summaryrefslogtreecommitdiff
path: root/arch/arm/mach-tegra/tegra11_dvfs.c
blob: ea96bf46caa49e4a28379dd2e48ff175b72cd167 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
/*
 * arch/arm/mach-tegra/tegra11_dvfs.c
 *
 * Copyright (c) 2012-2013 NVIDIA CORPORATION. All rights reserved.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/kobject.h>
#include <linux/err.h>

#include "clock.h"
#include "dvfs.h"
#include "fuse.h"
#include "board.h"
#include "tegra_cl_dvfs.h"

static bool tegra_dvfs_cpu_disabled;
static bool tegra_dvfs_core_disabled;

#define KHZ 1000
#define MHZ 1000000

/* FIXME: need tegra11 step */
#define VDD_SAFE_STEP			100

static int vdd_core_vmin_trips_table[MAX_THERMAL_LIMITS] = { 20, };
static int vdd_core_therm_floors_table[MAX_THERMAL_LIMITS] = { 950, };

static int vdd_cpu_vmax_trips_table[MAX_THERMAL_LIMITS] = { 70, };
static int vdd_cpu_therm_caps_table[MAX_THERMAL_LIMITS] = { 1240, };

static struct tegra_cooling_device cpu_vmax_cdev = {
	.cdev_type = "cpu_hot",
};

static struct tegra_cooling_device cpu_vmin_cdev = {
	.cdev_type = "cpu_cold",
};

static struct tegra_cooling_device core_vmin_cdev = {
	.cdev_type = "core_cold",
};

static struct dvfs_rail tegra11_dvfs_rail_vdd_cpu = {
	.reg_id = "vdd_cpu",
	.max_millivolts = 1400,
	.min_millivolts = 800,
	.step = VDD_SAFE_STEP,
	.jmp_to_zero = true,
	.vmin_cdev = &cpu_vmin_cdev,
	.vmax_cdev = &cpu_vmax_cdev,
};

static struct dvfs_rail tegra11_dvfs_rail_vdd_core = {
	.reg_id = "vdd_core",
	.max_millivolts = 1400,
	.min_millivolts = 800,
	.step = VDD_SAFE_STEP,
	.vmin_cdev = &core_vmin_cdev,
};

static struct dvfs_rail *tegra11_dvfs_rails[] = {
	&tegra11_dvfs_rail_vdd_cpu,
	&tegra11_dvfs_rail_vdd_core,
};

/* default cvb alignment on Tegra11 - 10mV */
int __attribute__((weak)) tegra_get_cvb_alignment_uV(void)
{
	return 10000;
}

