summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/idle-t2.c
blob: 4461381e0cfc6f93aceb707701d5874558588425 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
 * arch/arm/mach-tegra/idle-t2.c
 *
 * CPU hotplug support for Tegra SoCs
 *
 * Copyright (c) 2009, NVIDIA Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

#include "nvos.h"
#include "nvrm_init.h"
#include "nvrm_drf.h"
#include "ap20/arapbpm.h"
#include "nvrm_module.h"
#include "ap20/arflow_ctlr.h"
#include "nvrm_hardware_access.h"
#include "nvrm_power_private.h"
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/wakelock.h>

extern NvRmDeviceHandle s_hRmGlobal;
extern void cpu_ap20_do_lp2(void);
extern void resume(unsigned int state);
extern uintptr_t g_resume, g_contextSavePA, g_contextSaveVA;
extern NvU32 g_NumActiveCPUs, g_ArmPerif;
extern NvU32 g_enterLP2PA;

#ifdef CONFIG_WAKELOCK
extern struct wake_lock main_wake_lock;
#endif

// Debug-only: set to zero to disable use of flow-controller based idling
#define CPU_CONTEXT_SAVE_AREA_SIZE 4096
#define TEMP_SAVE_AREA_SIZE 16
#define ENABLE_LP2 1
#define NV_POWER_LP2_IDLE_THRESHOLD_MS 700
#define NV_POWER_IDLE_WINDOW_SIZE 100
#define MAX_LP2_TIME_US 1000000
#define NV_POWER_COMPLETE_IDLE_MS 1000

// When non-zero, collects and prints aggregate statistics about idle times
static volatile NvU8 *s_pFlowCtrl = NULL;

void cpu_ap20_do_idle(void);
void mach_tegra_reset(void);
void mach_tegra_idle(void);
extern void enter_lp2(NvU32, NvU32);
extern void exit_power_state(void);
extern void NvSpareTimerTrigger(unsigned long); /* timer.c */

NvU32 lp2count = 0, lp3count = 0, lp2safe = 0;

void __init NvAp20InitFlowController(void);

void __init NvAp20InitFlowController(void)
{
    NvU32 len;
    NvRmPhysAddr pa;
    volatile NvU8 *pTempFc, *pTempArmPerif;
    
    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmModuleID_FlowCtrl, 0), &pa, &len);
            
    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached, (void**)&pTempFc)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map flow controller; DVFS will not function"
               " correctly as a result\n");
        return;
    }

    NvRmModuleGetBaseAddress(s_hRmGlobal,
        NVRM_MODULE_ID(NvRmPrivModuleID_ArmPerif, 0), &pa, &len);

    if (NvRmPhysicalMemMap(pa, len, NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached, (void**)&pTempArmPerif)!=NvSuccess)
    {
        printk(KERN_INFO "failed to map Arm Perif; DVFS will not function"
               " correctly as a result\n");
        return;
    }

    s_pFlowCtrl = pTempFc;
    g_ArmPerif = (NvU32)pTempArmPerif;

    /* Get physical and virtual addresses for a bunch of things
     * 1) The resume address physical - we have to come back here with MMU off
     * 2) The context save physical address - We need to save a bunch of
     * stuff here
     */
    g_resume = virt_to_phys((void*)exit_power_state);
    g_contextSaveVA =
        (uintptr_t)kmalloc(CPU_CONTEXT_SAVE_AREA_SIZE, GFP_ATOMIC);
    g_contextSavePA = virt_to_phys((void*)g_contextSaveVA);
    g_NumActiveCPUs = num_online_cpus();
    g_enterLP2PA = virt_to_phys((void*)enter_lp2);    
}

/*
 *  cpu_ap20_do_idle()
 *
 *  Idle the processor (eg, wait for interrupt).
 *
 *  IRQs are already disabled.
 */
void cpu_ap20_do_idle(void)
{
    unsigned int tmp = 0;
    volatile uint32_t *addr = 0;
    
    dsb();

    if (likely(s_pFlowCtrl))
    {
        /* 
         *  Trigger the "stats monitor" to count the CPU idle cycles.
         */
        if (smp_processor_id())
        {
            addr = (volatile uint32_t*)(s_pFlowCtrl + FLOW_CTLR_HALT_CPU1_EVENTS_0);
        } else
        {
            addr = (volatile uint32_t*)(s_pFlowCtrl + FLOW_CTLR_HALT_CPU_EVENTS_0);
        }

        tmp = NV_DRF_DEF(FLOW_CTLR, HALT_CPU1_EVENTS, MODE, FLOW_MODE_WAITEVENT) 
            | NV_DRF_NUM(FLOW_CTLR, HALT_CPU1_EVENTS, JTAG, 1);

