summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/nvrm/core/ap15/ap15rm_clock_config.c
blob: d19a99b3f08b3f3d27713b09a586d3d3762abfa8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
/*
 * Copyright (c) 2007-2009 NVIDIA Corporation.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of the NVIDIA Corporation nor the names of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 */

#include "nvcommon.h"
#include "nvassert.h"
#include "nvrm_clocks.h"
#include "nvrm_hwintf.h"
#include "nvrm_module.h"
#include "nvrm_drf.h"
#include "ap15/aremc.h"
#include "ap15/arclk_rst.h"
#include "ap15/arapb_misc.h"
#include "ap15rm_clocks.h"
#include "ap15rm_private.h"
#include "nvrm_pmu_private.h"
#include "nvodm_query_discovery.h"
#include "nvodm_query_memc.h"
#include "ap20/ap20rm_clocks.h"

// TODO: CAR and EMC access macros for time critical access

/*****************************************************************************/

static const NvU32 s_Ap15OscFreqKHz[] = { 13000, 19200, 12000, 26000 };

static void
Ap15PllPConfigure(NvRmDeviceHandle hRmDevice);

static void
Ap15MioReconfigure(NvRmDeviceHandle hRmDevice, NvRmFreqKHz MioKHz);

static void
Ap15AudioSyncInit(NvRmDeviceHandle hRmDevice, NvRmFreqKHz AudioSyncKHz);

static NvError
NvRmPrivOscDoublerConfigure(NvRmDeviceHandle hRmDevice, NvRmFreqKHz OscKHz)
{
    switch (hRmDevice->ChipId.Id)
    {
        case 0x15:
        case 0x16:
            return NvRmPrivAp15OscDoublerConfigure(hRmDevice, OscKHz);
        case 0x20:
            return NvRmPrivAp20OscDoublerConfigure(hRmDevice, OscKHz);
        default:
            NV_ASSERT(!"Unsupported chip ID");
            return NvError_NotSupported;
    }
}

void
NvRmPrivClockSourceFreqInit(
    NvRmDeviceHandle hRmDevice,
    NvU32* pClockSourceFreq)
{
    NvU32 reg;
    const NvRmCoreClockInfo* pCore = NULL;

    NV_ASSERT(hRmDevice);
    NV_ASSERT(pClockSourceFreq);

    /*
     * Fixed clock sources: 32kHz, main oscillator and doubler
     * (OSC control should be already configured by the boot code)
     */
    pClockSourceFreq[NvRmClockSource_ClkS] = 32;

    reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                  CLK_RST_CONTROLLER_OSC_CTRL_0);
    pClockSourceFreq[NvRmClockSource_ClkM] =
        s_Ap15OscFreqKHz[NV_DRF_VAL(CLK_RST_CONTROLLER, OSC_CTRL, OSC_FREQ, reg)];

    if (NvSuccess == NvRmPrivOscDoublerConfigure(
        hRmDevice, pClockSourceFreq[NvRmClockSource_ClkM]))
    {
        pClockSourceFreq[NvRmClockSource_ClkD] =
            pClockSourceFreq[NvRmClockSource_ClkM] << 1;
    }
    else
        pClockSourceFreq[NvRmClockSource_ClkD] = 0;

    /*
     * PLLs and secondary PLL dividers
     */
    #define INIT_PLL_FREQ(PllId) \
    do\
    {\
        pClockSourceFreq[NvRmClockSource_##PllId] = NvRmPrivAp15PllFreqGet( \
         hRmDevice, NvRmPrivGetClockSourceHandle(NvRmClockSource_##PllId)->pInfo.pPll); \
    } while(0)

    // PLLX (check if present, keep boot settings
    // and just init frequency table)
    if (NvRmPrivGetClockSourceHandle(NvRmClockSource_PllX0))
    {
        INIT_PLL_FREQ(PllX0);
    }
    // PLLC with output divider (if enabled keep boot settings and just init
    // frequency table, if disbled or bypassed - configure)
    INIT_PLL_FREQ(PllC0);
    if (pClockSourceFreq[NvRmClockSource_PllC0] <=
        pClockSourceFreq[NvRmClockSource_ClkM])
    {
        NvRmFreqKHz f = NVRM_PLLC_DEFAULT_FREQ_KHZ;
        NvRmPrivAp15PllConfigureSimple(hRmDevice, NvRmClockSource_PllC0, f, &f);
    }
    pClockSourceFreq[NvRmClockSource_PllC1] = NvRmPrivDividerFreqGet(hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllC1)->pInfo.pDivider);

    // PLLM with output divider (keep boot settings
    // and just init frequency)
    INIT_PLL_FREQ(PllM0);
    pClockSourceFreq[NvRmClockSource_PllM1] = NvRmPrivDividerFreqGet(hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllM1)->pInfo.pDivider);
#if !NV_OAL
    // PLLD and PLLU with no output dividers (keep boot settings
    // and just init frequency table)
    INIT_PLL_FREQ(PllD0);
    INIT_PLL_FREQ(PllU0);
#endif

    // PLLP and output dividers: set PLLP fixed frequency and enable dividers
    // with fixed settings in override mode, so they can be changed later, as
    // necessary. Switch system clock to oscillator during PLLP reconfiguration
    INIT_PLL_FREQ(PllP0);
    if (pClockSourceFreq[NvRmClockSource_PllP0] != NVRM_PLLP_FIXED_FREQ_KHZ)
    {
        pCore = NvRmPrivGetClockSourceHandle(
            NvRmClockSource_SystemBus)->pInfo.pCore;
        reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                      pCore->SelectorOffset);
        NvRmPrivCoreClockSet(hRmDevice, pCore, NvRmClockSource_ClkM, 0, 0);
        Ap15PllPConfigure(hRmDevice);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                pCore->SelectorOffset, reg);
    }
    NV_ASSERT(pClockSourceFreq[NvRmClockSource_PllP0] == NVRM_PLLP_FIXED_FREQ_KHZ);
    NvRmPrivDividerSet(
        hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllP1)->pInfo.pDivider,
        NVRM_FIXED_PLLP1_SETTING);
    NvRmPrivDividerSet(
        hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllP2)->pInfo.pDivider,
        NVRM_FIXED_PLLP2_SETTING);
    NvRmPrivDividerSet(
        hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllP3)->pInfo.pDivider,
        NVRM_FIXED_PLLP3_SETTING);
    NvRmPrivDividerSet(
        hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllP4)->pInfo.pDivider,
        NVRM_FIXED_PLLP4_SETTING);

    // PLLA and output divider must be init after PLLP1, used as a
    // reference (keep boot settings and just init frequency table)
    INIT_PLL_FREQ(PllA1);
    pClockSourceFreq[NvRmClockSource_PllA0] = NvRmPrivDividerFreqGet(hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllA0)->pInfo.pDivider);

    #undef INIT_PLL_FREQ

    /*
     * Core and bus clock sources
     * - Leave CPU bus as set by boot-loader
     * - Leave System bus as set by boot-loader, make sure all bus dividers are 1:1
     */
    pCore = NvRmPrivGetClockSourceHandle(NvRmClockSource_CpuBus)->pInfo.pCore;
    pClockSourceFreq[NvRmClockSource_CpuBus] =
        NvRmPrivCoreClockFreqGet(hRmDevice, pCore);
    if (NvRmPrivGetClockSourceHandle(NvRmClockSource_CpuBridge))
    {
        pClockSourceFreq[NvRmClockSource_CpuBridge] = NvRmPrivDividerFreqGet(hRmDevice,
            NvRmPrivGetClockSourceHandle(NvRmClockSource_CpuBridge)->pInfo.pDivider);
    }
    pCore = NvRmPrivGetClockSourceHandle(NvRmClockSource_SystemBus)->pInfo.pCore;
    pClockSourceFreq[NvRmClockSource_SystemBus] =
        NvRmPrivCoreClockFreqGet(hRmDevice, pCore);
    NvRmPrivBusClockInit(
        hRmDevice, pClockSourceFreq[NvRmClockSource_SystemBus]);

    /*
     * Initialize AudioSync clocks (PLLA will be re-configured if necessary)
     */
    Ap15AudioSyncInit(hRmDevice, NVRM_AUDIO_SYNC_KHZ);
}

void
NvRmPrivBusClockInit(NvRmDeviceHandle hRmDevice, NvRmFreqKHz SystemFreq)
{
    /*
     * Set all bus clock frequencies equal to the system clock frequency,
     * and clear AVP clock skipper i.e., set all bus clock dividers 1:1.
     * If APB clock is limited below system clock for a particular SoC,
     * set the APB divider to satisfy this limitation.
     */
    NvRmFreqKHz AhbFreq, ApbFreq;
    NvRmFreqKHz ApbMaxFreq = SystemFreq;
    if (hRmDevice->ChipId.Id == 0x20)
    {
        ApbMaxFreq = NVRM_AP20_APB_MAX_KHZ; // AP20 limitation
    }
    AhbFreq = SystemFreq;
    ApbFreq = NV_MIN(SystemFreq, ApbMaxFreq);

    NvRmPrivBusClockFreqSet(
        hRmDevice, SystemFreq, &SystemFreq, &AhbFreq, &ApbFreq, ApbMaxFreq);
    NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
            CLK_RST_CONTROLLER_COP_CLK_SKIP_POLICY_0, 0x0);
}

/*****************************************************************************/
/*****************************************************************************/

static const NvRmFreqKHz s_PllLpCpconSelectionTable[] =
{
    NVRM_PLL_LP_CPCON_SELECT_STEPS_KHZ
};
static const NvU32 s_PllLpCpconSelectionTableSize =
NV_ARRAY_SIZE(s_PllLpCpconSelectionTable);

static const NvU32 s_PllMipiCpconSelectionTable[] =
{
    NVRM_PLL_MIPI_CPCON_SELECT_STEPS_N_DIVIDER
};
static const NvU32 s_PllMipiCpconSelectionTableSize =
NV_ARRAY_SIZE(s_PllMipiCpconSelectionTable);

static void
PllLpGetTypicalControls(
    NvRmFreqKHz InputKHz,
    NvU32 M,
    NvU32 N,
    NvU32* pCpcon)
{
    NvU32 i;
    if (N >= NVRM_PLL_LP_MIN_N_FOR_CPCON_SELECTION)
    {
        // CPCON depends on comparison frequency
        for (i = 0; i < s_PllLpCpconSelectionTableSize; i++)
        {
            if (InputKHz >= s_PllLpCpconSelectionTable[i] * M)
                break;
        }
        *pCpcon = i + 1;
    }
    else    // CPCON is 1, regardless of frequency
    {
        *pCpcon = 1;
    }
}

static void
PllMipiGetTypicalControls(
    NvU32 N,
    NvU32* pCpcon,
    NvU32* pLfCon)
{
    NvU32 i;

    // CPCON depends on feedback divider
    for (i = 0; i < s_PllMipiCpconSelectionTableSize; i++)
    {
        if (N <= s_PllMipiCpconSelectionTable[i])
            break;
    }
    *pCpcon = i + 1;
    *pLfCon = (N >= NVRM_PLL_MIPI_LFCON_SELECT_N_DIVIDER) ? 1 : 0;
}

void
NvRmPrivAp15PllSet(
    NvRmDeviceHandle hRmDevice,
    const NvRmPllClockInfo* pCinfo,
    NvU32 M,
    NvU32 N,
    NvU32 P,
    NvU32 StableDelayUs,
    NvU32 cpcon,
    NvU32 lfcon,
    NvBool TypicalControls,
    NvU32 flags)
{
    NvU32 base, misc;
    NvU32 old_base, old_misc;
    NvU32 delay = 0;
    NvU32 override = 0;

    NV_ASSERT(hRmDevice);
    NV_ASSERT(pCinfo);
    NV_ASSERT(pCinfo->PllBaseOffset);
    NV_ASSERT(pCinfo->PllMiscOffset);

    /*
     * PLL control fields used below have the same layout for all PLLs with
     * the following exceptions:
     *
     * a) PLLP base register OVERRIDE field has to be set in order to enable
     *  PLLP re-configuration in diagnostic mode. For other PLLs this field is
     *  "Don't care".
     * b) PLLU HS P divider field is one bit, inverse logic field. Other control
     *  bits, that are mapped to P divider in common layout should be set to 0.
     *
     * PLLP h/w field definitions will be used in DRF macros to construct base
     * values for all PLLs, with special care of a) and b). All base fields not
     * explicitly used below are set to 0 for all PLLs.
     *
     * c) PLLD/PLLU miscellaneous register has a unique fields determined based
     *  on the input flags. For other PLLs these fields have different meaning,
     *  and will be preserved. 
     *
     *  PLLP h/w field definitions will be used in DRF macros to construct
     *  miscellaneous values with common layout. For unique fields PLLD h/w
     *  definitions will be used. All miscellaneous fields not explicitly used
     *  below are preserved for all PLLs.
     */
    base = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllBaseOffset);
    old_base = base;

    // Disable PLL if either input or feedback divider setting is zero
    if ((M == 0) || (N == 0))
    {
        base = NV_FLD_SET_DRF_DEF(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_BYPASS, DISABLE, base);
        base = NV_FLD_SET_DRF_DEF(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_ENABLE, DISABLE, base);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllBaseOffset, base);
        NvRmPrivPllFreqUpdate(hRmDevice, pCinfo);
        return;
    }

    // Determine type-specific controls, construct new misc settings
    misc = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllMiscOffset);
    old_misc = misc;
    if (pCinfo->PllType == NvRmPllType_MIPI)
    {
        if (flags & NvRmPllConfigFlags_SlowMode)
        {
            misc = NV_FLD_SET_DRF_NUM(  // "1" = slow (/8) MIPI clock output
                    CLK_RST_CONTROLLER, PLLD_MISC, PLLD_FO_MODE, 1, misc);
        }
        else if (flags & NvRmPllConfigFlags_FastMode)
        {
            misc = NV_FLD_SET_DRF_NUM(  // "0" = fast MIPI clock output
                    CLK_RST_CONTROLLER, PLLD_MISC, PLLD_FO_MODE, 0, misc);
        }
        if (flags & NvRmPllConfigFlags_DiffClkEnable)
        {
            misc = NV_FLD_SET_DRF_NUM(  // Enable differential clocks
                    CLK_RST_CONTROLLER, PLLD_MISC, PLLD_CLKENABLE, 1, misc);
        }
        else if (flags & NvRmPllConfigFlags_DiffClkDisable)
        {
            misc = NV_FLD_SET_DRF_NUM(  // Disable differential clocks
                    CLK_RST_CONTROLLER, PLLD_MISC, PLLD_CLKENABLE, 0, misc);
        }
        if (TypicalControls)
        {
            PllMipiGetTypicalControls(N, &cpcon, &lfcon);
        }
        delay = NVRM_PLL_MIPI_STABLE_DELAY_US;
    }
    else if (pCinfo->PllType == NvRmPllType_LP)
    {
        if (flags & NvRmPllConfigFlags_DccEnable)
        {
            misc = NV_FLD_SET_DRF_NUM(  // "1" = enable DCC
                    CLK_RST_CONTROLLER, PLLP_MISC, PLLP_DCCON, 1, misc);
        }
        else if (flags & NvRmPllConfigFlags_DccDisable)
        {
            misc = NV_FLD_SET_DRF_NUM(  // "0" = disable DCC
                    CLK_RST_CONTROLLER, PLLP_MISC, PLLP_DCCON, 0, misc);
        }
        if (TypicalControls)
        {
            NvRmFreqKHz InputKHz = NvRmPrivGetClockSourceFreq(pCinfo->InputId);
            PllLpGetTypicalControls(InputKHz, M, N, &cpcon);
        }
        lfcon = 0; // always for LP PLL
        delay = NVRM_PLL_LP_STABLE_DELAY_US;
    }
    else if (pCinfo->PllType == NvRmPllType_UHS)
    {
        if (TypicalControls)    // Same as MIPI typical controls
        {
            PllMipiGetTypicalControls(N, &cpcon, &lfcon);
        }
        delay = NVRM_PLL_MIPI_STABLE_DELAY_US;
        P = (P == 0) ? 1 : 0;   // P-divider is 1 bit, inverse logic
    }
    else
    {
        NV_ASSERT(!"Invalid PLL type");
    }
    misc = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, PLLP_MISC, PLLP_CPCON, cpcon, misc);
    misc = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, PLLP_MISC, PLLP_LFCON, lfcon, misc);