/* CPU DVFS tables */
static struct cpu_cvb_dvfs cpu_cvb_dvfs_table[] = {
	{
		.speedo_id = 0,
		.process_id = -1,
		.dfll_tune_data  = {
			.tune0		= 0x00b0019d,
			.tune0_high_mv	= 0x00b0019d,
			.tune1		= 0x0000001f,
			.droop_rate_min = 1000000,
			.min_millivolts = 1000,
		},
		.max_mv = 1250,
		.freqs_mult = KHZ,
		.speedo_scale = 100,
		.voltage_scale = 100,
		.cvb_table = {
			/*f       dfll: c0,     c1,   c2  pll:  c0,   c1,    c2 */
			{ 306000, { 107330,  -1569,   0}, {  90000,    0,    0} },
			{ 408000, { 111250,  -1666,   0}, {  90000,    0,    0} },
			{ 510000, { 110000,  -1460,   0}, {  94000,    0,    0} },
			{ 612000, { 117290,  -1745,   0}, {  94000,    0,    0} },
			{ 714000, { 122700,  -1910,   0}, {  99000,    0,    0} },
			{ 816000, { 125620,  -1945,   0}, {  99000,    0,    0} },
			{ 918000, { 130560,  -2076,   0}, { 103000,    0,    0} },
			{1020000, { 137280,  -2303,   0}, { 103000,    0,    0} },
			{1122000, { 146440,  -2660,   0}, { 109000,    0,    0} },
			{1224000, { 152190,  -2825,   0}, { 109000,    0,    0} },
			{1326000, { 157520,  -2953,   0}, { 112000,    0,    0} },
			{1428000, { 166100,  -3261,   0}, { 140000,    0,    0} },
			{1530000, { 176410,  -3647,   0}, { 140000,    0,    0} },
			{1632000, { 189620,  -4186,   0}, { 140000,    0,    0} },
			{1734000, { 203190,  -4725,   0}, { 140000,    0,    0} },
			{1836000, { 222670,  -5573,   0}, { 140000,    0,    0} },
			{1938000, { 256210,  -7165,   0}, { 140000,    0,    0} },
			{2040000, { 250050,  -6544,   0}, { 140000,    0,    0} },
			{      0, {      0,      0,   0}, {      0,    0,    0} },
		},
		.therm_trips_table = { 20, },
		.therm_floors_table = { 1000, },
	},
	{
		.speedo_id = 1,
		.process_id = 0,
		.dfll_tune_data  = {
			.tune0		= 0x00b0039d,
			.tune0_high_mv	= 0x00b0009d,
			.tune1		= 0x0000001f,
			.droop_rate_min = 1000000,
			.tune_high_min_millivolts = 1050,
			.min_millivolts = 1000,
		},
		.max_mv = 1320,
		.freqs_mult = KHZ,
		.speedo_scale = 100,
		.voltage_scale = 1000,
		.cvb_table = {
			/*f       dfll:  c0,      c1,    c2  pll:   c0,   c1,    c2 */
			{ 306000, { 2190643, -141851, 3576}, {  900000,    0,    0} },
			{ 408000, { 2250968, -144331, 3576}, {  950000,    0,    0} },
			{ 510000, { 2313333, -146811, 3576}, {  970000,    0,    0} },
			{ 612000, { 2377738, -149291, 3576}, { 1000000,    0,    0} },
			{ 714000, { 2444183, -151771, 3576}, { 1020000,    0,    0} },
			{ 816000, { 2512669, -154251, 3576}, { 1020000,    0,    0} },
			{ 918000, { 2583194, -156731, 3576}, { 1030000,    0,    0} },
			{1020000, { 2655759, -159211, 3576}, { 1030000,    0,    0} },
			{1122000, { 2730365, -161691, 3576}, { 1090000,    0,    0} },
			{1224000, { 2807010, -164171, 3576}, { 1090000,    0,    0} },
			{1326000, { 2885696, -166651, 3576}, { 1120000,    0,    0} },
			{1428000, { 2966422, -169131, 3576}, { 1400000,    0,    0} },
			{1530000, { 3049183, -171601, 3576}, { 1400000,    0,    0} },
			{1606500, { 3112179, -173451, 3576}, { 1400000,    0,    0} },
			{1708500, { 3198504, -175931, 3576}, { 1400000,    0,    0} },
			{1810500, { 3304747, -179126, 3576}, { 1400000,    0,    0} },
			{      0, {       0,       0,    0}, {       0,    0,    0} },
		},
		.therm_trips_table = { 20, },
		.therm_floors_table = { 1000, },
	},
	{
		.speedo_id = 1,
		.process_id = 1,
		.dfll_tune_data  = {
			.tune0		= 0x00b0039d,
			.tune0_high_mv	= 0x00b0009d,
			.tune1		= 0x0000001f,
			.droop_rate_min = 1000000,
			.tune_high_min_millivolts = 1050,
			.min_millivolts = 1000,
		},
		.max_mv = 1320,
		.freqs_mult = KHZ,
		.speedo_scale = 100,
		.voltage_scale = 1000,
		.cvb_table = {
			/*f       dfll:  c0,      c1,    c2  pll:   c0,   c1,    c2 */
			{ 306000, { 2190643, -141851, 3576}, {  900000,    0,    0} },
			{ 408000, { 2250968, -144331, 3576}, {  950000,    0,    0} },
			{ 510000, { 2313333, -146811, 3576}, {  970000,    0,    0} },
			{ 612000, { 2377738, -149291, 3576}, { 1000000,    0,    0} },
			{ 714000, { 2444183, -151771, 3576}, { 1020000,    0,    0} },
			{ 816000, { 2512669, -154251, 3576}, { 1020000,    0,    0} },
			{ 918000, { 2583194, -156731, 3576}, { 1030000,    0,    0} },
			{1020000, { 2655759, -159211, 3576}, { 1030000,    0,    0} },
			{1122000, { 2730365, -161691, 3576}, { 1090000,    0,    0} },
			{1224000, { 2807010, -164171, 3576}, { 1090000,    0,    0} },
			{1326000, { 2885696, -166651, 3576}, { 1120000,    0,    0} },
			{1428000, { 2966422, -169131, 3576}, { 1400000,    0,    0} },
			{1530000, { 3049183, -171601, 3576}, { 1400000,    0,    0} },
			{1606500, { 3112179, -173451, 3576}, { 1400000,    0,    0} },
			{1708500, { 3198504, -175931, 3576}, { 1400000,    0,    0} },
			{1810500, { 3304747, -179126, 3576}, { 1400000,    0,    0} },
			{      0, {       0,       0,    0}, {       0,    0,    0} },
		},
		.therm_trips_table = { 20, },
		.therm_floors_table = { 1000, },
	},
	{
		.speedo_id = 2,
		.process_id = -1,
		.dfll_tune_data  = {
			.tune0		= 0x00b0039d,
			.tune0_high_mv	= 0x00b0009d,
			.tune1		= 0x0000001f,
			.droop_rate_min = 1000000,
			.tune_high_min_millivolts = 1050,
			.min_millivolts = 1000,
		},
		.max_mv = 1320,
		.freqs_mult = KHZ,
		.speedo_scale = 100,
		.voltage_scale = 1000,
		.cvb_table = {
			/*f       dfll:  c0,      c1,    c2  pll:   c0,   c1,    c2 */
			{ 306000, { 2190643, -141851, 3576}, {  900000,    0,    0} },
			{ 408000, { 2250968, -144331, 3576}, {  950000,    0,    0} },
			{ 510000, { 2313333, -146811, 3576}, {  970000,    0,    0} },
			{ 612000, { 2377738, -149291, 3576}, { 1000000,    0,    0} },
			{ 714000, { 2444183, -151771, 3576}, { 1020000,    0,    0} },
			{ 816000, { 2512669, -154251, 3576}, { 1020000,    0,    0} },
			{ 918000, { 2583194, -156731, 3576}, { 1030000,    0,    0} },
			{1020000, { 2655759, -159211, 3576}, { 1030000,    0,    0} },
			{1122000, { 2730365, -161691, 3576}, { 1090000,    0,    0} },
			{1224000, { 2807010, -164171, 3576}, { 1090000,    0,    0} },
			{1326000, { 2885696, -166651, 3576}, { 1120000,    0,    0} },
			{1428000, { 2966422, -169131, 3576}, { 1400000,    0,    0} },
			{1530000, { 3049183, -171601, 3576}, { 1400000,    0,    0} },
			{1606500, { 3112179, -173451, 3576}, { 1400000,    0,    0} },
			{1708500, { 3198504, -175931, 3576}, { 1400000,    0,    0} },
			{1810500, { 3304747, -179126, 3576}, { 1400000,    0,    0} },
			{1912500, { 3395401, -181606, 3576}, { 1400000,    0,    0} },
			{      0, {       0,       0,    0}, {       0,    0,    0} },
		},
		.therm_trips_table = { 20, },
		.therm_floors_table = { 1000, },
	},
};

static int cpu_millivolts[MAX_DVFS_FREQS];
static int cpu_dfll_millivolts[MAX_DVFS_FREQS];

static struct dvfs cpu_dvfs = {
	.clk_name	= "cpu_g",
	.millivolts	= cpu_millivolts,
	.dfll_millivolts = cpu_dfll_millivolts,
	.auto_dvfs	= true,
	.dvfs_rail	= &tegra11_dvfs_rail_vdd_cpu,
};