        NV_WRITE32(addr, tmp);
        tmp = NV_READ32(addr);
    }

    // Wait for any interrupt
    __asm__ volatile ("wfi");

    if (likely(s_pFlowCtrl))
    {
        /*
         * Signal "stats monitor" to stop counting the idle cycles.
         */
        tmp = NV_DRF_DEF(FLOW_CTLR, HALT_CPU1_EVENTS, MODE, FLOW_MODE_NONE); 
        NV_WRITE32(addr, tmp);
        tmp = NV_READ32(addr);
    }
}

void mach_tegra_idle(void)
{ 
    static NvU32 flag = 0, lp2_time;
    static NvU64 cur_jiffies = 0, old_jiffies = 0;
    NvU64 delta_jif = 0;
    NvU32 msec, delta;
    NvRmDfsClockUsage clock_usage;

#ifdef CONFIG_WAKELOCK
    //The wake lock api is ready if the main lock is ready 
    if (main_wake_lock.flags)
    {
        //Check if there are any IDLE locks pending
        //If there are, then we do LP3. Else we do LP2
        if (!has_wake_lock(WAKE_LOCK_IDLE) && flag)
        {
            flag = 0;
#if ENABLE_LP2            
            //Only attempt LP2 if the flow controller is ready
            if (s_pFlowCtrl)            
            {
                if (num_online_cpus() > 1)
                    lp2safe = 1;

                if (num_online_cpus() == 1 && lp2safe) {
                    NvU32 dfs_low_corner = (NvRmPrivGetDfsFlags(s_hRmGlobal) &
                                            NvRmDfsStatusFlags_Pause);

                    if (dfs_low_corner) {
                        lp2count++;
                        NvSpareTimerTrigger(lp2_time);
                        cpu_ap20_do_lp2();
                        NvRmPrivSetLp2TimeUS(s_hRmGlobal, MAX_LP2_TIME_US);
                        return;
                    }
                }
            }
#endif
        }        
    }
#endif // CONFIG_WAKELOCK
    lp3count++;
    if (lp3count % NV_POWER_IDLE_WINDOW_SIZE == 0)
    {
        old_jiffies = cur_jiffies;
        cur_jiffies = get_jiffies_64();
		delta_jif = cur_jiffies - old_jiffies;
		msec = jiffies_to_msecs(delta_jif);
		
		//In a truly idle system, time spent in the idle loop
		//will be very high due to the wfi. In a non-idle system
		//we will enter and exit the idle loop quickly. As a result,
		//we can say that the longer an IDLE_WINDOW, the more
		//idle the system is.
		if (msec > NV_POWER_LP2_IDLE_THRESHOLD_MS)
		{    	
	        flag = 1;

	        //The IDLE_WINDOW addresses the first axis - Performance.
	        //The second axis - Power savings, still needs to be addressed.
	        //The greater our LP2 duty cycle, the greater our power savings.
	        //We can say that the longer the IDLE_WINDOW, the more idle the
	        //system and, consequently, the longer we can stay in LP2.
	        if (msec > NV_POWER_COMPLETE_IDLE_MS)
	        	msec = NV_POWER_COMPLETE_IDLE_MS;

			delta = NV_POWER_COMPLETE_IDLE_MS - msec;

			if (delta >= 300)
			{			
	        	lp2_time = MAX_LP2_TIME_US / 8;
			}
			else if (delta >= 200)
			{
				lp2_time = MAX_LP2_TIME_US / 5;
			}
			else if (delta >= 100)
			{
				lp2_time = MAX_LP2_TIME_US / 3;
			}
			else
			{
				lp2_time = MAX_LP2_TIME_US;
			}	        
		}
    }
    cpu_ap20_do_idle();    
}

void mach_tegra_reset(void)
{
    NvU32 reg;

    reg = NV_DRF_DEF(APBDEV_PMC, CNTRL, MAIN_RST, ENABLE);
    NV_REGW(s_hRmGlobal, NvRmModuleID_Pmif, 0, APBDEV_PMC_CNTRL_0, reg);
}