    // Construct new base setting
    // Override is PLLP specific, and it is just ignored by other PLLs;
    override = ((flags & NvRmPllConfigFlags_Override) != 0) ?
                CLK_RST_CONTROLLER_PLLP_BASE_0_PLLP_BASE_OVRRIDE_ENABLE :
                CLK_RST_CONTROLLER_PLLP_BASE_0_PLLP_BASE_OVRRIDE_DISABLE;
    {   // Compiler failed to generate correct code for the base fields
        // concatenation without the split below
        volatile NvU32 prebase =
            NV_DRF_DEF(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_BYPASS, ENABLE) |
            NV_DRF_DEF(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_ENABLE, ENABLE) |
            NV_DRF_DEF(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_REF_DIS, REF_ENABLE);
        base = prebase |
            NV_DRF_NUM(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_BASE_OVRRIDE, override) |
            NV_DRF_NUM(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_DIVP, P) |
            NV_DRF_NUM(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_DIVN, N) |
            NV_DRF_NUM(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_DIVM, M);
    }

    // If PLL is not bypassed, and new configurations is the same as the old
    // one - exit without overwriting h/w. Otherwise, bypass PLL before
    // changing configuration.
    if (NV_DRF_VAL(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_BYPASS, old_base) ==
        CLK_RST_CONTROLLER_PLLP_BASE_0_PLLP_BYPASS_DISABLE)
    {
        old_base = NV_FLD_SET_DRF_DEF(
            CLK_RST_CONTROLLER, PLLP_BASE, PLLP_BYPASS, ENABLE, old_base);
        if ((base == old_base) && (misc == old_misc))
        {
            NvRmPrivPllFreqUpdate(hRmDevice, pCinfo);
            return;
        }
        NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                pCinfo->PllBaseOffset, old_base);
    }

    // Configure and enable PLL, keep it bypassed
    NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllMiscOffset, misc);
    NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllBaseOffset, base);

    // Wait for PLL to stabilize and switch to PLL output
    NV_ASSERT(StableDelayUs);
    if (StableDelayUs > delay)
        StableDelayUs = delay;
    NvOsWaitUS(StableDelayUs);

    base = NV_FLD_SET_DRF_DEF(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_BYPASS, DISABLE, base);
    NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllBaseOffset, base);
    NvRmPrivPllFreqUpdate(hRmDevice, pCinfo);
}

NvRmFreqKHz
NvRmPrivAp15PllFreqGet(
    NvRmDeviceHandle hRmDevice,
    const NvRmPllClockInfo* pCinfo)
{
    NvU32 M, N, P;
    NvU32 base, misc;
    NvRmFreqKHz PllKHz;

    NV_ASSERT(hRmDevice);
    NV_ASSERT(pCinfo);
    NV_ASSERT(pCinfo->PllBaseOffset);
    NV_ASSERT(pCinfo->PllMiscOffset);

    /*
     * PLL control fields used below have the same layout for all PLLs with
     * the following exceptions:
     *
     * a) PLLP base register OVERRIDE field ("Don't care" for other PLLs).
     *  Respectively, PLLP h/w field definitions will be used in DRF macros
     *  to construct base values for all PLLs.
     *
     * b) PLLD/PLLU miscellaneous register fast/slow mode control (does not
     *  affect output frequency for other PLLs). Respectively, PLLD h/w field
     *  definitions will be used in DRF macros to construct miscellaneous values.
     */
    base = NV_REGR(
        hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllBaseOffset);
    PllKHz = NvRmPrivGetClockSourceFreq(pCinfo->InputId);
    NV_ASSERT(PllKHz);
    NV_ASSERT(NV_DRF_VAL(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_REF_DIS, base) ==
              CLK_RST_CONTROLLER_PLLP_BASE_0_PLLP_REF_DIS_REF_ENABLE);

    if (NV_DRF_VAL(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_BYPASS, base) ==
        CLK_RST_CONTROLLER_PLLP_BASE_0_PLLP_BYPASS_DISABLE)
    {
        // Special cases: PLL is disabled, or in fixed mode (PLLP only)
        if (NV_DRF_VAL(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_ENABLE, base) ==
            CLK_RST_CONTROLLER_PLLP_BASE_0_PLLP_ENABLE_DISABLE)
            return 0;
        if ((pCinfo->SourceId == NvRmClockSource_PllP0) &&
            (NV_DRF_VAL(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_BASE_OVRRIDE, base) ==
             CLK_RST_CONTROLLER_PLLP_BASE_0_PLLP_BASE_OVRRIDE_DISABLE))
            return NV_BOOT_PLLP_FIXED_FREQ_KHZ;

        // PLL formula - Output F = (Reference F * N) / (M * 2^P)
        M = NV_DRF_VAL(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_DIVM, base);
        N = NV_DRF_VAL(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_DIVN, base);
        P = NV_DRF_VAL(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_DIVP, base);
        NV_ASSERT((M != 0) && (N != 0));

        if (pCinfo->PllType == NvRmPllType_UHS)
        {
            // Adjust P divider field size and inverse logic for USB HS PLL
            P = (P & 0x1) ? 0 : 1;
        }
        PllKHz = ((PllKHz * N) / M) >> P;

        // Check slow/fast mode selection for MIPI PLLs
        if (pCinfo->PllType == NvRmPllType_MIPI)
        {
            misc = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                           pCinfo->PllMiscOffset);
            if (NV_DRF_VAL(CLK_RST_CONTROLLER, PLLD_MISC, PLLD_FO_MODE, misc) == 1)
            {
                PllKHz = PllKHz >> 3;   // In slow mode output is divided by 8
            }
        }
    }
    if (pCinfo->SourceId == NvRmClockSource_PllD0)
    {
        PllKHz = PllKHz >> 1;   // PLLD output always divided by 2
    }
    return PllKHz;
}

static void
Ap15PllControl(
    NvRmDeviceHandle hRmDevice,
    NvRmClockSource PllId,
    NvBool Enable)
{
    NvU32 base;
    NvU32 delay = 0;
    const NvRmPllClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(PllId)->pInfo.pPll;

    NV_ASSERT(hRmDevice);
    NV_ASSERT(pCinfo->PllBaseOffset);

    /*
     * PLL control fields used below have the same layout for all PLLs.
     * PLLP h/w field definitions will be used in DRF macros to construct base
     * values for all PLLs.
     */
    base = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllBaseOffset);

    if (Enable)
    {
        // No need to enable already enabled PLL - do nothing
        if (NV_DRF_VAL(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_ENABLE, base) ==
            CLK_RST_CONTROLLER_PLLP_BASE_0_PLLP_ENABLE_ENABLE)
            return;

        // Get ready stabilization delay
        if ((pCinfo->PllType == NvRmPllType_MIPI) ||
            (pCinfo->PllType == NvRmPllType_UHS))
            delay = NVRM_PLL_MIPI_STABLE_DELAY_US;
        else if (pCinfo->PllType == NvRmPllType_LP)
            delay = NVRM_PLL_LP_STABLE_DELAY_US;
        else
            NV_ASSERT(!"Invalid PLL type");

        // Bypass PLL => Enable PLL => wait for PLL to stabilize
        // => switch to PLL output. All other settings preserved.
        base = NV_FLD_SET_DRF_DEF(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_BYPASS, ENABLE, base);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllBaseOffset, base);
        base = NV_FLD_SET_DRF_DEF(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_ENABLE, ENABLE, base);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllBaseOffset, base);

        NvOsWaitUS(delay);

        base = NV_FLD_SET_DRF_DEF(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_BYPASS, DISABLE, base);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllBaseOffset, base);
    }
    else
    {
        // Disable PLL, no bypass. All other settings preserved.
        base = NV_FLD_SET_DRF_DEF(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_BYPASS, DISABLE, base);
        base = NV_FLD_SET_DRF_DEF(CLK_RST_CONTROLLER, PLLP_BASE, PLLP_ENABLE, DISABLE, base);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0, pCinfo->PllBaseOffset, base);
    }
    NvRmPrivPllFreqUpdate(hRmDevice, pCinfo);
}

void
NvRmPrivAp15PllConfigureSimple(
    NvRmDeviceHandle hRmDevice,
    NvRmClockSource PllId,
    NvRmFreqKHz MaxOutKHz,
    NvRmFreqKHz* pPllOutKHz)
{
#define NVRM_PLL_FCMP_1 (1000)
#define NVRM_PLL_VCO_RANGE_1 (1000000)
#define NVRM_PLL_FCMP_2 (2000)
#define NVRM_PLL_VCO_RANGE_2 (2000000)

    /*
     * Simple PLL configuration (assuming that target output frequency is
     * always in VCO range, and does not exceed 2GHz).
     * - output divider is set 1:1
     * - input divider is set to get comparison frequency equal or slightly
     *   above 1MHz if VCO is below 1GHz . Otherwise, input divider is set
     *   to get comparison frequency equal or slightly below 2MHz.
     * - feedback divider is calculated based on target output frequency
     * With simple configuration the absolute output frequency error does not
     * exceed half of comparison frequency. It has been verified that simple
     * configuration provides necessary accuracy for all display pixel clocks
     * use cases.
     */
    NvU32 M, N, P;
    NvRmFreqKHz RefKHz, VcoKHz;
    const NvRmPllClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(PllId)->pInfo.pPll;
    NvU32 flags = 0;

    NV_ASSERT(hRmDevice);
    VcoKHz = *pPllOutKHz;
    P = 0;

    if (pCinfo->SourceId == NvRmClockSource_PllD0)
    {   // PLLD output is always divided by 2 (after P-divider)
        VcoKHz = VcoKHz << 1;
        MaxOutKHz = MaxOutKHz << 1;
        flags = NvRmPllConfigFlags_DiffClkEnable;
    }
    if (pCinfo->SourceId == NvRmClockSource_PllX0)
    {
        flags = VcoKHz < NVRM_PLLX_DCC_VCO_MIN ?
            NvRmPllConfigFlags_DccDisable : NvRmPllConfigFlags_DccEnable;
    }
    NV_ASSERT((pCinfo->PllVcoMin <= VcoKHz) && (VcoKHz <= pCinfo->PllVcoMax));
    NV_ASSERT(VcoKHz <= NVRM_PLL_VCO_RANGE_2);
    NV_ASSERT(VcoKHz <= MaxOutKHz);

    RefKHz = NvRmPrivGetClockSourceFreq(pCinfo->InputId);
    NV_ASSERT(RefKHz);
    if (VcoKHz <= NVRM_PLL_VCO_RANGE_1)
        M = RefKHz / NVRM_PLL_FCMP_1;
    else
        M = (RefKHz + NVRM_PLL_FCMP_2 - 1) / NVRM_PLL_FCMP_2;
    N = (RefKHz + ((VcoKHz * M) << 1) ) / (RefKHz << 1);
    if ((RefKHz * N) > (MaxOutKHz * M))
        N--;    // use floor if rounding violates client's max limit

    NvRmPrivAp15PllSet(
        hRmDevice, pCinfo, M, N, P, (NvU32)-1, 0, 0, NV_TRUE, flags);
    *pPllOutKHz = NvRmPrivGetClockSourceFreq(pCinfo->SourceId);
}


// Fixed list of PLL HDMI configurations for different reference frequencies
// arranged according to CLK_RST_CONTROLLER_OSC_CTRL_0_OSC_FREQ_FIELD enum
static const NvRmPllFixedConfig s_Ap15HdmiPllConfigurations[] =
{
    NVRM_PLLHD_AT_13MHZ,
    NVRM_PLLHD_AT_19MHZ,
    NVRM_PLLHD_AT_12MHZ,
    NVRM_PLLHD_AT_26MHZ
};

void
NvRmPrivAp15PllConfigureHdmi(
    NvRmDeviceHandle hRmDevice,
    NvRmClockSource PllId,
    NvRmFreqKHz* pPllOutKHz)
{
    NvU32 reg;
    NvRmPllFixedConfig HdmiConfig = {0};
    const NvRmPllClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(PllId)->pInfo.pPll;

    // Only PLLD or PLLC should be configured here
    NV_ASSERT((PllId == NvRmClockSource_PllD0) ||
              (PllId == NvRmClockSource_PllC0));

    reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                  CLK_RST_CONTROLLER_OSC_CTRL_0);
    HdmiConfig = s_Ap15HdmiPllConfigurations[NV_DRF_VAL(
        CLK_RST_CONTROLLER, OSC_CTRL, OSC_FREQ, reg)];

    NvRmPrivAp15PllSet(hRmDevice, pCinfo, HdmiConfig.M, HdmiConfig.N,
                       HdmiConfig.P, (NvU32)-1, 0, 0, NV_TRUE, 0);
    *pPllOutKHz = NvRmPrivGetClockSourceFreq(pCinfo->SourceId);
}

/*****************************************************************************/

// Fixed list of PLLP configurations for different reference frequencies
// arranged according to CLK_RST_CONTROLLER_OSC_CTRL_0_OSC_FREQ_FIELD enum
static const NvRmPllFixedConfig s_Ap15PllPConfigurations[] =
{
    NVRM_PLLP_AT_13MHZ,
    NVRM_PLLP_AT_19MHZ,
    NVRM_PLLP_AT_12MHZ,
    NVRM_PLLP_AT_26MHZ
};

static void
Ap15PllPConfigure(NvRmDeviceHandle hRmDevice)
{
    NvU32 reg;
    NvRmFreqKHz PllKHz;
    NvRmPllFixedConfig PllPConfig = {0};

    const NvRmPllClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllP0)->pInfo.pPll;
    NV_ASSERT(hRmDevice);