/* Core DVFS tables */
/* FIXME: real data */
static const int core_millivolts[MAX_DVFS_FREQS] = {
	900, 950, 1000, 1050, 1100, 1120, 1170, 1200, 1250};

#define CORE_DVFS(_clk_name, _speedo_id, _process_id, _auto, _mult, _freqs...) \
	{							\
		.clk_name	= _clk_name,			\
		.speedo_id	= _speedo_id,			\
		.process_id	= _process_id,			\
		.freqs		= {_freqs},			\
		.freqs_mult	= _mult,			\
		.millivolts	= core_millivolts,		\
		.auto_dvfs	= _auto,			\
		.dvfs_rail	= &tegra11_dvfs_rail_vdd_core,	\
	}

static struct dvfs core_dvfs_table[] = {
	/* Core voltages (mV):		         900,    950,   1000,   1050,    1100,    1120,    1170,    1200,    1250 */
	/* Clock limits for internal blocks, PLLs */
#ifndef CONFIG_TEGRA_SIMULATION_PLATFORM
	CORE_DVFS("emc",    -1, -1, 1, KHZ,        1,      1,      1,      1,  800000,  800000,  933000,  933000, 1066000),

	CORE_DVFS("cpu_lp",  0,  0, 1, KHZ,   228000, 306000, 396000, 510000,  648000,  696000,  696000,  696000,  696000),
	CORE_DVFS("cpu_lp",  0,  1, 1, KHZ,   324000, 396000, 510000, 612000,  696000,  696000,  696000,  696000,  696000),
	CORE_DVFS("cpu_lp",  1,  1, 1, KHZ,   324000, 396000, 510000, 612000,  768000,  816000,  816000,  816000,  816000),

	CORE_DVFS("sbus",    0,  0, 1, KHZ,   132000, 188000, 240000, 276000,  324000,  336000,  336000,  336000,  336000),
	CORE_DVFS("sbus",    0,  1, 1, KHZ,   180000, 228000, 276000, 336000,  336000,  336000,  336000,  336000,  336000),
	CORE_DVFS("sbus",    1,  1, 1, KHZ,   180000, 228000, 276000, 336000,  372000,  384000,  384000,  384000,  384000),

	CORE_DVFS("vi",     -1,  0, 1, KHZ,   144000, 216000, 240000, 312000,  372000,  408000,  408000,  408000,  408000),
	CORE_DVFS("vi",     -1,  1, 1, KHZ,   144000, 216000, 240000, 408000,  408000,  408000,  408000,  408000,  408000),

	CORE_DVFS("2d",     -1,  0, 1, KHZ,   192000, 228000, 300000, 396000,  492000,  516000,  552000,  552000,  600000),
	CORE_DVFS("3d",     -1,  0, 1, KHZ,   192000, 228000, 300000, 396000,  492000,  516000,  552000,  552000,  600000),
	CORE_DVFS("epp",    -1,  0, 1, KHZ,   192000, 228000, 300000, 396000,  492000,  516000,  552000,  552000,  600000),

	CORE_DVFS("2d",     -1,  1, 1, KHZ,   240000, 300000, 384000, 468000,  528000,  564000,  600000,  636000,  672000),
	CORE_DVFS("3d",     -1,  1, 1, KHZ,   240000, 300000, 384000, 468000,  528000,  564000,  600000,  636000,  672000),
	CORE_DVFS("epp",    -1,  1, 1, KHZ,   240000, 300000, 384000, 468000,  528000,  564000,  600000,  636000,  672000),

	CORE_DVFS("msenc",   0,  0, 1, KHZ,   144000, 182000, 240000, 312000,  384000,  408000,  408000,  408000,  408000),
	CORE_DVFS("se",      0,  0, 1, KHZ,   144000, 182000, 240000, 312000,  384000,  408000,  408000,  408000,  408000),
	CORE_DVFS("tsec",    0,  0, 1, KHZ,   144000, 182000, 240000, 312000,  384000,  408000,  408000,  408000,  408000),
	CORE_DVFS("vde",     0,  0, 1, KHZ,   144000, 182000, 240000, 312000,  384000,  408000,  408000,  408000,  408000),

	CORE_DVFS("msenc",   0,  1, 1, KHZ,   204000, 252000, 324000, 408000,  408000,  408000,  408000,  408000,  408000),
	CORE_DVFS("se",      0,  1, 1, KHZ,   204000, 252000, 324000, 408000,  408000,  408000,  408000,  408000,  408000),
	CORE_DVFS("tsec",    0,  1, 1, KHZ,   204000, 252000, 324000, 408000,  408000,  408000,  408000,  408000,  408000),
	CORE_DVFS("vde",     0,  1, 1, KHZ,   204000, 252000, 324000, 408000,  408000,  408000,  408000,  408000,  408000),

	CORE_DVFS("msenc",   1,  1, 1, KHZ,   204000, 252000, 324000, 408000,  456000,  480000,  480000,  480000,  480000),
	CORE_DVFS("se",      1,  1, 1, KHZ,   204000, 252000, 324000, 408000,  456000,  480000,  480000,  480000,  480000),
	CORE_DVFS("tsec",    1,  1, 1, KHZ,   204000, 252000, 324000, 408000,  456000,  480000,  480000,  480000,  480000),
	CORE_DVFS("vde",     1,  1, 1, KHZ,   204000, 252000, 324000, 408000,  456000,  480000,  480000,  480000,  480000),

