = res->start; return 0; } struct sport_device *sport_init(struct platform_device *pdev, unsigned int wdsize, unsigned int dummy_count, size_t priv_size) { struct device *dev = &pdev->dev; struct sport_param param; struct sport_device *sport; int ret; dev_dbg(dev, "%s enter\n", __func__); param.wdsize = wdsize; param.dummy_count = dummy_count; BUG_ON(param.wdsize == 0 || param.dummy_count == 0); ret = sport_config_pdev(pdev, ¶m); if (ret) return NULL; if (peripheral_request_list(param.pin_req, "soc-audio")) { dev_err(dev, "requesting Peripherals failed\n"); return NULL; } sport = kzalloc(sizeof(*sport), GFP_KERNEL); if (!sport) { dev_err(dev, "failed to allocate for sport device\n"); goto __init_err0; } sport->num = param.num; sport->dma_rx_chan = param.dma_rx_chan; sport->dma_tx_chan = param.dma_tx_chan; sport->err_irq = param.err_irq; sport->regs = param.regs; sport->pin_req = param.pin_req; if (request_dma(sport->dma_rx_chan, "SPORT RX Data") == -EBUSY) { dev_err(dev, "failed to request RX dma %d\n", sport->dma_rx_chan); goto __init_err1; } if (set_dma_callback(sport->dma_rx_chan, rx_handler, sport) != 0) { dev_err(dev, "failed to request RX irq %d\n", sport->dma_rx_chan); goto __init_err2; } if (request_dma(sport->dma_tx_chan, "SPORT TX Data") == -EBUSY) { dev_err(dev, "failed to request TX dma %d\n", sport->dma_tx_chan); goto __init_err2; } if (set_dma_callback(sport->dma_tx_chan, tx_handler, sport) != 0) { dev_err(dev, "failed to request TX irq %d\n", sport->dma_tx_chan); goto __init_err3; } if (request_irq(sport->err_irq, err_handler, IRQF_SHARED, "SPORT err", sport) < 0) { dev_err(dev, "failed to request err irq %d\n", sport->err_irq); goto __init_err3; } dev_info(dev, "dma rx:%d tx:%d, err irq:%d, regs:%p\n", sport->dma_rx_chan, sport->dma_tx_chan, sport->err_irq, sport->regs); sport->wdsize = param.wdsize; sport->dummy_count = param.dummy_count; sport->private_data = kzalloc(priv_size, GFP_KERNEL); if (!sport->private_data) { dev_err(dev, "could not alloc priv data %zu bytes\n", priv_size); goto __init_err4; } if (L1_DATA_A_LENGTH) sport->dummy_buf = l1_data_sram_zalloc(param.dummy_count * 2); else sport->dummy_buf = kzalloc(param.dummy_count * 2, GFP_KERNEL); if (sport->dummy_buf == NULL) { dev_err(dev, "failed to allocate dummy buffer\n"); goto __error1; } ret = sport_config_rx_dummy(sport); if (ret) { dev_err(dev, "failed to config rx dummy ring\n"); goto __error2; } ret = sport_config_tx_dummy(sport); if (ret) { dev_err(dev, "failed to config tx dummy ring\n"); goto __error3; } platform_set_drvdata(pdev, sport); return sport; __error3: if (L1_DATA_A_LENGTH) l1_data_sram_free(sport->dummy_rx_desc); else dma_free_coherent(NULL, 2*sizeof(struct dmasg), sport->dummy_rx_desc, 0); __error2: if (L1_DATA_A_LENGTH) l1_data_sram_free(sport->dummy_buf); else kfree(sport->dummy_buf); __error1: kfree(sport->private_data); __init_err4: free_irq(sport->err_irq, sport); __init_err3: free_dma(sport->dma_tx_chan); __init_err2: free_dma(sport->dma_rx_chan); __init_err1: kfree(sport); __init_err0: peripheral_free_list(param.pin_req); return NULL; } EXPORT_SYMBOL(sport_init); void sport_done(struct sport_device *sport) { if (sport == NULL) return; sport_stop(sport); if (sport->dma_rx_desc) dma_free_coherent(NULL, sport->rx_desc_bytes, sport->dma_rx_desc, 0); if (sport->dma_tx_desc) dma_free_coherent(NULL, sport->tx_desc_bytes, sport->dma_tx_desc, 0); #if L1_DATA_A_LENGTH != 0 l1_data_sram_free(sport->dummy_rx_desc); l1_data_sram_free(sport->dummy_tx_desc); l1_data_sram_free(sport->dummy_buf); #else dma_free_coherent(NULL, 2*sizeof(struct dmasg), sport->dummy_rx_desc, 0); dma_free_coherent(NULL, 2*sizeof(struct dmasg), sport->dummy_tx_desc, 0); kfree(sport->dummy_buf); #endif free_dma(sport->dma_rx_chan); free_dma(sport->dma_tx_chan); free_irq(sport->err_irq, sport); kfree(sport->private_data); peripheral_free_list(sport->pin_req); kfree(sport); } EXPORT_SYMBOL(sport_done); /* * It is only used to send several bytes when dma is not enabled * sport controller is configured but not enabled. * Multichannel cannot works with pio mode */ /* Used by ac97 to write and read codec register */ int sport_send_and_recv(struct sport_device *sport, u8 *out_data, \ u8 *in_data, int len) { unsigned short dma_config; unsigned short status; unsigned long flags; unsigned long wait = 0; pr_debug("%s enter, out_data:%p, in_data:%p len:%d\n", \ __func__, out_data, in_data, len); pr_debug("tcr1:0x%04x, tcr2:0x%04x, tclkdiv:0x%04x, tfsdiv:0x%04x\n" "mcmc1:0x%04x, mcmc2:0x%04x\n", sport->regs->tcr1, sport->regs->tcr2, sport->regs->tclkdiv, sport->regs->tfsdiv, sport->regs->mcmc1, sport->regs->mcmc2); flush_dcache_range((unsigned)out_data, (unsigned)(out_data + len)); /* Enable tx dma */ dma_config = (RESTART | WDSIZE_16 | DI_EN); set_dma_start_addr(sport->dma_tx_chan, (unsigned long)out_data); set_dma_x_count(sport->dma_tx_chan, len/2); set_dma_x_modify(sport->dma_tx_chan, 2); set_dma_config(sport->dma_tx_chan, dma_config); enable_dma(sport->dma_tx_chan); if (in_data != NULL) { invalidate_dcache_range((unsigned)in_data, \ (unsigned)(in_data + len)); /* Enable rx dma */ dma_config = (RESTART | WDSIZE_16 | WNR | DI_EN); set_dma_start_addr(sport->dma_rx_chan, (unsigned long)in_data); set_dma_x_count(sport->dma_rx_chan, len/2); set_dma_x_modify(sport->dma_rx_chan, 2); set_dma_config(sport->dma_rx_chan, dma_config); enable_dma(sport->dma_rx_chan); } local_irq_save(flags); sport->regs->tcr1 |= TSPEN; sport->regs->rcr1 |= RSPEN; SSYNC(); status = get_dma_curr_irqstat(sport->dma_tx_chan); while (status & DMA_RUN) { udelay(1); status = get_dma_curr_irqstat(sport->dma_tx_chan); pr_debug("DMA status:0x%04x\n", status); if (wait++ > 100) goto __over; } status = sport->regs->stat; wait = 0; while (!(status & TXHRE)) { pr_debug("sport status:0x%04x\n", status); udelay(1); status = *(unsigned short *)&sport->regs->stat; if (wait++ > 1000) goto __over; } /* Wait for the last byte sent out */ udelay(20); pr_debug("sport status:0x%04x\n", status); __over: sport->regs->tcr1 &= ~TSPEN; sport->regs->rcr1 &= ~RSPEN; SSYNC(); disable_dma(sport->dma_tx_chan); /* Clear the status */ clear_dma_irqstat(sport->dma_tx_chan); if (in_data != NULL) { disable_dma(sport->dma_rx_chan); clear_dma_irqstat(sport->dma_rx_chan); } SSYNC(); local_irq_restore(flags); return 0; } EXPORT_SYMBOL(sport_send_and_recv); MODULE_AUTHOR("Roy Huang"); MODULE_DESCRIPTION("SPORT driver for ADI Blackfin"); MODULE_LICENSE("GPL");