    // Configure and enable PllP at RM fixed frequency,
    // if it is not already enabled
    PllKHz = NvRmPrivGetClockSourceFreq(pCinfo->SourceId);
    if (PllKHz == NVRM_PLLP_FIXED_FREQ_KHZ)
        return;

    // Get fixed PLLP configuration for current oscillator  frequency.
    reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                  CLK_RST_CONTROLLER_OSC_CTRL_0);
    PllPConfig = s_Ap15PllPConfigurations[NV_DRF_VAL(
        CLK_RST_CONTROLLER, OSC_CTRL, OSC_FREQ, reg)];

    // Configure and enable PLLP
    NvRmPrivAp15PllSet(hRmDevice, pCinfo, PllPConfig.M, PllPConfig.N,
                       PllPConfig.P, (NvU32)-1, 0, 0, NV_TRUE,
                       NvRmPllConfigFlags_Override);
}

/*****************************************************************************/

// Fixed list of PLLU configurations for different reference frequencies
// arranged according to CLK_RST_CONTROLLER_OSC_CTRL_0_OSC_FREQ_FIELD enum
static const NvRmPllFixedConfig s_Ap15UsbPllConfigurations[] =
{
    NVRM_PLLU_AT_13MHZ,
    NVRM_PLLU_AT_19MHZ,
    NVRM_PLLU_AT_12MHZ,
    NVRM_PLLU_AT_26MHZ
};

static const NvRmPllFixedConfig s_Ap15UlpiPllConfigurations[] =
{
    NVRM_PLLU_ULPI_AT_13MHZ,
    NVRM_PLLU_ULPI_AT_19MHZ,
    NVRM_PLLU_ULPI_AT_12MHZ,
    NVRM_PLLU_ULPI_AT_26MHZ
};

static const NvRmPllFixedConfig s_Ap15UhsPllConfigurations[] =
{
    NVRM_PLLU_HS_AT_13MHZ,
    NVRM_PLLU_HS_AT_19MHZ,
    NVRM_PLLU_HS_AT_12MHZ,
    NVRM_PLLU_HS_AT_26MHZ
};

static void
PllUmipiConfigure(NvRmDeviceHandle hRmDevice, NvRmFreqKHz TargetFreq)
{
    NvU32 reg;
    NvRmPllFixedConfig UsbConfig = {0};
    const NvRmPllClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllU0)->pInfo.pPll;
    NvRmFreqKHz CurrentFreq = NvRmPrivGetClockSourceFreq(pCinfo->SourceId);
    NV_ASSERT(hRmDevice);

    if (CurrentFreq == TargetFreq)
        return;     // PLLU is already configured at target frequency - exit

    // Index into fixed PLLU configuration tables based on oscillator frequency
    reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                  CLK_RST_CONTROLLER_OSC_CTRL_0);
    reg = NV_DRF_VAL(CLK_RST_CONTROLLER, OSC_CTRL, OSC_FREQ, reg);

    if (TargetFreq == NvRmFreqUnspecified)
    {
        // By default set standard USB frequency, if PLLU is not configured
        if ((CurrentFreq == s_Ap15UsbPllConfigurations[reg].OutputKHz) ||
            (CurrentFreq == s_Ap15UlpiPllConfigurations[reg].OutputKHz))
        {
            return; // PLLU is already configured at supported frequency - exit
        }
        UsbConfig = s_Ap15UsbPllConfigurations[reg];
    }
    else if (TargetFreq == s_Ap15UsbPllConfigurations[reg].OutputKHz)
    {
        UsbConfig = s_Ap15UsbPllConfigurations[reg];
    }
    else if (TargetFreq == s_Ap15UlpiPllConfigurations[reg].OutputKHz)
    {
        UsbConfig = s_Ap15UlpiPllConfigurations[reg];
    }
    else
    {
        NV_ASSERT(!"Invalid target frequency");
        return;
    }
    // Configure and enable PLLU
    NvRmPrivAp15PllSet(hRmDevice, pCinfo, UsbConfig.M, UsbConfig.N,
                       UsbConfig.P, (NvU32)-1, 0, 0, NV_TRUE, 0);
}

static void
PllUhsConfigure(NvRmDeviceHandle hRmDevice, NvRmFreqKHz TargetFreq)
{
    NvU32 reg;
    NvRmPllFixedConfig UsbConfig = {0};
    const NvRmPllClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllU0)->pInfo.pPll;
    NvRmFreqKHz CurrentFreq = NvRmPrivGetClockSourceFreq(pCinfo->SourceId);
    NV_ASSERT(hRmDevice);

    // Index into fixed PLLU configuration tables based on oscillator frequency
    reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                  CLK_RST_CONTROLLER_OSC_CTRL_0);
    reg = NV_DRF_VAL(CLK_RST_CONTROLLER, OSC_CTRL, OSC_FREQ, reg);

    // If PLLU is already configured - exit 
    if (CurrentFreq == s_Ap15UhsPllConfigurations[reg].OutputKHz)
        return;

    /*
     * Target may be unspecified, or any of the standard USB, ULPI, or UHS
     * frequencies. In any case, main PLLU HS output is configured at UHS
     * frequency, with ULPI and USB frequencies are generated on secondary
     * outputs by fixed post dividers
     */
    if (!( (TargetFreq == NvRmFreqUnspecified) ||
           (TargetFreq == s_Ap15UsbPllConfigurations[reg].OutputKHz) ||
           (TargetFreq == s_Ap15UlpiPllConfigurations[reg].OutputKHz) ||
           (TargetFreq == s_Ap15UhsPllConfigurations[reg].OutputKHz) )
        )
    {
        NV_ASSERT(!"Invalid target frequency");
        return;
    }
    // Configure and enable PLLU
    UsbConfig = s_Ap15UhsPllConfigurations[reg];
    NvRmPrivAp15PllSet(hRmDevice, pCinfo, UsbConfig.M, UsbConfig.N,
                       UsbConfig.P, (NvU32)-1, 0, 0, NV_TRUE, 0);
}

static void
Ap15PllUConfigure(NvRmDeviceHandle hRmDevice, NvRmFreqKHz TargetFreq)
{
    const NvRmPllClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllU0)->pInfo.pPll;

    if (pCinfo->PllType == NvRmPllType_MIPI)
        PllUmipiConfigure(hRmDevice, TargetFreq);
    else if (pCinfo->PllType == NvRmPllType_UHS)
        PllUhsConfigure(hRmDevice, TargetFreq);
}

/*****************************************************************************/

// Fixed list of PLLA configurations for supported audio clocks
static const NvRmPllFixedConfig s_Ap15AudioPllConfigurations[] =
{
    NVRM_PLLA_CONFIGURATIONS
};

static void
Ap15PllAConfigure(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz* pAudioTargetKHz)
{
// The reminder bits used to check divisibility
#define REMINDER_BITS (6)

    NvU32 i, rem;
    NvRmFreqKHz OutputKHz;
    NvU32 BestRem = (0x1 << REMINDER_BITS);
    NvU32 BestIndex = NV_ARRAY_SIZE(s_Ap15AudioPllConfigurations) - 1;

    NvRmPllFixedConfig AudioConfig = {0};
    const NvRmPllClockInfo* pPllCinfo =
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllA1)->pInfo.pPll;
    const NvRmDividerClockInfo* pDividerCinfo =
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllA0)->pInfo.pDivider;
    NV_ASSERT(hRmDevice);
    NV_ASSERT(*pAudioTargetKHz);

    // Fixed PLLA FPGA configuration
    if (NvRmPrivGetExecPlatform(hRmDevice) == ExecPlatform_Fpga)
    {
        *pAudioTargetKHz = NvRmPrivGetClockSourceFreq(pDividerCinfo->SourceId);
        return;
    }
    // Find PLLA configuration with smallest output frequency that can be
    // divided by fractional divider into the closest one to the target.
    for (i = 0; i < NV_ARRAY_SIZE(s_Ap15AudioPllConfigurations); i++)
    {
        OutputKHz = s_Ap15AudioPllConfigurations[i].OutputKHz;
        if (*pAudioTargetKHz > OutputKHz)
            continue;
        rem = ((OutputKHz << (REMINDER_BITS + 1)) / (*pAudioTargetKHz)) &
              ((0x1 << REMINDER_BITS) - 1);
        if (rem < BestRem)
        {
            BestRem = rem;
            BestIndex = i;
            if (rem == 0)
                break;
        }
    }

    // Configure PLLA and output divider
    AudioConfig = s_Ap15AudioPllConfigurations[BestIndex];
    NvRmPrivAp15PllSet(hRmDevice, pPllCinfo, AudioConfig.M, AudioConfig.N,
                       AudioConfig.P, (NvU32)-1, 0, 0, NV_TRUE, 0);
    NvRmPrivDividerSet(
        hRmDevice, pDividerCinfo, AudioConfig.D);
    *pAudioTargetKHz = NvRmPrivGetClockSourceFreq(pDividerCinfo->SourceId);
}

static void
Ap15PllAControl(
    NvRmDeviceHandle hRmDevice,
    NvBool Enable)
{
    const NvRmDividerClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllA0)->pInfo.pDivider;
    if (NvRmPrivGetExecPlatform(hRmDevice) == ExecPlatform_Fpga)
        return; // No PLLA control on FPGA

    if (Enable)
    {
        Ap15PllControl(hRmDevice, NvRmClockSource_PllA1, NV_TRUE);
    }
    else
    {
        // Disable provided PLLA is not used as a source for any clock
        if (NvRmPrivGetDfsFlags(hRmDevice) & NvRmDfsStatusFlags_StopPllA0)
            Ap15PllControl(hRmDevice, NvRmClockSource_PllA1, NV_FALSE);
    }
    NvRmPrivDividerFreqUpdate(hRmDevice, pCinfo);
}

static void
Ap15AudioSyncInit(NvRmDeviceHandle hRmDevice, NvRmFreqKHz AudioSyncKHz)
{
    NvRmFreqKHz AudioTargetKHz;
    NvRmClockSource AudioSyncSource;
    const NvRmSelectorClockInfo* pCinfo;
    NV_ASSERT(hRmDevice);

    // Configure PLLA. Requested frequency must always exactly match one of the
    // fixed audio frequencies.
    AudioTargetKHz = AudioSyncKHz;
    Ap15PllAConfigure(hRmDevice, &AudioTargetKHz);
    NV_ASSERT(AudioTargetKHz == AudioSyncKHz);

    // Use PLLA as audio sync source, and disable doublers.
    // (verify if SoC supports audio sync selectors)
    AudioSyncSource = NvRmClockSource_PllA0;
    if (NvRmPrivGetClockSourceHandle(NvRmClockSource_AudioSync))
    {
        pCinfo = NvRmPrivGetClockSourceHandle(
            NvRmClockSource_AudioSync)->pInfo.pSelector;
        NvRmPrivSelectorClockSet(hRmDevice, pCinfo, AudioSyncSource, NV_FALSE);
    }
    if (NvRmPrivGetClockSourceHandle(NvRmClockSource_MpeAudio))
    {
        pCinfo = NvRmPrivGetClockSourceHandle(
            NvRmClockSource_MpeAudio)->pInfo.pSelector;
        NvRmPrivSelectorClockSet(hRmDevice, pCinfo, AudioSyncSource, NV_FALSE);
    }
}

/*****************************************************************************/

static void
Ap15PllDControl(
    NvRmDeviceHandle hRmDevice,
    NvBool Enable)
{
    NvU32 reg;
    NvRmModuleClockInfo* pCinfo = NULL;
    NvRmModuleClockState* pCstate = NULL;
    NV_ASSERT_SUCCESS(NvRmPrivGetClockState(
        hRmDevice, NvRmModuleID_Dsi, &pCinfo, &pCstate));
    
    if (Enable)
    {
        Ap15PllControl(hRmDevice, NvRmClockSource_PllD0, NV_TRUE);
        pCstate->actual_freq =
            NvRmPrivGetClockSourceFreq(NvRmClockSource_PllD0);
        return;
    }

    // Disable PLLD if it is not used by either display head or DSI
    reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                  pCinfo->ClkEnableOffset);
    if (NvRmPrivIsSourceSelectedByModule(hRmDevice, NvRmClockSource_PllD0,
                                   NVRM_MODULE_ID(NvRmModuleID_Display, 0)) ||
        NvRmPrivIsSourceSelectedByModule(hRmDevice, NvRmClockSource_PllD0,
                                   NVRM_MODULE_ID(NvRmModuleID_Display, 1)) ||
        ((reg & pCinfo->ClkEnableField) == pCinfo->ClkEnableField))
        return;

    Ap15PllControl(hRmDevice, NvRmClockSource_PllD0, NV_FALSE);
    pCstate->actual_freq =
        NvRmPrivGetClockSourceFreq(NvRmClockSource_PllD0);
}

static void
Ap15PllDConfigure(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz TargetFreq)
{
    NvRmFreqKHz MaxFreq = NvRmPrivGetSocClockLimits(NvRmModuleID_Dsi)->MaxKHz;
    NvRmModuleClockInfo* pCinfo = NULL;
    NvRmModuleClockState* pCstate = NULL;
    NV_ASSERT_SUCCESS(NvRmPrivGetClockState(
        hRmDevice, NvRmModuleID_Dsi, &pCinfo, &pCstate));

    /*
     * PLLD is adjusted when DDK/ODM is initializing DSI or reconfiguring
     * display clock (for HDMI, DSI, or in some cases CRT).
     */
    if (NvRmIsFixedHdmiKHz(TargetFreq))
    {
        // 480p or 720p or 1080i/1080p HDMI - use fixed PLLD configuration
        NvRmPrivAp15PllConfigureHdmi(
            hRmDevice, NvRmClockSource_PllD0, &TargetFreq);
    }
    else
    {
        // for other targets use simple variable configuration
        if (TargetFreq < NVRM_PLLD_DISPLAY_MIN_KHZ)
        {
            NV_ASSERT((TargetFreq * NVRM_DISPLAY_DIVIDER_MAX) >=
                      NVRM_PLLD_DISPLAY_MIN_KHZ);
            TargetFreq =
                ((NVRM_PLLD_DISPLAY_MIN_KHZ / TargetFreq) + 1) * TargetFreq;
        }
        NV_ASSERT(TargetFreq <= MaxFreq);
        NvRmPrivAp15PllConfigureSimple(
            hRmDevice, NvRmClockSource_PllD0, MaxFreq, &TargetFreq);
    }

    // Update DSI clock state (PLLD is a single source, no divider)
    pCstate->SourceClock = 0;
    pCstate->Divider = 1;
    pCstate->actual_freq =
        NvRmPrivGetClockSourceFreq(NvRmClockSource_PllD0);
    NvRmPrivModuleVscaleReAttach(hRmDevice,
        pCinfo, pCstate, pCstate->actual_freq, pCstate->actual_freq);
}