	CORE_DVFS("host1x",  0,  0, 1, KHZ,   144000, 188000, 240000, 276000,  324000,  336000,  336000,  336000,  336000),
	CORE_DVFS("host1x",  0,  1, 1, KHZ,   180000, 228000, 276000, 336000,  336000,  336000,  336000,  336000,  336000),
	CORE_DVFS("host1x",  1,  1, 1, KHZ,   180000, 228000, 276000, 336000,  372000,  384000,  384000,  384000,  384000),

#ifdef CONFIG_TEGRA_DUAL_CBUS
	CORE_DVFS("c2bus",  -1,  0, 1, KHZ,   192000, 228000, 300000, 396000,  492000,  516000,  552000,  552000,  600000),
	CORE_DVFS("c2bus",  -1,  1, 1, KHZ,   240000, 300000, 384000, 468000,  528000,  564000,  600000,  636000,  672000),
	CORE_DVFS("c3bus",   0,  0, 1, KHZ,   144000, 182000, 240000, 312000,  384000,  408000,  408000,  408000,  408000),
	CORE_DVFS("c3bus",   0,  1, 1, KHZ,   204000, 252000, 324000, 408000,  408000,  408000,  408000,  408000,  408000),
	CORE_DVFS("c3bus",   1,  1, 1, KHZ,   204000, 252000, 324000, 408000,  456000,  480000,  480000,  480000,  480000),
#else
	CORE_DVFS("cbus",    0,  0, 1, KHZ,   144000, 182000, 240000, 312000,  384000,  408000,  408000,  408000,  408000),
	CORE_DVFS("cbus",    0,  1, 1, KHZ,   228000, 288000, 360000, 408000,  408000,  408000,  408000,  408000,  408000),
	CORE_DVFS("cbus",    1,  1, 1, KHZ,   228000, 288000, 360000, 420000,  468000,  480000,  480000,  480000,  480000),
#endif

	CORE_DVFS("pll_m",  -1, -1, 1, KHZ,   800000, 800000, 1066000, 1066000, 1066000, 1066000, 1066000, 1066000, 1066000),
	CORE_DVFS("pll_c",  -1, -1, 1, KHZ,   800000, 800000, 1066000, 1066000, 1066000, 1066000, 1066000, 1066000, 1066000),
	CORE_DVFS("pll_c2", -1, -1, 1, KHZ,   800000, 800000, 1066000, 1066000, 1066000, 1066000, 1066000, 1066000, 1066000),
	CORE_DVFS("pll_c3", -1, -1, 1, KHZ,   800000, 800000, 1066000, 1066000, 1066000, 1066000, 1066000, 1066000, 1066000),

	/* Core voltages (mV):		         900,    950,   1000,   1050,    1100,    1120,    1170,    1200,    1250 */
	/* Clock limits for I/O peripherals */
	CORE_DVFS("sbc1",   -1, -1, 1, KHZ,    48000,  48000,  48000,  48000,   52000,   52000,   52000,   52000,   52000),
	CORE_DVFS("sbc2",   -1, -1, 1, KHZ,    48000,  48000,  48000,  48000,   52000,   52000,   52000,   52000,   52000),
	CORE_DVFS("sbc3",   -1, -1, 1, KHZ,    48000,  48000,  48000,  48000,   52000,   52000,   52000,   52000,   52000),
	CORE_DVFS("sbc4",   -1, -1, 1, KHZ,    48000,  48000,  48000,  48000,   52000,   52000,   52000,   52000,   52000),
	CORE_DVFS("sbc5",   -1, -1, 1, KHZ,    48000,  48000,  48000,  48000,   52000,   52000,   52000,   52000,   52000),
	CORE_DVFS("sbc6",   -1, -1, 1, KHZ,    48000,  48000,  48000,  48000,   52000,   52000,   52000,   52000,   52000),

	CORE_DVFS("sdmmc1", -1, -1, 1, KHZ,        1,  81600,  81600,  81600,   81600,  156000,  156000,  156000,  156000),
	CORE_DVFS("sdmmc3", -1, -1, 1, KHZ,        1,  81600,  81600,  81600,   81600,  156000,  156000,  156000,  156000),
	CORE_DVFS("sdmmc4", -1, -1, 1, KHZ,        1, 102000, 102000, 102000,  102000,  156000,  156000,  156000,  156000),

	CORE_DVFS("hdmi",   -1, -1, 1, KHZ,   148500, 148500, 148500, 297000,  297000,  297000,  297000,  297000,  297000),

	/*
	 * The clock rate for the display controllers that determines the
	 * necessary core voltage depends on a divider that is internal
	 * to the display block.  Disable auto-dvfs on the display clocks,
	 * and let the display driver call tegra_dvfs_set_rate manually
	 */
	CORE_DVFS("disp1",  -1, -1, 0, KHZ,   166000, 166000, 166000, 297000,  297000,  297000,  297000,  297000,  297000),
	CORE_DVFS("disp2",  -1, -1, 0, KHZ,   166000, 166000, 166000, 297000,  297000,  297000,  297000,  297000,  297000),