/*****************************************************************************/
/*****************************************************************************/

static void
Ap15DisplayClockConfigure(
    NvRmDeviceHandle hRmDevice,
    NvRmModuleClockInfo *pCinfo,
    NvRmFreqKHz MinFreq,
    NvRmFreqKHz MaxFreq,
    NvRmFreqKHz TargetFreq,
    NvRmModuleClockState* pCstate,
    NvU32 flags)
{
    NvU32 i;
    NvRmClockSource SourceId;
    NvRmFreqKHz PixelFreq = TargetFreq;
    NvRmFreqKHz SourceClockFreq = NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkM);

    /*
     * Display clock source selection policy:
     * - if MIPI flag is specified - use PLLD, and reconfigure it as necessary
     * - else if Oscillator output provides required accuracy - use Oscillator
     * - else if PLLP fixed output provides required accuracy - use fixed PLLP
     * - else if PPLC is used by other head - use PLLD, and reconfigure it as
     *   necessary
     * - else - use use PLLC, and reconfigure it as necessary
     */
    if (flags & NvRmClockConfig_MipiSync)
    {
        // PLLD requested
        SourceId = NvRmClockSource_PllD0;
        Ap15PllDConfigure(hRmDevice, TargetFreq);
    }
    else if (NvRmIsFreqRangeReachable(
        SourceClockFreq, MinFreq, MaxFreq, NVRM_DISPLAY_DIVIDER_MAX))
    {
        // Target frequency is reachable from Oscillator - nothing to do
        SourceId = NvRmClockSource_ClkM;
    }
    else if (NvRmIsFreqRangeReachable(NVRM_PLLP_FIXED_FREQ_KHZ,
                MinFreq, MaxFreq, NVRM_DISPLAY_DIVIDER_MAX))
    {
        // Target frequency is reachable from PLLP0 - make sure it is enabled
        SourceId = NvRmClockSource_PllP0;
        Ap15PllPConfigure(hRmDevice);
    }
    else if (NvRmPrivIsSourceSelectedByModule(hRmDevice, NvRmClockSource_PllC0,
                NVRM_MODULE_ID(pCinfo->Module, (1 - pCinfo->Instance))))
    {
        // PLLC is used by the other head - only PLLD left
        SourceId = NvRmClockSource_PllD0;
        Ap15PllDConfigure(hRmDevice, TargetFreq);
    }
    else
    {
        // PLLC is available - use it
        SourceId = NvRmClockSource_PllC0;
        if (!NvRmIsFixedHdmiKHz(TargetFreq))    // don't touch HDMI targets
        {
            TargetFreq = NvRmPrivGetMaxFreqPllC(hRmDevice); // Target PLLC max
            if (!NvRmIsFreqRangeReachable(
                TargetFreq, MinFreq, MaxFreq, NVRM_DISPLAY_DIVIDER_MAX))
            {
                TargetFreq = MaxFreq;               // Target pixel range max
            }
        }
        NvRmPrivReConfigurePllC(hRmDevice, TargetFreq);
    }

    // Fill in clock state
    for (i = 0; i < NvRmClockSource_Num; i++)
    {
        if (pCinfo->Sources[i] == SourceId)
            break;
    }
    NV_ASSERT(i < NvRmClockSource_Num);
    pCstate->SourceClock = i;       // source index
    pCstate->Divider = 1;           // no divider (display driver has its own)
    pCstate->actual_freq = NvRmPrivGetClockSourceFreq(SourceId); // source KHz
    NV_ASSERT(NvRmIsFreqRangeReachable(
        pCstate->actual_freq, MinFreq, MaxFreq, NVRM_DISPLAY_DIVIDER_MAX));

    if (flags & NvRmClockConfig_SubConfig)
    {
        NvRmModuleClockInfo* pTvDacInfo = NULL;
        NvRmModuleClockState* pTvDacState = NULL;
        NV_ASSERT_SUCCESS(NvRmPrivGetClockState(
            hRmDevice, NvRmModuleID_Tvo, &pTvDacInfo, &pTvDacState));

        // TVDAC is the 2nd TVO subclock (CVE is the 1st one)
        pTvDacInfo += 2;
        pTvDacState += 2;
        NV_ASSERT(pTvDacInfo->Module == NvRmModuleID_Tvo);
        NV_ASSERT(pTvDacInfo->SubClockId == 2);

        // enable the tvdac clock
        if ((hRmDevice->ChipId.Id == 0x15) || (hRmDevice->ChipId.Id == 0x16))
            Ap15EnableTvDacClock(hRmDevice, ModuleClockState_Enable);
        else if (hRmDevice->ChipId.Id == 0x20)
            Ap20EnableTvDacClock(hRmDevice, ModuleClockState_Enable);

        // Set TVDAC = pixel clock (same source index and calculate divider
        // exactly as dc_hal.c does)
        pTvDacState->SourceClock = i;
        pTvDacState->Divider =
            (((pCstate->actual_freq * 2 ) + PixelFreq / 2) / PixelFreq) - 2;
        pTvDacState->actual_freq =
            (pCstate->actual_freq * 2 ) / (pTvDacState->Divider + 2);
        NvRmPrivModuleClockSet(hRmDevice, pTvDacInfo, pTvDacState); 
    }
    if (flags & NvRmClockConfig_DisableTvDAC)
    {
        // disable the tvdac clock
        if ((hRmDevice->ChipId.Id == 0x15) || (hRmDevice->ChipId.Id == 0x16))
            Ap15EnableTvDacClock(hRmDevice, ModuleClockState_Disable);
        else if (hRmDevice->ChipId.Id == 0x20)
            Ap20EnableTvDacClock(hRmDevice, ModuleClockState_Disable);
    }
}

NvBool
NvRmPrivAp15IsModuleClockException(
    NvRmDeviceHandle hRmDevice,
    NvRmModuleClockInfo *pCinfo,
    NvU32 ClockSourceCount,
    NvRmFreqKHz MinFreq,
    NvRmFreqKHz MaxFreq,
    const NvRmFreqKHz* PrefFreqList,
    NvU32 PrefCount,
    NvRmModuleClockState* pCstate,
    NvU32 flags)
{
    NvU32 i;
    NvRmFreqKHz FreqKHz;
    NvRmClockSource SourceId;

    NV_ASSERT(hRmDevice);
    NV_ASSERT(pCinfo && PrefFreqList && pCstate);

    switch (pCinfo->Module)
    {
        case NvRmModuleID_Display:
            /*
             * Special handling for display clocks. Must satisfy requirements
             * for the 1st requested frequency and complete configuration.
             * Note that AP15 display divider is within module itself, so the
             * input request is for pisxel clock, but output *pCstate specifies
             * source frequency. Display driver will configure divider.
             */
            Ap15DisplayClockConfigure(hRmDevice, pCinfo,
                MinFreq, MaxFreq, PrefFreqList[0], pCstate, flags);
            return NV_TRUE;

        case NvRmModuleID_Dsi:
            /*
             * Reconfigure PLLD to match requested frequency, and update DSI
             * clock state.
             */ 
            Ap15PllDConfigure(hRmDevice, PrefFreqList[0]);
            NV_ASSERT((MinFreq <= pCstate->actual_freq) &&
                      (pCstate->actual_freq <= MaxFreq));
            return NV_TRUE;

        case NvRmModuleID_Hdmi:
            /*
             * Complete HDMI configuration; choose among possible sources:
             * PLLP, PLLD, PLLC in the same order as for display (PLLD or
             * PLLC should be already configured properly for display)
             */
            if (flags & NvRmClockConfig_MipiSync)
                SourceId = NvRmClockSource_PllD0;
            else if (NvRmIsFreqRangeReachable(NVRM_PLLP_FIXED_FREQ_KHZ,
                         MinFreq, MaxFreq, NVRM_DISPLAY_DIVIDER_MAX))
                SourceId = NvRmClockSource_PllP0;
            else
                SourceId = NvRmClockSource_PllC0;

            // HDMI clock state with selected source
            for (i = 0; i < NvRmClockSource_Num; i++)
            {
                if (pCinfo->Sources[i] == SourceId)
                    break;
            }
            NV_ASSERT(i < NvRmClockSource_Num);
            pCstate->SourceClock = i;       // source index
            FreqKHz = NvRmPrivGetClockSourceFreq(SourceId);
            pCstate->Divider = ((FreqKHz << 2) + PrefFreqList[0]) /
                               (PrefFreqList[0] << 1) - 2;
            pCstate->actual_freq = (FreqKHz << 1) / (pCstate->Divider + 2);
            NV_ASSERT(pCstate->Divider <= pCinfo->DivisorFieldMask);
            NV_ASSERT((MinFreq <= pCstate->actual_freq) &&
                      (pCstate->actual_freq <= MaxFreq));
            return NV_TRUE;

        case NvRmModuleID_Spdif:
            if (flags & NvRmClockConfig_SubConfig)
                return NV_FALSE; // Nothing special for SPDIFIN
            // fall through for SPDIFOUT
        case NvRmModuleID_I2s:
            /*
             * If requested, reconfigure PLLA to match target frequency, and
             * complete clock configuration with PLLA as a source. Otherwise,
             * make sure PLLA is enabled (at current configuration), and
             * continue regular configuration for SPDIFOUT and I2S.
             */
            if (flags & NvRmClockConfig_AudioAdjust)
            {
                FreqKHz = PrefFreqList[0];
                Ap15PllAConfigure(hRmDevice, &FreqKHz);

                pCstate->SourceClock = 0;   // PLLA source index
                pCstate->Divider = ((FreqKHz << 2) + PrefFreqList[0]) /
                                    (PrefFreqList[0] << 1) - 2;
                pCstate->actual_freq = (FreqKHz << 1) / (pCstate->Divider + 2);
                if (NvRmPrivGetExecPlatform(hRmDevice) == ExecPlatform_Fpga)
                {   // Fake return on FPGA (PLLA is not configurable, anyway)
                    pCstate->actual_freq = PrefFreqList[0]; 
                }
                NV_ASSERT(pCinfo->Sources[pCstate->SourceClock] ==
                          NvRmClockSource_PllA0);
                NV_ASSERT(pCstate->Divider <= pCinfo->DivisorFieldMask);
                NV_ASSERT((MinFreq <= pCstate->actual_freq) &&
                          (pCstate->actual_freq <= MaxFreq));
                return NV_TRUE;
            }
            Ap15PllAControl(hRmDevice, NV_TRUE);
            return NV_FALSE;

        case NvRmModuleID_Usb2Otg:
            /*
             * Reconfigure PLLU to match requested frequency, and complete USB
             * clock configuration (PLLU is a single source, no divider)
             */ 
            Ap15PllUConfigure(hRmDevice, PrefFreqList[0]);
            pCstate->SourceClock = 0;
            pCstate->Divider = 1;
            pCstate->actual_freq =
                NvRmPrivGetClockSourceFreq(pCinfo->Sources[0]);
            return NV_TRUE;

        default:
            // No exception for other modules - continue regular configuration
            return NV_FALSE;
    }
}

/*****************************************************************************/

void
NvRmPrivAp15DisablePLLs(
    NvRmDeviceHandle hRmDevice,
    const NvRmModuleClockInfo* pCinfo,
    const NvRmModuleClockState* pCstate)
{
#if !NV_OAL
    switch (pCinfo->Module)
    {
        case NvRmModuleID_Display:
            NvRmPrivBoostPllC(hRmDevice);
            Ap15PllDControl(hRmDevice, NV_FALSE);
            break;

        case NvRmModuleID_Spdif:
        case NvRmModuleID_I2s:
            Ap15PllAControl(hRmDevice, NV_FALSE);
            break;

        default:
            break;
    }
#endif
}

void
NvRmPrivAp15PllDPowerControl(
    NvRmDeviceHandle hRmDevice,
    NvBool ConfigEntry,
    NvBool* pMipiPllVddOn)
{
#if !NV_OAL
    if (ConfigEntry)
    {
        // On entry to display clock configuration get PLLD power ready
        if (!(*pMipiPllVddOn))
        {
            NvRmPrivPmuRailControl(hRmDevice, NV_VDD_PLLD_ODM_ID, NV_TRUE);
            *pMipiPllVddOn = NV_TRUE;
        }
    }
    else
    {
        // On exit from display clock configuration turn off PLLD power
        // if it is disabled
        if ((*pMipiPllVddOn) &&
            (NvRmPrivGetClockSourceFreq(NvRmClockSource_PllD0) <=
             NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkM)))
        {
            NvRmPrivPmuRailControl(hRmDevice, NV_VDD_PLLD_ODM_ID, NV_FALSE);
            *pMipiPllVddOn = NV_FALSE;
        }
    }
#endif
}

void
NvRmPrivConfigureClockSource(
        NvRmDeviceHandle hRmDevice,
        NvRmModuleID ModuleId,
        NvBool enable)
{
    // Extract module and instance from composite module id.
    NvU32 Module   = NVRM_MODULE_ID_MODULE( ModuleId );

    switch (Module)
    {
        case NvRmModuleID_Usb2Otg:
            // Do not disable the PLLU clock once it is enabled
            // Set PLLU default configuration if it is not already configured
            if (enable)
                Ap15PllUConfigure(hRmDevice, NvRmFreqUnspecified);
            break;
#if !NV_OAL
        case NvRmModuleID_Spdif:
        case NvRmModuleID_I2s:
            if (enable)
            {
                // Do not enable if PLLA is not used as a source for any clock
                if (NvRmPrivGetDfsFlags(hRmDevice) & NvRmDfsStatusFlags_StopPllA0)
                    break;
            }
            // fall through
        case NvRmModuleID_Mpe:
            Ap15PllAControl(hRmDevice, enable);
            break;

        case NvRmModuleID_Dsi:
            Ap15PllDControl(hRmDevice, enable);
            break;

        case NvRmPrivModuleID_Pcie:
            NvRmPrivAp20PllEControl(hRmDevice, enable);
            break;
#endif
        default:
            break;
    }
    return;
}

/*****************************************************************************/
/*****************************************************************************/

/*
 * Basic DFS clock control policy outline:
 * - Oscillator ClkM, doubler ClkD, and memory PLLM0 - always available, fixed
 *   frequency sources.
 * - Peripheral PLLP0 may be dynamically enabled / disabled when DFS is stopped
 *   and CPU is power gated. Hence, when DFS is running it is always enabled
 *   and configured at fixed PLLP0 frequency.
 * - Cpu PLLC0 may be dynamically enabled / disabled when DFS is stopped and
 *   CPU is power gated. Hence, when DFS is running it is always enabled. PLLC0
 *   is commonly configured at maximum CPU domain frequency. If necessary, it
 *   may be adjusted to provide required display pixel clock frequency.
 * - System buses, and MC/EMC configuration, clock source multiplexes and
 *   dividers, as well as PLLP2, PLLP4 and PLLM1 dividers are under exclusive
 *   DFS control, and are not accessed by any other code except bootloader
 *   before RM is open.
 */

// Limit frequencies ratio for Vpipe : System >= 1 : 2^(value - 1)
#define LIMIT_SYS_TO_VDE_RATIO (2)

// Limit frequencies ratio for AHB : System >= 1:2 and APB : System >= 1 : 4
#define LIMIT_SYS_TO_AHB_APB_RATIOS (1)

// PLLP2 must be used as a variable source for System clock.
#define PLLP_POLICY_ENTRY(KHz) \
 { NvRmClockSource_PllP2,\
   (NVRM_PLLP_FIXED_FREQ_KHZ * 2)/((NVRM_PLLP_FIXED_FREQ_KHZ * 2)/KHz),\
   ((NVRM_PLLP_FIXED_FREQ_KHZ * 2)/KHz - 2)\
 },
static const NvRmDfsSource s_Ap15PllPSystemClockPolicy[] =
{
    NVRM_AP15_PLLP_POLICY_SYSTEM_CLOCK
};
static const NvU32 s_Ap15PllPSystemClockPolicyEntries =
    NV_ARRAY_SIZE(s_Ap15PllPSystemClockPolicy);
#undef PLLP_POLICY_ENTRY


// PLLP4 must be used as a variable source for cpu clock.
#define PLLP_POLICY_ENTRY(KHz) \
 { NvRmClockSource_PllP4,\
   (NVRM_PLLP_FIXED_FREQ_KHZ * 2)/((NVRM_PLLP_FIXED_FREQ_KHZ * 2)/KHz),\
   ((NVRM_PLLP_FIXED_FREQ_KHZ * 2)/KHz - 2)\
 },
static const NvRmDfsSource s_Ap15PllPCpuClockPolicy[] =
{
    NVRM_AP15_PLLP_POLICY_CPU_CLOCK
};
static const NvU32 s_Ap15PllPCpuClockPolicyEntries =
    NV_ARRAY_SIZE(s_Ap15PllPCpuClockPolicy);
#undef PLLP_POLICY_ENTRY

/*
 * Sorted list of timing parameters for discrete set of EMC frequencies used
 * by DFS: entry 0 specifies timing parameters for PLLM0 output frequency,
 * entry n (n = 1, 2, ... number of EMC steps-1) specifies timing parameters
 * for EMC frequency = PLLM0 frequency / (2 * n); thus only frequencies evenly
 * divided down from PLLM0 will be used by DFS
 */
static NvRmAp15EmcTimingConfig
s_Ap15EmcConfigSortedTable[NVRM_AP15_DFS_EMC_FREQ_STEPS];

static struct MemClocksRec
{
    // Index of selected EMC configuration entry
    NvU32 Index;

    // Pointers to EMC and MC clock descriptors
    NvRmModuleClockInfo* pEmcInfo;
    NvRmModuleClockInfo* pMcInfo;

    // Pointers to EMC and MC clock state records
    NvRmModuleClockState* pEmcState;
    NvRmModuleClockState* pMcState;

} s_MemClocks = {0};

static const NvU32 s_Cpu2EmcRatioPolicyTable[] =
{
    NVRM_AP15_CPU_EMC_RATIO_POLICY
};

/*****************************************************************************/

static void
Ap15Emc2xFreqGet(
    NvRmDeviceHandle hRmDevice)
{
    NvU32 reg;
    NvRmFreqKHz SourceClockFreq;
    NvRmModuleClockInfo* pCinfo = s_MemClocks.pEmcInfo;
    NvRmModuleClockState* pCstate = s_MemClocks.pEmcState;

    NV_ASSERT(pCinfo && pCstate);

    // Determine EMC2x source and divider setting; update EMC2x clock state
    reg = NV_REGR(hRmDevice,
                  NvRmPrivModuleID_ClockAndReset, 0, pCinfo->ClkSourceOffset);
    pCstate->Divider =
        ((reg >> pCinfo->DivisorFieldShift) & pCinfo->DivisorFieldMask);
    pCstate->SourceClock =
        ((reg >> pCinfo->SourceFieldShift) & pCinfo->SourceFieldMask);
    SourceClockFreq =
        NvRmPrivGetClockSourceFreq(pCinfo->Sources[pCstate->SourceClock]);

    // Fractional divider output = (Source Frequency * 2) / (divider + 2)
    pCstate->actual_freq = ((SourceClockFreq << 1) / (pCstate->Divider + 2));
}

// Enable/Disable EMC low-latency return-fifo reservation scheme
// (enable requires confirmation polling)
#define NVRM_AP15_EMCLL_RETRSV_ENABLE \
do\
{\
    NvU32 reg; \
    reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, \
                  0, EMC_LL_ARB_CONFIG_0); \
    reg = NV_FLD_SET_DRF_DEF( \
        EMC, LL_ARB_CONFIG, LL_RETRSV_ENABLE, ENABLED, reg); \
    NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, \
            0, EMC_LL_ARB_CONFIG_0, reg); \
    while (reg != NV_REGR(hRmDevice, NvRmPrivModuleID_ExternalMemoryController,\
                          0, EMC_LL_ARB_CONFIG_0)) \
        ; \
} while(0)

#define NVRM_AP15_EMCLL_RETRSV_DISABLE \
do\
{\
    NvU32 reg; \
    reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, \
                  0, EMC_LL_ARB_CONFIG_0); \
    reg = NV_FLD_SET_DRF_DEF( \
        EMC, LL_ARB_CONFIG, LL_RETRSV_ENABLE, DISABLED, reg); \
    NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, \
            0, EMC_LL_ARB_CONFIG_0, reg); \
} while (0)

void
NvRmPrivAp15SetEmcForCpuSrcSwitch(NvRmDeviceHandle hRmDevice)
{
    NVRM_AP15_EMCLL_RETRSV_ENABLE;
}

void
NvRmPrivAp15SetEmcForCpuDivSwitch(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz CpuFreq,
    NvBool Before)
{
    NvRmFreqKHz EmcFreq = (s_MemClocks.pEmcState->actual_freq >> 1);
    if (Before && (CpuFreq < EmcFreq))
    {
         NVRM_AP15_EMCLL_RETRSV_ENABLE;
    }
    else if (!Before && (CpuFreq >= EmcFreq))
    {
        NVRM_AP15_EMCLL_RETRSV_DISABLE;
    }
}

static void
Ap15EmcTimingSet(
    NvRmDeviceHandle hRmDevice,
    NvBool FreqRising,
    NvBool BeforeDividerChange,
    const NvRmAp15EmcTimingConfig* pEmcConfig)
{
    // Write shadow timing registers
    if (FreqRising == BeforeDividerChange)  // "overlap down" parameters
    {
        NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                EMC_TIMING0_0, pEmcConfig->Timing0Reg);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                EMC_TIMING1_0, pEmcConfig->Timing1Reg);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                EMC_TIMING2_0, pEmcConfig->Timing2Reg);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                EMC_TIMING3_0, pEmcConfig->Timing3Reg);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                EMC_TIMING5_0, pEmcConfig->Timing5Reg);
    }
    else                                    // "overlap up" parameters
    {
        NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                EMC_TIMING4_0, pEmcConfig->Timing4Reg);

        NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                EMC_FBIO_CFG6_0, pEmcConfig->FbioCfg6Reg);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                EMC_FBIO_DQSIB_DLY_0, pEmcConfig->FbioDqsibDly);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                EMC_FBIO_QUSE_DLY_0, pEmcConfig->FbioQuseDly);
    }
    // Trigger active register update from shadow
    NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
            EMC_TIMING_CONTROL_0, 0x1);

    // Make sure update from shadow is completed
    if (FreqRising == BeforeDividerChange)
    {
        while((NV_REGR(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                       EMC_TIMING0_0)) != pEmcConfig->Timing0Reg);
    }
    else
    {
        while((NV_REGR(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                       EMC_TIMING4_0)) != pEmcConfig->Timing4Reg);
        // Re-trigger active register update (need it for trimmers only)
        NV_REGW(hRmDevice, NvRmPrivModuleID_ExternalMemoryController, 0,
                EMC_TIMING_CONTROL_0, 0x1);
    }
}

static void
Ap15Emc2xClockSet(
    NvRmDeviceHandle hRmDevice,
    NvBool FreqRising,
    const NvRmAp15EmcTimingConfig* pEmcConfig)
{
    NvU32 reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                        CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0);
    reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_EMC,
                         EMC_2X_CLK_DIVISOR, pEmcConfig->Emc2xDivisor, reg);
    NV_ASSERT(pEmcConfig->Emc2xKHz);    // validate table entry

    // Update EMC state
    s_MemClocks.pEmcState->actual_freq = pEmcConfig->Emc2xKHz;
    s_MemClocks.pEmcState->Divider = pEmcConfig->Emc2xDivisor;

    // Set EMC parameters and EMC divisor (the EMC clock source is always
    // PLLM0 starting from BL)
    Ap15EmcTimingSet(hRmDevice, FreqRising, NV_TRUE, pEmcConfig);
    NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
            CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0, reg);
    Ap15EmcTimingSet(hRmDevice, FreqRising, NV_FALSE, pEmcConfig);
}

static void
Ap15McClockSet(
    NvRmDeviceHandle hRmDevice,
    const NvRmAp15EmcTimingConfig* pEmcConfig)
{
    NvU32 src, div;
    NvU32 reg = NV_REGR(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                        CLK_RST_CONTROLLER_CLK_SOURCE_MEM_0);
    src = NV_DRF_VAL(CLK_RST_CONTROLLER, CLK_SOURCE_MEM, MEM_CLK_SRC, reg);
    div = NV_DRF_VAL(CLK_RST_CONTROLLER, CLK_SOURCE_MEM, MEM_CLK_DIVISOR, reg);

    // Update MC state
    s_MemClocks.pMcState->actual_freq = pEmcConfig->McKHz;
    s_MemClocks.pMcState->SourceClock = pEmcConfig->McClockSource;
    s_MemClocks.pMcState->Divider = pEmcConfig->McDivisor;

    // Set MC divisor before source, if new value is bigger than the old one
    if (pEmcConfig->McDivisor > div)
    {
        reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_MEM,
            MEM_CLK_DIVISOR, pEmcConfig->McDivisor, reg);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                CLK_RST_CONTROLLER_CLK_SOURCE_MEM_0, reg);
        NvOsWaitUS(NVRM_CLOCK_CHANGE_DELAY);
    }

    // Modify MC source if it is to be changed
    if (pEmcConfig->McClockSource != src)
    {
        NvRmPrivMemoryClockReAttach(
            hRmDevice, s_MemClocks.pMcInfo, s_MemClocks.pMcState);
        reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_MEM,
            MEM_CLK_SRC, pEmcConfig->McClockSource, reg);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                CLK_RST_CONTROLLER_CLK_SOURCE_MEM_0, reg);
        NvOsWaitUS(NVRM_CLOCK_CHANGE_DELAY);
    }

    // Set MC divisor after source, if new value is smaller than the old one
    if (pEmcConfig->McDivisor < div)
    {
        reg = NV_FLD_SET_DRF_NUM(CLK_RST_CONTROLLER, CLK_SOURCE_MEM,
            MEM_CLK_DIVISOR, pEmcConfig->McDivisor, reg);
        NV_REGW(hRmDevice, NvRmPrivModuleID_ClockAndReset, 0,
                CLK_RST_CONTROLLER_CLK_SOURCE_MEM_0, reg);
        NvOsWaitUS(NVRM_CLOCK_CHANGE_DELAY);
    }
}

void
NvRmPrivAp15EmcConfigInit(NvRmDeviceHandle hRmDevice)
{
    NvU32 i, j, k, reg=0;
    NvU32 ConfigurationsCount;
    NvRmFreqKHz Emc2xKHz, McKHz, McMax;
    NvRmFreqKHz PllM0KHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0);
    const NvOdmSdramControllerConfig* pEmcConfigurations =
        NvOdmQuerySdramControllerConfigGet(&ConfigurationsCount, &reg);

    // Init memory configuration structure
    NV_ASSERT_SUCCESS(NvRmPrivGetClockState(
        hRmDevice, NvRmPrivModuleID_ExternalMemoryController,
        &s_MemClocks.pEmcInfo, &s_MemClocks.pEmcState));
     NV_ASSERT_SUCCESS(NvRmPrivGetClockState(
         hRmDevice, NvRmPrivModuleID_MemoryController,
         &s_MemClocks.pMcInfo, &s_MemClocks.pMcState));
     s_MemClocks.Index = NVRM_AP15_DFS_EMC_FREQ_STEPS;  // invalid index
     NvOsMemset(s_Ap15EmcConfigSortedTable, 0,          // clean table
                sizeof(s_Ap15EmcConfigSortedTable));

     // Get EMC2x clock state from h/w
     Ap15Emc2xFreqGet(hRmDevice);

    // Check if configuration table is provided by ODM
    if ((ConfigurationsCount == 0) || (pEmcConfigurations == NULL))
    {
        s_Ap15EmcConfigSortedTable[0].Emc2xKHz = 0; // invalidate PLLM0 entry
        return;
    }
    if (reg != NV_EMC_BASIC_REV)
    {
        s_Ap15EmcConfigSortedTable[0].Emc2xKHz = 0; // invalidate PLLM0 entry
        NV_ASSERT(!"Invalid configuration table revision");
        return;
    }

    // Check PLLM0 range
    NV_ASSERT(PllM0KHz);
    if (PllM0KHz > (NvRmPrivGetSocClockLimits(
        NvRmPrivModuleID_ExternalMemoryController)->MaxKHz))
    {
        s_Ap15EmcConfigSortedTable[0].Emc2xKHz = 0; // invalidate PLLM0 entry
        NV_ASSERT(!"PLLM0 is outside supported EMC range");
        return;
    }

    // Check if PLLM0 is configured by boot loader as EMC clock source
    // (it can not and will not be changed by RM)
    if (s_MemClocks.pEmcState->SourceClock !=
        CLK_RST_CONTROLLER_CLK_SOURCE_EMC_0_EMC_2X_CLK_SRC_PLLM_OUT0)
    {
        s_Ap15EmcConfigSortedTable[0].Emc2xKHz = 0; // invalidate PLLM0 entry
        NV_ASSERT(!"Other than PLLM0 clock source is used for EMC");
        return;
    }