	/* xusb clocks */
	CORE_DVFS("xusb_falcon_src", -1, -1, 1, KHZ,  1, 336000, 336000, 336000,  336000,  336000,  336000,  336000,  336000),
	CORE_DVFS("xusb_host_src",   -1, -1, 1, KHZ,  1, 112000, 112000, 112000,  112000,  112000,  112000,  112000,  112000),
	CORE_DVFS("xusb_dev_src",    -1, -1, 1, KHZ,  1,  58300,  58300, 112000,  112000,  112000,  112000,  112000,  112000),
	CORE_DVFS("xusb_ss_src",     -1, -1, 1, KHZ,  1, 122400, 122400, 122400,  122400,  122400,  122400,  122400,  122400),
	CORE_DVFS("xusb_fs_src",     -1, -1, 1, KHZ,  1,  48000,  48000,  48000,   48000,   48000,   48000,   48000,   48000),
	CORE_DVFS("xusb_hs_src",     -1, -1, 1, KHZ,  1,  61200,  61200,  61200,   61200,   61200,   61200,   61200,   61200),
#endif
};

int tegra_dvfs_disable_core_set(const char *arg, const struct kernel_param *kp)
{
	int ret;

	ret = param_set_bool(arg, kp);
	if (ret)
		return ret;

	if (tegra_dvfs_core_disabled)
		tegra_dvfs_rail_disable(&tegra11_dvfs_rail_vdd_core);
	else
		tegra_dvfs_rail_enable(&tegra11_dvfs_rail_vdd_core);

	return 0;
}

int tegra_dvfs_disable_cpu_set(const char *arg, const struct kernel_param *kp)
{
	int ret;

	ret = param_set_bool(arg, kp);
	if (ret)
		return ret;

	if (tegra_dvfs_cpu_disabled)
		tegra_dvfs_rail_disable(&tegra11_dvfs_rail_vdd_cpu);
	else
		tegra_dvfs_rail_enable(&tegra11_dvfs_rail_vdd_cpu);

	return 0;
}

int tegra_dvfs_disable_get(char *buffer, const struct kernel_param *kp)
{
	return param_get_bool(buffer, kp);
}

static struct kernel_param_ops tegra_dvfs_disable_core_ops = {
	.set = tegra_dvfs_disable_core_set,
	.get = tegra_dvfs_disable_get,
};

static struct kernel_param_ops tegra_dvfs_disable_cpu_ops = {
	.set = tegra_dvfs_disable_cpu_set,
	.get = tegra_dvfs_disable_get,
};

module_param_cb(disable_core, &tegra_dvfs_disable_core_ops,
	&tegra_dvfs_core_disabled, 0644);
module_param_cb(disable_cpu, &tegra_dvfs_disable_cpu_ops,
	&tegra_dvfs_cpu_disabled, 0644);

/*
 * Validate rail thermal profile, and get its size. Valid profile:
 * - voltage floors are descending with temperature increasing
 * - the lowest limit is above rail minimum voltage in pll and
 *   in dfll mode (if applicable)
 * - the highest limit is below rail nominal voltage
 */
static int __init get_thermal_profile_size(
	int *trips_table, int *limits_table,
	struct dvfs_rail *rail, struct dvfs_dfll_data *d)
{
	int i, min_mv;

	for (i = 0; i < MAX_THERMAL_LIMITS - 1; i++) {
		if (!limits_table[i+1])
			break;

		if ((trips_table[i] >= trips_table[i+1]) ||
		    (limits_table[i] < limits_table[i+1])) {
			pr_warning("%s: not ordered profile\n", rail->reg_id);
			return -EINVAL;
		}
	}

	min_mv = max(rail->min_millivolts, d ? d->min_millivolts : 0);
	if (limits_table[i] < min_mv) {
		pr_warning("%s: thermal profile below Vmin\n", rail->reg_id);
		return -EINVAL;
	}

	if (limits_table[0] > rail->nominal_millivolts) {
		pr_warning("%s: thermal profile above Vmax\n", rail->reg_id);
		return -EINVAL;
	}
	return i + 1;
}

static void __init init_rail_vmax_thermal_profile(
	int *therm_trips_table, int *therm_caps_table,
	struct dvfs_rail *rail, struct dvfs_dfll_data *d)
{
	int i = get_thermal_profile_size(therm_trips_table,
					 therm_caps_table, rail, d);
	if (i <= 0) {
		rail->vmax_cdev = NULL;
		WARN(1, "%s: invalid Vmax thermal profile\n", rail->reg_id);
		return;
	}

	/* Install validated thermal caps */
	rail->therm_mv_caps = therm_caps_table;
	rail->therm_mv_caps_num = i;

	/* Setup trip-points if applicable */
	if (rail->vmax_cdev) {
		rail->vmax_cdev->trip_temperatures_num = i;
		rail->vmax_cdev->trip_temperatures = therm_trips_table;
	}
}

static void __init init_rail_vmin_thermal_profile(
	int *therm_trips_table, int *therm_floors_table,
	struct dvfs_rail *rail, struct dvfs_dfll_data *d)
{
	int i = get_thermal_profile_size(therm_trips_table,
					 therm_floors_table, rail, d);
	if (i <= 0) {
		rail->vmin_cdev = NULL;
		WARN(1, "%s: invalid Vmin thermal profile\n", rail->reg_id);
		return;
	}

	/* Install validated thermal floors */
	rail->therm_mv_floors = therm_floors_table;
	rail->therm_mv_floors_num = i;

	/* Setup trip-points if applicable */
	if (rail->vmin_cdev) {
		rail->vmin_cdev->trip_temperatures_num = i;
		rail->vmin_cdev->trip_temperatures = therm_trips_table;
	}
}

static bool __init can_update_max_rate(struct clk *c, struct dvfs *d)
{
	/* Don't update manual dvfs clocks */
	if (!d->auto_dvfs)
		return false;

	/*
	 * Don't update EMC shared bus, since EMC dvfs is board dependent: max
	 * rate and EMC scaling frequencies are determined by tegra BCT (flashed
	 * together with the image) and board specific EMC DFS table; we will
	 * check the scaling ladder against nominal core voltage when the table
	 * is loaded (and if on particular board the table is not loaded, EMC
	 * scaling is disabled).
	 */
	if (c->ops->shared_bus_update && (c->flags & PERIPH_EMC_ENB))
		return false;