    // Sort list of EMC timing parameters in descending order of frequencies
    // evenly divided down from PLLM0; find matching entry for boot divisor
    for (i = 0, k = 0, Emc2xKHz = PllM0KHz; i < NVRM_AP15_DFS_EMC_FREQ_STEPS; )
    {
        s_Ap15EmcConfigSortedTable[i].Emc2xKHz = 0; // mark entry invalid
        for (j = 0; j < ConfigurationsCount; j++)
        {
            // Find match with 1MHz tolerance for allowed configuration
            if ((Emc2xKHz <= (pEmcConfigurations[j].SdramKHz * 2 + 1000)) &&
                (Emc2xKHz >= (pEmcConfigurations[j].SdramKHz * 2 - 1000)))
            {
                s_Ap15EmcConfigSortedTable[i].Timing0Reg = pEmcConfigurations[j].EmcTiming0;
                s_Ap15EmcConfigSortedTable[i].Timing1Reg = pEmcConfigurations[j].EmcTiming1;
                s_Ap15EmcConfigSortedTable[i].Timing2Reg = pEmcConfigurations[j].EmcTiming2;
                s_Ap15EmcConfigSortedTable[i].Timing3Reg = pEmcConfigurations[j].EmcTiming3;
                s_Ap15EmcConfigSortedTable[i].Timing4Reg = pEmcConfigurations[j].EmcTiming4;
                s_Ap15EmcConfigSortedTable[i].Timing5Reg = pEmcConfigurations[j].EmcTiming5;

                s_Ap15EmcConfigSortedTable[i].FbioCfg6Reg =
                    pEmcConfigurations[j].EmcFbioCfg6;
                s_Ap15EmcConfigSortedTable[i].FbioDqsibDly =
                    pEmcConfigurations[j].EmcFbioDqsibDly +
                    NvRmPrivGetEmcDqsibOffset(hRmDevice);
                s_Ap15EmcConfigSortedTable[i].FbioQuseDly = 
                    pEmcConfigurations[j].EmcFbioQuseDly;
                s_Ap15EmcConfigSortedTable[i].CoreVoltageMv =
                    pEmcConfigurations[j].EmcCoreVoltageMv;

                // Determine EMC and MC clock divisors, MC clock source
                // (EMC always uses PLLM0 as a source), and CPU clock limit
                s_Ap15EmcConfigSortedTable[i].Emc2xKHz = Emc2xKHz; // accurate KHz
                if (i == 0)
                {
                    /*
                     * The first table entry specifies parameters for EMC2xFreq
                     * = PLLM0 frequency; the divisor field in EMC fractional
                     * divider register is set to "0". The divisor field in MC
                     * divider is set to "1", so that Emc1xFreq ~ 75% of McFreq
                     * using PLLM0 as MC clock source, if maximum MC frequency
                     * limit is not violated. Otherwise, find the highest MC
                     * frequency below the limit with PLLP0 as a source.
                     */
                    s_Ap15EmcConfigSortedTable[i].Emc2xDivisor = 0;
                    McKHz = (PllM0KHz * 2) / 3;
                    McMax = NvRmPrivGetSocClockLimits(
                        NvRmPrivModuleID_MemoryController)->MaxKHz;
                    NV_ASSERT(McMax);
                    if (McKHz <= McMax)
                    {
                        s_Ap15EmcConfigSortedTable[i].McDivisor = 1;
                        s_Ap15EmcConfigSortedTable[i].McClockSource =
                            CLK_RST_CONTROLLER_CLK_SOURCE_MEM_0_MEM_CLK_SRC_PLLM_OUT0;
                    }
                    else if (NVRM_PLLP_FIXED_FREQ_KHZ <= McMax)
                    {
                        McKHz = NVRM_PLLP_FIXED_FREQ_KHZ;
                        s_Ap15EmcConfigSortedTable[i].McDivisor = 0;
                        s_Ap15EmcConfigSortedTable[i].McClockSource =
                            CLK_RST_CONTROLLER_CLK_SOURCE_MEM_0_MEM_CLK_SRC_PLLP_OUT0;
                    }
                    else
                    {
                        reg = (2 * NVRM_PLLP_FIXED_FREQ_KHZ + McMax - 1) / McMax;
                        McKHz = (2 * NVRM_PLLP_FIXED_FREQ_KHZ) / reg;
                        s_Ap15EmcConfigSortedTable[i].McDivisor = reg - 2;
                        s_Ap15EmcConfigSortedTable[i].McClockSource =
                            CLK_RST_CONTROLLER_CLK_SOURCE_MEM_0_MEM_CLK_SRC_PLLP_OUT0;
                    }
                }
                else
                {
                    /*
                     * If i = 1, 2, ... the table entry specifies parameters
                     * for EMC2xFreq = PLLM0 frequency/(2 * k); the divisor
                     * field in EMC fractional divider register should be set
                     * as 2 * (2 * k) - 2 = 4 * k - 2. The divisor field in MC
                     * divider is determined so that Emc1xFreq ~ 85% of McFreq
                     * using the same PLLM0 as MC clock source
                     */
                    s_Ap15EmcConfigSortedTable[i].Emc2xDivisor = (k << 2) - 2;
                    s_Ap15EmcConfigSortedTable[i].McDivisor = (19 +
                         17 * s_Ap15EmcConfigSortedTable[i].Emc2xDivisor) / 10;
                    s_Ap15EmcConfigSortedTable[i].McClockSource =
                        CLK_RST_CONTROLLER_CLK_SOURCE_MEM_0_MEM_CLK_SRC_PLLM_OUT0;
                    McKHz = 2 * PllM0KHz /
                        (s_Ap15EmcConfigSortedTable[i].McDivisor + 2);
                }
                if (s_Ap15EmcConfigSortedTable[i].Emc2xDivisor ==
                    s_MemClocks.pEmcState->Divider)
                {
                    s_MemClocks.Index = i;      // Boot configuration found
                }
                s_Ap15EmcConfigSortedTable[i].McKHz = McKHz;
                /*
                 * H/w CPU clock limit is determined from inequality:
                 * 1 mcclk period + 12 cpuclk periods >= 2 emcclck periods, or
                 * CpuKHz <= 11.9 * McKHz * Emc2xKHz / (4 * McKHz - Emc2xKHz)
                 * with 0.1/12 ~ 0.8% margin
                 * S/w CPU clock limit is determined per s/w policy:
                 * CpuKHz <= CpuMax * PolicyTabel[PLLM0/(2*EMC2xKHz)] / 256
                 * Final CPU clock limit is minimum of the above limits
                 */
                s_Ap15EmcConfigSortedTable[i].CpuLimitKHz =
                    (NvU32)NvDiv64(((NvU64)Emc2xKHz * McKHz * 119), 
                                (((McKHz << 2) - Emc2xKHz) * 10));
                reg = NvRmPrivGetSocClockLimits(NvRmModuleID_Cpu)->MaxKHz;
                if (k != 0)
                {
                    NV_ASSERT(k < NV_ARRAY_SIZE(s_Cpu2EmcRatioPolicyTable));
                    reg = (reg * s_Cpu2EmcRatioPolicyTable[k]) >> 8;
                }
                if (s_Ap15EmcConfigSortedTable[i].CpuLimitKHz > reg)
                    s_Ap15EmcConfigSortedTable[i].CpuLimitKHz = reg;

                break;
            }
        }
        if (s_Ap15EmcConfigSortedTable[i].Emc2xKHz != 0)
            i++;                // Entry found - advance sorting index
        else if (i == 0)
            break;              // PLLM0 entry not found - abort sorting 

        Emc2xKHz = PllM0KHz / ((++k) << 1);
        if (Emc2xKHz < NvRmPrivGetSocClockLimits(
            NvRmPrivModuleID_ExternalMemoryController)->MinKHz)
            break;              // Abort sorting at minimum EMC frequency
    }
    // Check if match for boot configuration found
    if (s_MemClocks.Index == NVRM_AP15_DFS_EMC_FREQ_STEPS)
        s_Ap15EmcConfigSortedTable[0].Emc2xKHz = 0; // invalidate PLLM0 entry
}

static NvBool
Ap15Emc2xClockSourceFind(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz DomainKHz,
    NvRmFreqKHz* pCpuTargetKHz,
    NvRmDfsSource* pDfsSource)
{
    NvU32 i;
    NvBool FinalStep = NV_TRUE;
    NV_ASSERT(DomainKHz <= MaxKHz);
    pDfsSource->DividerSetting = 0; // no divider

    // If PLLM0 entry in EMC frequeuncies table is invalid, EMC frequency
    // will not be scaled; just fill in current EMC frequency
    if (s_Ap15EmcConfigSortedTable[0].Emc2xKHz == 0)
    {
        pDfsSource->SourceId = NvRmClockSource_Invalid;
        pDfsSource->SourceKHz = s_MemClocks.pEmcState->actual_freq;
        pDfsSource->MinMv = NvRmVoltsMaximum; // no v-scaling in this case
        return FinalStep;
    }

    // Only PLLM0 is used as EMC frequency source by DFS; its frequency is
    // always within h/w limits
    pDfsSource->SourceId = NvRmClockSource_PllM0;
    NV_ASSERT(s_Ap15EmcConfigSortedTable[0].Emc2xKHz <= MaxKHz);

    // Search sorted pre-defind EMC frequencies (divided down from PLLM0) for
    // the entry above and closest to the traget that also has CPU limit above
    // the CPU target. Use PLLM0 entry if not found.
    for (i = NVRM_AP15_DFS_EMC_FREQ_STEPS; i > 0;)
    {
        i--;
        if ((DomainKHz <= s_Ap15EmcConfigSortedTable[i].Emc2xKHz) &&
            (*pCpuTargetKHz <= s_Ap15EmcConfigSortedTable[i].CpuLimitKHz))
            break;
    }

    // Make sure the new entry is adjacent to the current (one step at a time)
    if (i > (s_MemClocks.Index + 1))
    {
        i = s_MemClocks.Index + 1;
        FinalStep = NV_FALSE;    // need more steps to reach target
    }
    else if ((i + 1) < s_MemClocks.Index)
    {
        i = s_MemClocks.Index - 1;
        FinalStep = NV_FALSE;    // need more steps to reach target
    }

    // Record found EMC entry, and limit CPU target if necessary
    pDfsSource->DividerSetting = i;
    pDfsSource->SourceKHz = s_Ap15EmcConfigSortedTable[i].Emc2xKHz;
    if (*pCpuTargetKHz > s_Ap15EmcConfigSortedTable[i].CpuLimitKHz)
        *pCpuTargetKHz = s_Ap15EmcConfigSortedTable[i].CpuLimitKHz;
    pDfsSource->MinMv = s_Ap15EmcConfigSortedTable[i].CoreVoltageMv;
    return FinalStep;
}

static void
Ap15Emc2xClockConfigure(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz* pDomainKHz,
    const NvRmDfsSource* pDfsSource)
{
    NvU32 Index;
    NvRmFreqKHz CpuFreq = NvRmPrivGetClockSourceFreq(NvRmClockSource_CpuBus);

    // Always return the requested source frequency
    *pDomainKHz = pDfsSource->SourceKHz;
    NV_ASSERT(*pDomainKHz);

    // If other than PLLM0 source is selected, EMC frequency is not scaled.
    if (pDfsSource->SourceId != NvRmClockSource_PllM0)
        return;

    // Divider settings in EMC source descriptor is an index into the table of
    // pre-defined EMC configurations in descending frequency order.
    Index = pDfsSource->DividerSetting;
    if (Index == s_MemClocks.Index)
        return;     // do nothing new index is the same as current

    // In case of EMC frequency increase:  check if EMC LL reservation should
    // be enabled, reconfigure EMC, then MC (make sure MC never exceeds EMC2x)
    // In case of EMC frequency decrease: reconfigure MC, then EMC (make sure
    // MC never exceeds EMC2x) and check if EMC LL reservation can be disabled
    if (Index < s_MemClocks.Index)
    {
        if (CpuFreq < (*pDomainKHz >> 1))
        {
            NVRM_AP15_EMCLL_RETRSV_ENABLE;
        }
        Ap15Emc2xClockSet(
            hRmDevice, NV_TRUE, &s_Ap15EmcConfigSortedTable[Index]);
        Ap15McClockSet(hRmDevice, &s_Ap15EmcConfigSortedTable[Index]);
    }
    else
    {
        Ap15McClockSet(hRmDevice, &s_Ap15EmcConfigSortedTable[Index]);
        Ap15Emc2xClockSet(
            hRmDevice, NV_FALSE, &s_Ap15EmcConfigSortedTable[Index]);

        if (CpuFreq >= (*pDomainKHz >> 1))
        {
            NVRM_AP15_EMCLL_RETRSV_DISABLE;
        }
    }
    s_MemClocks.Index = Index;
}

void
NvRmPrivAp15FastClockConfig(NvRmDeviceHandle hRmDevice)
{
#if !NV_OAL
    NvU32 divm1, divp2;
    NvRmFreqKHz SclkKHz, CpuKHz, PllP2KHz, PllM1KHz;
    NvRmFreqKHz FreqKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0);

    // Set fastest EMC/MC configuration provided PLLM0 boot frequency matches
    // one of the pre-defined configurations, i.e, it is the first entry in the
    // sorted table
    if (s_Ap15EmcConfigSortedTable[0].Emc2xKHz == FreqKHz)
    {
        for (;;)
        {
            Ap15Emc2xClockSet(
                hRmDevice, NV_TRUE, &s_Ap15EmcConfigSortedTable[s_MemClocks.Index]);
            Ap15McClockSet(hRmDevice, &s_Ap15EmcConfigSortedTable[s_MemClocks.Index]);
            if (s_MemClocks.Index == 0)
                break;
            s_MemClocks.Index--;
        }
    }

    // Set AVP/System Bus clock (now, with nominal core voltage it can be up
    // to SoC maximum). First determine settings for PLLP and PLLM dividers
    // to get maximum possible frequency on PLLP_OUT2 and PLLM_OUT1 outputs.
    SclkKHz = NvRmPrivGetSocClockLimits(NvRmPrivModuleID_System)->MaxKHz;
    NV_ASSERT(SclkKHz);

    FreqKHz = NVRM_PLLP_FIXED_FREQ_KHZ;
    PllP2KHz = SclkKHz;
    divp2 = NvRmPrivFindFreqMaxBelow(
        NvRmClockDivider_Fractional_2, FreqKHz, PllP2KHz, &PllP2KHz);

    FreqKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0);
    PllM1KHz = SclkKHz;
    divm1 = NvRmPrivFindFreqMaxBelow(
        NvRmClockDivider_Fractional_2, FreqKHz, PllM1KHz, &PllM1KHz);

    // Now configure both dividers and select the output with highest frequency
    // as a source for the system bus clock; reconfigure MIO as necessary
    SclkKHz = NV_MAX(PllM1KHz, PllP2KHz); 
    FreqKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_SystemBus);
    if (FreqKHz < SclkKHz)
    {
        Ap15MioReconfigure(hRmDevice, SclkKHz);
    }
    NvRmPrivDividerSet(
        hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllP2)->pInfo.pDivider,
        divp2);
    NvRmPrivDividerSet(
        hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_PllM1)->pInfo.pDivider,
        divm1);
    if (SclkKHz == PllP2KHz)
    {
        NvRmPrivCoreClockSet(hRmDevice,
            NvRmPrivGetClockSourceHandle(NvRmClockSource_SystemBus)->pInfo.pCore,
            NvRmClockSource_PllP2, 0, 0);
    }
    else
    {
        NvRmPrivCoreClockSet(hRmDevice,
            NvRmPrivGetClockSourceHandle(NvRmClockSource_SystemBus)->pInfo.pCore,
            NvRmClockSource_PllM1, 0, 0);
    }
    if (FreqKHz >= SclkKHz)
    {
        Ap15MioReconfigure(hRmDevice, SclkKHz);
    }
    NvRmPrivBusClockInit(hRmDevice, SclkKHz);