	/*
	 * Don't update shared cbus, and don't propagate common cbus dvfs
	 * limit down to shared users, but set maximum rate for each user
	 * equal to the respective client limit.
	 */
	if (c->ops->shared_bus_update && (c->flags & PERIPH_ON_CBUS)) {
		struct clk *user;
		unsigned long rate;

		list_for_each_entry(
			user, &c->shared_bus_list, u.shared_bus_user.node) {
			if (user->u.shared_bus_user.client) {
				rate = user->u.shared_bus_user.client->max_rate;
				user->max_rate = rate;
				user->u.shared_bus_user.rate = rate;
			}
		}
		return false;
	}

	/* Other, than EMC and cbus, auto-dvfs clocks can be updated */
	return true;
}

static void __init init_dvfs_one(struct dvfs *d, int max_freq_index)
{
	int ret;
	struct clk *c = tegra_get_clock_by_name(d->clk_name);

	if (!c) {
		pr_debug("tegra11_dvfs: no clock found for %s\n",
			d->clk_name);
		return;
	}

	/* Update max rate for auto-dvfs clocks, with shared bus exceptions */
	if (can_update_max_rate(c, d)) {
		BUG_ON(!d->freqs[max_freq_index]);
		tegra_init_max_rate(
			c, d->freqs[max_freq_index] * d->freqs_mult);
	}
	d->max_millivolts = d->dvfs_rail->nominal_millivolts;

	ret = tegra_enable_dvfs_on_clk(c, d);
	if (ret)
		pr_err("tegra11_dvfs: failed to enable dvfs on %s\n", c->name);
}

static bool __init match_dvfs_one(struct dvfs *d, int speedo_id, int process_id)
{
	if ((d->process_id != -1 && d->process_id != process_id) ||
		(d->speedo_id != -1 && d->speedo_id != speedo_id)) {
		pr_debug("tegra11_dvfs: rejected %s speedo %d,"
			" process %d\n", d->clk_name, d->speedo_id,
			d->process_id);
		return false;
	}
	return true;
}

static bool __init match_cpu_cvb_one(struct cpu_cvb_dvfs *d,
				     int speedo_id, int process_id)
{
	if ((d->process_id != -1 && d->process_id != process_id) ||
		(d->speedo_id != -1 && d->speedo_id != speedo_id)) {
		pr_debug("tegra11_dvfs: rejected cpu cvb speedo %d,"
			" process %d\n", d->speedo_id, d->process_id);
		return false;
	}
	return true;
}

/* cvb_mv = ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) / v_scale */
static inline int get_cvb_voltage(int speedo, int s_scale,
				  struct cpu_cvb_dvfs_parameters *cvb)
{
	/* apply only speedo scale: output mv = cvb_mv * v_scale */
	int mv;
	mv = DIV_ROUND_CLOSEST(cvb->c2 * speedo, s_scale);
	mv = DIV_ROUND_CLOSEST((mv + cvb->c1) * speedo, s_scale) + cvb->c0;
	return mv;
}

static inline int round_cvb_voltage(int mv, int v_scale)
{
	/* combined: apply voltage scale and round to cvb alignment step */
	int cvb_align_step_uv = tegra_get_cvb_alignment_uV();

	return DIV_ROUND_UP(mv * 1000, v_scale * cvb_align_step_uv) *
		cvb_align_step_uv / 1000;
}

static inline void override_dfll_min_millivolts(struct cpu_cvb_dvfs *d)
{
	/*
	 * dfll min_millivolts for AP40 sku is different from all other skus
	 * that have the same cvb tables
	 */
	if (tegra_sku_id == 0x06)
		d->dfll_tune_data.min_millivolts = 900;
}

static int __init set_cpu_dvfs_data(
	struct cpu_cvb_dvfs *d, struct dvfs *cpu_dvfs, int *max_freq_index)
{
	int i, j, mv, dfll_mv, min_dfll_mv;
	unsigned long fmax_at_vmin = 0;
	unsigned long fmax_pll_mode = 0;
	unsigned long fmin_use_dfll = 0;
	struct cpu_cvb_dvfs_table *table = NULL;
	int speedo = tegra_cpu_speedo_value();

	override_dfll_min_millivolts(d);
	min_dfll_mv = d->dfll_tune_data.min_millivolts;
	BUG_ON(min_dfll_mv < tegra11_dvfs_rail_vdd_cpu.min_millivolts);

	/*
	 * Use CVB table to fill in CPU dvfs frequencies and voltages. Each
	 * CVB entry specifies CPU frequency and CVB coefficients to calculate
	 * the respective voltage when either DFLL or PLL is used as CPU clock
	 * source.
	 *
	 * Minimum voltage limit is applied only to DFLL source. For PLL source
	 * voltage can go as low as table specifies. Maximum voltage limit is
	 * applied to both sources, but differently: directly clip voltage for
	 * DFLL, and limit maximum frequency for PLL.
	 */
	for (i = 0, j = 0; i < MAX_DVFS_FREQS; i++) {
		table = &d->cvb_table[i];
		if (!table->freq)
			break;

		dfll_mv = get_cvb_voltage(
			speedo, d->speedo_scale, &table->cvb_dfll_param);
		dfll_mv = round_cvb_voltage(dfll_mv, d->voltage_scale);

		mv = get_cvb_voltage(
			speedo, d->speedo_scale, &table->cvb_pll_param);
		mv = round_cvb_voltage(mv, d->voltage_scale);

		/*
		 * Check maximum frequency at minimum voltage for dfll source;
		 * round down unless all table entries are above Vmin, then use
		 * the 1st entry as is.
		 */
		dfll_mv = max(dfll_mv, min_dfll_mv);
		if (dfll_mv > min_dfll_mv) {
			if (!j)
				fmax_at_vmin = table->freq;
			if (!fmax_at_vmin)
				fmax_at_vmin = cpu_dvfs->freqs[j - 1];
		}