    // Set PLLC and CPU clock to SoC maximum - can be done now, when core
    // voltage is guaranteed to be nominal, provided none of the display
    // heads is already using PLLC as pixel clock source.
    CpuKHz = NvRmPrivGetSocClockLimits(NvRmModuleID_Cpu)->MaxKHz;
    FreqKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllC0);
    if (CpuKHz != FreqKHz)
    {
        NvRmPrivBoostPllC(hRmDevice);
    }
    NvRmPrivCoreClockSet(hRmDevice,
        NvRmPrivGetClockSourceHandle(NvRmClockSource_CpuBus)->pInfo.pCore,
        NvRmClockSource_PllC0, 0, 0);
#endif
}

void
NvRmPrivAp15ClipCpuEmcHighLimits(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz* pCpuHighKHz,
    NvRmFreqKHz* pEmcHighKHz)
{
#if !NV_OAL
    NvU32 i;
    NvRmFreqKHz EmcKHz;
    NvRmFreqKHz MinKHz = NvRmPrivDfsGetMinKHz(NvRmDfsClockId_Emc);
    NV_ASSERT(pEmcHighKHz && pCpuHighKHz);

    // Nothing to do if no EMC scaling.
    if (s_Ap15EmcConfigSortedTable[0].Emc2xKHz == 0)
        return;

    // Clip strategy: "throttling" - find the floor for EMC high limit
    // (above domain minimum, of course)
    if ((*pEmcHighKHz) < MinKHz)
        *pEmcHighKHz = MinKHz;
    for (i = 0; i < NVRM_AP15_DFS_EMC_FREQ_STEPS; i++)
    {
        EmcKHz = s_Ap15EmcConfigSortedTable[i].Emc2xKHz >> 1;
        if (EmcKHz <= (*pEmcHighKHz))
            break;
    }
    if ((i == NVRM_AP15_DFS_EMC_FREQ_STEPS) || (EmcKHz < MinKHz))
    {
        i--;
        EmcKHz = s_Ap15EmcConfigSortedTable[i].Emc2xKHz >> 1;
    }
    *pEmcHighKHz = EmcKHz;

    // Clip strategy: "throttling" - restrict CPU high limit by EMC
    // configuration ((above domain minimum, of course)
    if ((*pCpuHighKHz) > s_Ap15EmcConfigSortedTable[i].CpuLimitKHz)
        (*pCpuHighKHz) = s_Ap15EmcConfigSortedTable[i].CpuLimitKHz;
    if ((*pCpuHighKHz) < NvRmPrivDfsGetMinKHz(NvRmDfsClockId_Cpu))
        *pCpuHighKHz = NvRmPrivDfsGetMinKHz(NvRmDfsClockId_Cpu);
#endif
}

NvRmFreqKHz
NvRmPrivAp15GetEmcSyncFreq(
    NvRmDeviceHandle hRmDevice,
    NvRmModuleID Module)
{
    NvRmFreqKHz FreqKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0);

    switch (Module)
    {
        case NvRmModuleID_2D:
        case NvRmModuleID_Epp:
            // 2D/EPP frequency is dynamically synchronized with current EMC speed
            // (high if EMC divisor 0, and low otherwise)
            if (s_MemClocks.pEmcState && (s_MemClocks.pEmcState->Divider != 0))
                FreqKHz = FreqKHz / NVRM_PLLM_2D_LOW_SPEED_RATIO;
            else
                FreqKHz = FreqKHz / NVRM_PLLM_2D_HIGH_SPEED_RATIO;
            break;

        case NvRmModuleID_GraphicsHost:
            // Host frequency is static, synchronized with EMC range set by BCT
            FreqKHz = FreqKHz / NVRM_PLLM_HOST_SPEED_RATIO;
            break;

        default:
            NV_ASSERT(!"Invalid module for EMC synchronization");
            FreqKHz = NvRmPrivGetSocClockLimits(Module)->MaxKHz;
            break;
    }
    return FreqKHz;
}

/*****************************************************************************/

static void
Ap15SystemClockSourceFind(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz DomainKHz,
    NvRmDfsSource* pDfsSource)
{
    NvU32 i;
    NvRmFreqKHz SourceKHz;
    NV_ASSERT(DomainKHz <= MaxKHz);
    pDfsSource->DividerSetting = 0; // no divider

    // 1st try oscillator
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkM);
    NV_ASSERT(SourceKHz <= MaxKHz);
    if (DomainKHz <= SourceKHz)
    {
        pDfsSource->SourceId = NvRmClockSource_ClkM;
        pDfsSource->SourceKHz = SourceKHz;
        goto get_mv;
    }

    // 2nd choice - doubler
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkD);
    NV_ASSERT(SourceKHz <= MaxKHz);
    if (DomainKHz <= SourceKHz)
    {
        pDfsSource->SourceId = NvRmClockSource_ClkD;
        pDfsSource->SourceKHz = SourceKHz;
        goto get_mv;
    }

    /*
     * 3rd option - PLLP divider per policy specification. Find
     * the policy entry with source frequency closest and above requested.
     * If requested frequency exceeds all policy options within domain
     * maximum limit, select the entry with the highest possible frequency.
     */
    for (i = 0; i < s_Ap15PllPSystemClockPolicyEntries; i++)
    {
        SourceKHz = s_Ap15PllPSystemClockPolicy[i].SourceKHz;
        if (SourceKHz > MaxKHz)
        {
            NV_ASSERT(i);
            i--;
            break;
        }
        if (DomainKHz <= SourceKHz)
        {
            break;
        }
    }
    if (i == s_Ap15PllPSystemClockPolicyEntries)
    {
        i--;    // last/highest source is the best we can do
    }
    pDfsSource->SourceId = s_Ap15PllPSystemClockPolicy[i].SourceId;
    pDfsSource->SourceKHz = s_Ap15PllPSystemClockPolicy[i].SourceKHz;
    pDfsSource->DividerSetting = s_Ap15PllPSystemClockPolicy[i].DividerSetting;

    /*
     * 4st and final option - PLLM divider fixed at maximum possible frequency
     * during initialization. Select PLLP/PLLM divider according to the 
     * following rule: select the divider with smaller frequency if it is equal
     * or above the target frequency, otherwise select the divider with bigger
     * output frequency.
     */
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM1);
    NV_ASSERT(SourceKHz <= MaxKHz);
    if (SourceKHz > pDfsSource->SourceKHz)
    {
        if (pDfsSource->SourceKHz >= DomainKHz)
            goto get_mv;    // keep PLLP divider as a source
    }
    else // SourceKHz <= pDfsSource->SourceKHz
    {
        if (SourceKHz < DomainKHz)
            goto get_mv;    // keep PLLP divider as a source
    }
    // Select PLLM_OUT1 divider as a source (considered as a fixed source -
    // divider settings are ignored)
    pDfsSource->SourceId = NvRmClockSource_PllM1;
    pDfsSource->SourceKHz = SourceKHz;

get_mv:
    // Finally get operational voltage for found source
    pDfsSource->MinMv = NvRmPrivModuleVscaleGetMV(
        hRmDevice, NvRmPrivModuleID_System, pDfsSource->SourceKHz);
}

static void
Ap15CpuClockSourceFind(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz DomainKHz,
    NvRmDfsSource* pDfsSource)
{
    NvU32 i;
    NvRmFreqKHz SourceKHz;
    NV_ASSERT(DomainKHz <= MaxKHz);
    pDfsSource->DividerSetting = 0; // no divider

    // 1st try oscillator
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkM);
    NV_ASSERT(SourceKHz <= MaxKHz);
    if (DomainKHz <= SourceKHz)
    {
        pDfsSource->SourceId = NvRmClockSource_ClkM;
        pDfsSource->SourceKHz = SourceKHz;
        goto get_mv;
    }

    // 2nd choice - doubler - no longer supported
    // 3rd choice - PLLP divider per policy specification
    SourceKHz =
        s_Ap15PllPCpuClockPolicy[s_Ap15PllPCpuClockPolicyEntries-1].SourceKHz;
    NV_ASSERT(SourceKHz <= MaxKHz);
    if (DomainKHz <= SourceKHz)
    {
        // The requested frequency is within PLLP divider policy table, and all
        // policy entries are within domain maximum limit. Then, find the entry
        // with source frequency closest and above the requested.
        for (i = 0; i < s_Ap15PllPCpuClockPolicyEntries; i++)
        {
            SourceKHz = s_Ap15PllPCpuClockPolicy[i].SourceKHz;
            if (DomainKHz <= SourceKHz)
                break;
        }
        if (s_Ap15PllPCpuClockPolicy[i].DividerSetting == 0)
            pDfsSource->SourceId = NvRmClockSource_PllP0;   // Bypass 1:1 divider
        else
            pDfsSource->SourceId = s_Ap15PllPCpuClockPolicy[i].SourceId;
        pDfsSource->SourceKHz = s_Ap15PllPCpuClockPolicy[i].SourceKHz;
        pDfsSource->DividerSetting = s_Ap15PllPCpuClockPolicy[i].DividerSetting;
        goto get_mv;
    }

    // 4th choice PLLM base output
    SourceKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_PllM0);
    NV_ASSERT(SourceKHz <= MaxKHz);
    if (DomainKHz <= SourceKHz)
    {
        pDfsSource->SourceId = NvRmClockSource_PllM0;
        pDfsSource->SourceKHz = SourceKHz;
        goto get_mv;
    }

    // 5th choice PLLP base output (not used - covered by 3rd choice, case 1:1)
    // 6th and final choice - PLLC base output at domain limit
    pDfsSource->SourceId = NvRmClockSource_PllC0;
    pDfsSource->SourceKHz = MaxKHz;

get_mv:
    // Finally get operational voltage for found source
    pDfsSource->MinMv = NvRmPrivModuleVscaleGetMV(
        hRmDevice, NvRmModuleID_Cpu, pDfsSource->SourceKHz);
}

static void
Ap15SystemBusClockConfigure(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz* pDomainKHz,
    const NvRmDfsSource* pDfsSource)
{
    NvRmClockSource SourceId = pDfsSource->SourceId;
    const NvRmCoreClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(NvRmClockSource_SystemBus)->pInfo.pCore;

    switch(SourceId)
    {
        case NvRmClockSource_PllP2:
            // Reconfigure PLLP variable divider if it is used as a source
            NvRmPrivDividerSet(hRmDevice,
                NvRmPrivGetClockSourceHandle(SourceId)->pInfo.pDivider,
                pDfsSource->DividerSetting);
            // fall through
        case NvRmClockSource_PllM1:
        case NvRmClockSource_ClkD:
        case NvRmClockSource_ClkM:
            break;  // fixed sources - do nothing
        default:
            NV_ASSERT(!"Invalid source (per policy)");
    }
    NV_ASSERT_SUCCESS(NvRmPrivCoreClockConfigure(
        hRmDevice, pCinfo, MaxKHz, pDomainKHz, &SourceId));
}

static void
Ap15CpuBusClockConfigure(
    NvRmDeviceHandle hRmDevice,
    NvRmFreqKHz MaxKHz,
    NvRmFreqKHz* pDomainKHz,
    const NvRmDfsSource* pDfsSource)
{
    NvRmClockSource SourceId = pDfsSource->SourceId;
    const NvRmCoreClockInfo* pCinfo =
        NvRmPrivGetClockSourceHandle(NvRmClockSource_CpuBus)->pInfo.pCore;

    switch(SourceId)
    {
        case NvRmClockSource_PllC0:
            // DFS PLLC policy - configure PLLC if disabled; otherwise keep
            // keep it as is (the latter means either DFS has already set it
            // to domain limit, or PLLC is used as display pixel clock source)
            if (NvRmPrivGetClockSourceFreq(NvRmClockSource_PllC0) <=
                NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkM))
            {
                NvRmFreqKHz TargetKHz = pDfsSource->SourceKHz;
                NvRmPrivAp15PllConfigureSimple(
                    hRmDevice, SourceId, MaxKHz, &TargetKHz);
            }
            break;
        case NvRmClockSource_PllP4:
            // Reconfigure PLLP variable divider if it is used as a source;
            // If source frequency is going down, get EMC configuration is ready
            if (pDfsSource->SourceKHz < NvRmPrivGetClockSourceFreq(SourceId))
                NvRmPrivAp15SetEmcForCpuSrcSwitch(hRmDevice);
            NvRmPrivDividerSet(hRmDevice,
                NvRmPrivGetClockSourceHandle(SourceId)->pInfo.pDivider,
                pDfsSource->DividerSetting);
            // fall through
        case NvRmClockSource_PllP0:
        case NvRmClockSource_PllM0:
        case NvRmClockSource_ClkD:
        case NvRmClockSource_ClkM:
            break;  // fixed sources - do nothing
        default:
            NV_ASSERT(!"Invalid source (per policy)");
    }
    NV_ASSERT_SUCCESS(NvRmPrivCoreClockConfigure(
        hRmDevice, pCinfo, MaxKHz, pDomainKHz, &SourceId));
}

/*****************************************************************************/
/* If time is specified in ns, and frequency in KHz, then cycles =
 * (ns * KHz / 10^6) = (ns * (KHz * 2^20 / 10^6) / 2^20) = (ns * KiHz / 2^20),
 * where KiHz = (KHz * 2^20 / 10^6) ~ (KHz * 4295 / 4096) with error < 0.001%.
 */
#define NVRM_TIME_TO_CYCLES(ns, KiHz) (((ns * KiHz) + (0x1 << 20)- 1) >> 20)