		/* Clip maximum frequency at maximum voltage for pll source */
		if (mv > d->max_mv) {
			if (!j)
				break;	/* 1st entry already above Vmax */
			if (!fmax_pll_mode)
				fmax_pll_mode = cpu_dvfs->freqs[j - 1];
		}

		/* Minimum rate with pll source voltage above dfll Vmin */
		if ((mv >= min_dfll_mv) && (!fmin_use_dfll))
			fmin_use_dfll = table->freq;

		/* fill in dvfs tables */
		cpu_dvfs->freqs[j] = table->freq;
		cpu_dfll_millivolts[j] = min(dfll_mv, d->max_mv);
		cpu_millivolts[j] = mv;
		j++;

		/*
		 * "Round-up" frequency list cut-off (keep first entry that
		 *  exceeds max voltage - the voltage limit will be enforced
		 *  anyway, so when requested this frequency dfll will settle
		 *  at whatever high frequency it can on the particular chip)
		 */
		if (dfll_mv > d->max_mv)
			break;
	}
	/* Table must not be empty, must have at least one entry above Vmin */
	if (!i || !j || !fmax_at_vmin) {
		pr_err("tegra11_dvfs: invalid cpu dvfs table\n");
		return -ENOENT;
	}

	/* Must have crossover between dfll and pll operating ranges */
	if (!fmin_use_dfll || (fmin_use_dfll > fmax_at_vmin)) {
		pr_err("tegra11_dvfs: no crossover of dfll and pll voltages\n");
		return -EINVAL;
	}

	/* dvfs tables are successfully populated - fill in the rest */
	cpu_dvfs->speedo_id = d->speedo_id;
	cpu_dvfs->process_id = d->process_id;
	cpu_dvfs->freqs_mult = d->freqs_mult;
	cpu_dvfs->dvfs_rail->nominal_millivolts = min(d->max_mv,
		max(cpu_millivolts[j - 1], cpu_dfll_millivolts[j - 1]));
	*max_freq_index = j - 1;

	cpu_dvfs->dfll_data = d->dfll_tune_data;
	cpu_dvfs->dfll_data.max_rate_boost = fmax_pll_mode ?
		(cpu_dvfs->freqs[j - 1] - fmax_pll_mode) * d->freqs_mult : 0;
	cpu_dvfs->dfll_data.out_rate_min = fmax_at_vmin * d->freqs_mult;
	cpu_dvfs->dfll_data.use_dfll_rate_min = fmin_use_dfll * d->freqs_mult;
	cpu_dvfs->dfll_data.min_millivolts = min_dfll_mv;

	return 0;
}

static int __init get_core_nominal_mv_index(int speedo_id)
{
	int i;
	int mv = tegra_core_speedo_mv();
	int core_edp_voltage = get_core_edp();

	/*
	 * Start with nominal level for the chips with this speedo_id. Then,
	 * make sure core nominal voltage is below edp limit for the board
	 * (if edp limit is set).
	 */
	if (!core_edp_voltage)
		core_edp_voltage = 1100;	/* default 1.1V EDP limit */

	mv = min(mv, core_edp_voltage);

	/* Round nominal level down to the nearest core scaling step */
	for (i = 0; i < MAX_DVFS_FREQS; i++) {
		if ((core_millivolts[i] == 0) || (mv < core_millivolts[i]))
			break;
	}

	if (i == 0) {
		pr_err("tegra11_dvfs: unable to adjust core dvfs table to"
		       " nominal voltage %d\n", mv);
		return -ENOSYS;
	}
	return i - 1;
}

int tegra_cpu_dvfs_alter(int edp_thermal_index, const cpumask_t *cpus,
			 bool before_clk_update, int cpu_event)
{
	/* empty definition for tegra11 */
	return 0;
}

void __init tegra11x_init_dvfs(void)
{
	int cpu_speedo_id = tegra_cpu_speedo_id();
	int cpu_process_id = tegra_cpu_process_id();
	int soc_speedo_id = tegra_soc_speedo_id();
	int core_process_id = tegra_core_process_id();

	int i, ret;
	int core_nominal_mv_index;
	int cpu_max_freq_index = 0;

#ifndef CONFIG_TEGRA_CORE_DVFS
	tegra_dvfs_core_disabled = true;
#endif
#ifndef CONFIG_TEGRA_CPU_DVFS
	tegra_dvfs_cpu_disabled = true;
#endif
	/* Setup rail bins */
	tegra11_dvfs_rail_vdd_cpu.stats.bin_uV = tegra_get_cvb_alignment_uV();
	tegra11_dvfs_rail_vdd_core.stats.bin_uV = tegra_get_cvb_alignment_uV();

	/*
	 * Find nominal voltages for core (1st) and cpu rails before rail
	 * init. Nominal voltage index in core scaling ladder can also be
	 * used to determine max dvfs frequencies for all core clocks. In
	 * case of error disable core scaling and set index to 0, so that
	 * core clocks would not exceed rates allowed at minimum voltage.
	 */
	core_nominal_mv_index = get_core_nominal_mv_index(soc_speedo_id);
	if (core_nominal_mv_index < 0) {
		tegra11_dvfs_rail_vdd_core.disabled = true;
		tegra_dvfs_core_disabled = true;
		core_nominal_mv_index = 0;
	}
	tegra11_dvfs_rail_vdd_core.nominal_millivolts =
		core_millivolts[core_nominal_mv_index];

	/*
	 * Setup cpu dvfs and dfll tables from cvb data, determine nominal
	 * voltage for cpu rail, and cpu maximum frequency. Note that entire
	 * frequency range is guaranteed only when dfll is used as cpu clock
	 * source. Reaching maximum frequency with pll as cpu clock source
	 * may not be possible within nominal voltage range (dvfs mechanism
	 * would automatically fail frequency request in this case, so that
	 * voltage limit is not violated). Error when cpu dvfs table can not
	 * be constructed must never happen.
	 */
	for (ret = 0, i = 0; i <  ARRAY_SIZE(cpu_cvb_dvfs_table); i++) {
		struct cpu_cvb_dvfs *d = &cpu_cvb_dvfs_table[i];
		if (match_cpu_cvb_one(d, cpu_speedo_id, cpu_process_id)) {
			ret = set_cpu_dvfs_data(
				d, &cpu_dvfs, &cpu_max_freq_index);
			break;
		}
	}
	BUG_ON((i == ARRAY_SIZE(cpu_cvb_dvfs_table)) || ret);

	/* Init thermal limits */
	init_rail_vmax_thermal_profile(
		vdd_cpu_vmax_trips_table, vdd_cpu_therm_caps_table,
		&tegra11_dvfs_rail_vdd_cpu, &cpu_dvfs.dfll_data);
	init_rail_vmin_thermal_profile(cpu_cvb_dvfs_table[i].therm_trips_table,
		cpu_cvb_dvfs_table[i].therm_floors_table,
		&tegra11_dvfs_rail_vdd_cpu, &cpu_dvfs.dfll_data);
	init_rail_vmin_thermal_profile(vdd_core_vmin_trips_table,
		vdd_core_therm_floors_table, &tegra11_dvfs_rail_vdd_core, NULL);

	/* Init rail structures and dependencies */
	tegra_dvfs_init_rails(tegra11_dvfs_rails,
		ARRAY_SIZE(tegra11_dvfs_rails));

	/* Search core dvfs table for speedo/process matching entries and
	   initialize dvfs-ed clocks */
	for (i = 0; i <  ARRAY_SIZE(core_dvfs_table); i++) {
		struct dvfs *d = &core_dvfs_table[i];
		if (!match_dvfs_one(d, soc_speedo_id, core_process_id))
			continue;
		init_dvfs_one(d, core_nominal_mv_index);
	}

	/* Initialize matching cpu dvfs entry already found when nominal
	   voltage was determined */
	init_dvfs_one(&cpu_dvfs, cpu_max_freq_index);

	/* Finally disable dvfs on rails if necessary */
	if (tegra_dvfs_core_disabled)
		tegra_dvfs_rail_disable(&tegra11_dvfs_rail_vdd_core);
	if (tegra_dvfs_cpu_disabled)
		tegra_dvfs_rail_disable(&tegra11_dvfs_rail_vdd_cpu);

	pr_info("tegra dvfs: VDD_CPU nominal %dmV, scaling %s\n",
		tegra11_dvfs_rail_vdd_cpu.nominal_millivolts,
		tegra_dvfs_cpu_disabled ? "disabled" : "enabled");
	pr_info("tegra dvfs: VDD_CORE nominal %dmV, scaling %s\n",
		tegra11_dvfs_rail_vdd_core.nominal_millivolts,
		tegra_dvfs_core_disabled ? "disabled" : "enabled");
}

int tegra_dvfs_rail_disable_prepare(struct dvfs_rail *rail)
{
	return 0;
}

int tegra_dvfs_rail_post_enable(struct dvfs_rail *rail)
{
	return 0;
}

/* Core voltage and bus cap object and tables */
static struct kobject *cap_kobj;

static struct core_dvfs_cap_table tegra11_core_cap_table[] = {
#ifdef CONFIG_TEGRA_DUAL_CBUS
	{ .cap_name = "cap.c2bus" },
	{ .cap_name = "cap.c3bus" },
#else
	{ .cap_name = "cap.cbus" },
#endif
	{ .cap_name = "cap.sclk" },
	{ .cap_name = "cap.emc" },
};

/*
 * Keep sys file names the same for dual and single cbus configurations to
 * avoid changes in user space GPU capping interface.
 */
static struct core_bus_cap_table tegra11_bus_cap_table[] = {
#ifdef CONFIG_TEGRA_DUAL_CBUS
	{ .cap_name = "cap.profile.c2bus",
	  .refcnt_attr = {.attr = {.name = "cbus_cap_state", .mode = 0644} },
	  .level_attr  = {.attr = {.name = "cbus_cap_level", .mode = 0644} },
	},
#else
	{ .cap_name = "cap.profile.cbus",
	  .refcnt_attr = {.attr = {.name = "cbus_cap_state", .mode = 0644} },
	  .level_attr  = {.attr = {.name = "cbus_cap_level", .mode = 0644} },
	},
#endif
};

static int __init tegra11_dvfs_init_core_cap(void)
{
	int ret;

	cap_kobj = kobject_create_and_add("tegra_cap", kernel_kobj);
	if (!cap_kobj) {
		pr_err("tegra11_dvfs: failed to create sysfs cap object\n");
		return 0;
	}

	ret = tegra_init_shared_bus_cap(
		tegra11_bus_cap_table, ARRAY_SIZE(tegra11_bus_cap_table),
		cap_kobj);
	if (ret) {
		pr_err("tegra11_dvfs: failed to init bus cap interface (%d)\n",
		       ret);
		kobject_del(cap_kobj);
		return 0;
	}

	ret = tegra_init_core_cap(
		tegra11_core_cap_table, ARRAY_SIZE(tegra11_core_cap_table),
		core_millivolts, ARRAY_SIZE(core_millivolts), cap_kobj);

	if (ret) {
		pr_err("tegra11_dvfs: failed to init core cap interface (%d)\n",
		       ret);
		kobject_del(cap_kobj);
		return 0;
	}
	pr_info("tegra dvfs: tegra sysfs cap interface is initialized\n");

	return 0;
}
late_initcall(tegra11_dvfs_init_core_cap);