#define NV_DRF_MAX_NUM(d,r,f,n) \
    ((((n) <= NV_FIELD_MASK(d##_##r##_0_##f##_RANGE)) ? \
      (n) : NV_FIELD_MASK(d##_##r##_0_##f##_RANGE)) << \
     NV_FIELD_SHIFT(d##_##r##_0_##f##_RANGE))

static void
Ap15MioReconfigure(
        NvRmDeviceHandle hRmDevice,
        NvRmFreqKHz MioKHz)
{
    NvU32 reg, mask;
    NvU32 MioKiHz = ((MioKHz * 4295) >> 12);
    NvOdmAsynchMemConfig  MemConfig;
    /*
     * Reconfigure MIO timing when clock frequency changes. Check only Async
     * Memory devices connected to CS1/MIO_B and CS3/MIO_A (CS0 is dedicated
     * for NOR, we do not care after boot, and CS2 is dedicated to SDRAM with
     * its own clock)
     */
    if (NvOdmQueryAsynchMemConfig(1, &MemConfig) == NV_TRUE)
    {
        reg = NV_REGR(hRmDevice, NvRmModuleID_Misc, 0, APB_MISC_PP_XMB_MIO_CFG_0);
        mask =
            NV_DRF_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_B_WR_DEAD_TIME, 0xFFFFFFFFUL) |
            NV_DRF_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_B_WR_TIME, 0xFFFFFFFFUL) |
            NV_DRF_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_B_RD_DEAD_TIME, 0xFFFFFFFFUL) |
            NV_DRF_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_B_RD_TIME, 0xFFFFFFFFUL);
        reg = (reg & (~mask)) |
            NV_DRF_MAX_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_B_WR_DEAD_TIME,
                NVRM_TIME_TO_CYCLES(MemConfig.WriteDeadTime, MioKiHz)) |
            NV_DRF_MAX_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_B_WR_TIME,
                NVRM_TIME_TO_CYCLES(MemConfig.WriteAccessTime, MioKiHz)) |
            NV_DRF_MAX_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_B_RD_DEAD_TIME,
                NVRM_TIME_TO_CYCLES(MemConfig.ReadDeadTime, MioKiHz)) |
            NV_DRF_MAX_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_B_RD_TIME,
                NVRM_TIME_TO_CYCLES(MemConfig.ReadAccessTime, MioKiHz));
        NV_REGW(hRmDevice, NvRmModuleID_Misc, 0,  APB_MISC_PP_XMB_MIO_CFG_0, reg);
    }
    if (NvOdmQueryAsynchMemConfig(3, &MemConfig) == NV_TRUE)
    {
        reg = NV_REGR(hRmDevice, NvRmModuleID_Misc, 0, APB_MISC_PP_XMB_MIO_CFG_0);
        mask =
            NV_DRF_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_A_WR_DEAD_TIME, 0xFFFFFFFFUL) |
            NV_DRF_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_A_WR_TIME, 0xFFFFFFFFUL) |
            NV_DRF_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_A_RD_DEAD_TIME, 0xFFFFFFFFUL) |
            NV_DRF_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_A_RD_TIME, 0xFFFFFFFFUL);
        reg = (reg & (~mask)) |
            NV_DRF_MAX_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_A_WR_DEAD_TIME,
                NVRM_TIME_TO_CYCLES(MemConfig.WriteDeadTime, MioKiHz)) |
            NV_DRF_MAX_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_A_WR_TIME,
                NVRM_TIME_TO_CYCLES(MemConfig.WriteAccessTime, MioKiHz)) |
            NV_DRF_MAX_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_A_RD_DEAD_TIME,
                NVRM_TIME_TO_CYCLES(MemConfig.ReadDeadTime, MioKiHz)) |
            NV_DRF_MAX_NUM(APB_MISC_PP, XMB_MIO_CFG, MIO_A_RD_TIME,
                NVRM_TIME_TO_CYCLES(MemConfig.ReadAccessTime, MioKiHz));
        NV_REGW(hRmDevice, NvRmModuleID_Misc, 0,  APB_MISC_PP_XMB_MIO_CFG_0, reg);
    }
}

NvBool NvRmPrivAp15DfsClockConfigure(
    NvRmDeviceHandle hRmDevice,
    const NvRmDfsFrequencies* pMaxKHz,
    NvRmDfsFrequencies* pDfsKHz)
{
    NvU32 i;
    NvBool Status;
    NvRmFreqKHz FreqKHz;
    NvRmDfsSource CpuClockSource;
    NvRmDfsSource SystemClockSource;
    NvRmDfsSource Emc2xClockSource;
    NvBool CpuKHzUp = pDfsKHz->Domains[NvRmDfsClockId_Cpu] >
        NvRmPrivGetClockSourceFreq(NvRmClockSource_CpuBus);

    NV_ASSERT(hRmDevice);
    NV_ASSERT(pMaxKHz && pDfsKHz);

    /*
     * Adjust System bus core clock. It should be sufficient to supply AVP,
     * and all bus clocks. Also make sure that AHB bus frequency is above
     * the one requested for APB clock.
     */
    for (FreqKHz = 0, i = 1; i < NvRmDfsClockId_Num; i++)
    {
        if ((i != NvRmDfsClockId_Cpu) &&
            (i != NvRmDfsClockId_Emc))
        {
            FreqKHz = (FreqKHz > pDfsKHz->Domains[i]) ?
                            FreqKHz : pDfsKHz->Domains[i];
        }
    }
    pDfsKHz->Domains[NvRmDfsClockId_System] = FreqKHz;

#if LIMIT_SYS_TO_VDE_RATIO
    if (pDfsKHz->Domains[NvRmDfsClockId_Vpipe] <
        (FreqKHz >> (LIMIT_SYS_TO_VDE_RATIO - 1)))
    {
        pDfsKHz->Domains[NvRmDfsClockId_Vpipe] =
            (FreqKHz >> (LIMIT_SYS_TO_VDE_RATIO - 1));
    }
#endif

#if LIMIT_SYS_TO_AHB_APB_RATIOS
    if (pDfsKHz->Domains[NvRmDfsClockId_Apb] < (FreqKHz >> 2))
    {
        pDfsKHz->Domains[NvRmDfsClockId_Apb] = (FreqKHz >> 2);
    }
    if (pDfsKHz->Domains[NvRmDfsClockId_Ahb] < (FreqKHz >> 1))
    {
        pDfsKHz->Domains[NvRmDfsClockId_Ahb] = (FreqKHz >> 1);
    }
#endif
    if (pDfsKHz->Domains[NvRmDfsClockId_Ahb] <
        pDfsKHz->Domains[NvRmDfsClockId_Apb])
    {
        pDfsKHz->Domains[NvRmDfsClockId_Ahb] =
            pDfsKHz->Domains[NvRmDfsClockId_Apb];
    }

    // Find clock sources for CPU, System and Memory clocks. H/w requirement
    // to increase memory clocks in steps, may limit CPU clock as well
    Ap15SystemClockSourceFind(hRmDevice,
        pMaxKHz->Domains[NvRmDfsClockId_System],
        pDfsKHz->Domains[NvRmDfsClockId_System],
        &SystemClockSource);
    Status = Ap15Emc2xClockSourceFind(hRmDevice,
        (pMaxKHz->Domains[NvRmDfsClockId_Emc] << 1),
        (pDfsKHz->Domains[NvRmDfsClockId_Emc] << 1),
        &pDfsKHz->Domains[NvRmDfsClockId_Cpu],
        &Emc2xClockSource);
    Ap15CpuClockSourceFind(hRmDevice,
        pMaxKHz->Domains[NvRmDfsClockId_Cpu],
        pDfsKHz->Domains[NvRmDfsClockId_Cpu],
        &CpuClockSource);

#if !NV_OAL
    // Adjust core voltage for the new clock sources before actual change
    NvRmPrivVoltageScale(NV_TRUE, CpuClockSource.MinMv,
                         SystemClockSource.MinMv, Emc2xClockSource.MinMv);
#endif

    // Configure System bus and derived clocks. Note that APB is the only
    // clock in system complex that may have different (lower) maximum
    // limit - pass it explicitly to set function.
    if (FreqKHz < NvRmPrivGetClockSourceFreq(NvRmClockSource_SystemBus))
        FreqKHz = NvRmPrivGetClockSourceFreq(NvRmClockSource_SystemBus);
    Ap15MioReconfigure(hRmDevice, FreqKHz); // MIO timing for max frequency
    Ap15SystemBusClockConfigure(hRmDevice,
        pMaxKHz->Domains[NvRmDfsClockId_System],
        &pDfsKHz->Domains[NvRmDfsClockId_System],
        &SystemClockSource);
    pDfsKHz->Domains[NvRmDfsClockId_Avp] =
        pDfsKHz->Domains[NvRmDfsClockId_System];        // no AVP clock skipping
    NvRmPrivBusClockFreqSet(hRmDevice,
        pDfsKHz->Domains[NvRmDfsClockId_System],
        &pDfsKHz->Domains[NvRmDfsClockId_Vpipe],
        &pDfsKHz->Domains[NvRmDfsClockId_Ahb],
        &pDfsKHz->Domains[NvRmDfsClockId_Apb],
        pMaxKHz->Domains[NvRmDfsClockId_Apb]);
    Ap15MioReconfigure(hRmDevice, pDfsKHz->Domains[NvRmDfsClockId_Ahb]);

    // Configure CPU core clock before Memory if CPU frequency goes down
    if (!CpuKHzUp)
    {
        Ap15CpuBusClockConfigure(hRmDevice,
            pMaxKHz->Domains[NvRmDfsClockId_Cpu],
            &pDfsKHz->Domains[NvRmDfsClockId_Cpu],
            &CpuClockSource);
    }
    // Configure Memory clocks and convert frequency to DFS EMC 1x domain
    FreqKHz = pDfsKHz->Domains[NvRmDfsClockId_Emc] << 1;
    Ap15Emc2xClockConfigure(hRmDevice,
        (pMaxKHz->Domains[NvRmDfsClockId_Emc] << 1),
        &FreqKHz, &Emc2xClockSource);
    pDfsKHz->Domains[NvRmDfsClockId_Emc] = FreqKHz >> 1;
    // Configure CPU core clock after Memory if CPU frequency goes up
    if (CpuKHzUp)
    {
        Ap15CpuBusClockConfigure(hRmDevice,
            pMaxKHz->Domains[NvRmDfsClockId_Cpu],
            &pDfsKHz->Domains[NvRmDfsClockId_Cpu],
            &CpuClockSource);
    }

#if !NV_OAL
    // Adjust core voltage for the new clock sources after actual change
    NvRmPrivVoltageScale(NV_FALSE, CpuClockSource.MinMv,
                         SystemClockSource.MinMv, Emc2xClockSource.MinMv);
#endif
    return Status;
}

void
NvRmPrivAp15DfsClockFreqGet(
    NvRmDeviceHandle hRmDevice,
    NvRmDfsFrequencies* pDfsKHz)
{
    NvRmFreqKHz SystemFreq;
    const NvRmCoreClockInfo* pCinfo;
    NV_ASSERT(hRmDevice && pDfsKHz);

    // Get frequencies of the System core clock, AVP clock (the same as System
    // - no clock skipping), AHB, APB, and V-pipe bus clock frequencies
    pCinfo = NvRmPrivGetClockSourceHandle(NvRmClockSource_SystemBus)->pInfo.pCore;
    SystemFreq = NvRmPrivCoreClockFreqGet(hRmDevice, pCinfo);
    pDfsKHz->Domains[NvRmDfsClockId_System] = SystemFreq;
    pDfsKHz->Domains[NvRmDfsClockId_Avp] = SystemFreq;

    NvRmPrivBusClockFreqGet(
        hRmDevice, SystemFreq,
        &pDfsKHz->Domains[NvRmDfsClockId_Vpipe],
        &pDfsKHz->Domains[NvRmDfsClockId_Ahb],
        &pDfsKHz->Domains[NvRmDfsClockId_Apb]);

    // Get CPU core clock frequencies
    pCinfo = NvRmPrivGetClockSourceHandle(NvRmClockSource_CpuBus)->pInfo.pCore;
    pDfsKHz->Domains[NvRmDfsClockId_Cpu] =
        NvRmPrivCoreClockFreqGet(hRmDevice, pCinfo);

    // Get EMC clock frequency (DFS monitors EMC 1x domain)
    Ap15Emc2xFreqGet(hRmDevice);   // Get EMC2x clock state from h/w
    pDfsKHz->Domains[NvRmDfsClockId_Emc] =
        (s_MemClocks.pEmcState->actual_freq >> 1);
}

void
NvRmPrivAp15DfsVscaleFreqGet(
    NvRmDeviceHandle hRmDevice,
    NvRmMilliVolts TargetMv,
    NvRmDfsFrequencies* pDfsKHz)
{
    NvU32 i;
    NvRmMilliVolts v;
    NvRmFreqKHz Fa, Fb, f;
    NvRmDfsSource DfsClockSource;
    NvRmFreqKHz CpuMaxKHz = NvRmPrivGetSocClockLimits(NvRmModuleID_Cpu)->MaxKHz;
    NvRmFreqKHz SysMaxKHz =
        NvRmPrivGetSocClockLimits(NvRmPrivModuleID_System)->MaxKHz;
    NV_ASSERT(hRmDevice && pDfsKHz);

    // If PLLM0 entry in EMC scaling table is valid, search the table for
    // the entry below and closest to the traget voltage. Otherwise, there
    // is no EMC scaling - just return current EMC frequency.
    pDfsKHz->Domains[NvRmDfsClockId_Emc] =
        (s_MemClocks.pEmcState->actual_freq >> 1);
    f = NvRmFreqMaximum;    // assume CPU is not throttled by EMC
    if (s_Ap15EmcConfigSortedTable[0].Emc2xKHz != 0)
    {
        for (i = 0; i < (NVRM_AP15_DFS_EMC_FREQ_STEPS - 1); i++)
        {
            if ((s_Ap15EmcConfigSortedTable[i+1].Emc2xKHz == 0) ||
                (s_Ap15EmcConfigSortedTable[i].CoreVoltageMv <= TargetMv))
                break;  // exit if found entry or next entry is invalid 
        }
        pDfsKHz->Domains[NvRmDfsClockId_Emc] =
            (s_Ap15EmcConfigSortedTable[i].Emc2xKHz >> 1);
        f = s_Ap15EmcConfigSortedTable[i].CpuLimitKHz;  // throttle CPU
    }

    // Binary search for maximum CPU frequency, with source that can be used
    // at target voltage or below
    Fb = NV_MIN(CpuMaxKHz, f); 
    Fa = NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkM);
    NV_ASSERT(Fa <= Fb);
    while ((Fb - Fa) > 1000)    // 1MHz resolution
    {
        f = (Fa + Fb) >> 1;
        Ap15CpuClockSourceFind(hRmDevice, CpuMaxKHz, f, &DfsClockSource);
        v = DfsClockSource.MinMv;
        if (v <= TargetMv)
            Fa = f;
        else
            Fb = f;
    }
    pDfsKHz->Domains[NvRmDfsClockId_Cpu] = Fa;

    // Binary search for maximum System/Avp frequency, with source that can be used
    // at target voltage or below
    Fb = SysMaxKHz; 
    Fa = NvRmPrivGetClockSourceFreq(NvRmClockSource_ClkM);
    NV_ASSERT(Fa <= Fb);
    while ((Fb - Fa) > 1000)    // 1MHz resolution
    {
        f = (Fa + Fb) >> 1;
        Ap15SystemClockSourceFind(hRmDevice, SysMaxKHz, f, &DfsClockSource);
        v = DfsClockSource.MinMv;
        if (v <= TargetMv)
            Fa = f;
        else
            Fb = f;
    }
    pDfsKHz->Domains[NvRmDfsClockId_System] = Fa;
    pDfsKHz->Domains[NvRmDfsClockId_Avp] = Fa;
    pDfsKHz->Domains[NvRmDfsClockId_Ahb] = Fa;
    pDfsKHz->Domains[NvRmDfsClockId_Apb] = Fa;
    pDfsKHz->Domains[NvRmDfsClockId_Vpipe] = Fa;
}

/*****************************************************************************/