summaryrefslogtreecommitdiff
path: root/arch/arm/plat-mxc/ahci_sata.c
blob: 23aa0ec131606d72e112817c9dbc241d49d5b82f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/*
 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/ahci_platform.h>
#include <linux/regulator/consumer.h>
#include <asm/mach-types.h>
#include <mach/common.h>
#include <mach/hardware.h>

/*****************************************************************************\
 *                                                                           *
 * FSL SATA AHCI low level functions                                         *
 * return value 1 failure, 0 success                                         *
 *                                                                           *
\*****************************************************************************/
enum {
	HOST_CAP = 0x00,
	HOST_CAP_SSS = (1 << 27), /* Staggered Spin-up */
	HOST_PORTS_IMPL	= 0x0c,
	HOST_TIMER1MS = 0xe0, /* Timer 1-ms */
	/* Offest used to control the MPLL input clk */
	PHY_CR_CLOCK_FREQ_OVRD = 0x12,
	/* Port0 PHY Control */
	PORT_PHY_CTL = 0x178,
	/* PORT_PHY_CTL bits */
	PORT_PHY_CTL_CAP_ADR_LOC = 0x10000,
	PORT_PHY_CTL_CAP_DAT_LOC = 0x20000,
	PORT_PHY_CTL_WRITE_LOC = 0x40000,
	PORT_PHY_CTL_READ_LOC = 0x80000,
	/* Port0 PHY Status */
	PORT_PHY_SR = 0x17c,
	/* PORT_PHY_SR */
	PORT_PHY_STAT_DATA_LOC = 0,
	PORT_PHY_STAT_ACK_LOC = 18,
	/* SATA PHY Register */
	SATA_PHY_CR_CLOCK_CRCMP_LT_LIMIT = 0x0001,
	SATA_PHY_CR_CLOCK_DAC_CTL = 0x0008,
	SATA_PHY_CR_CLOCK_RTUNE_CTL = 0x0009,
	SATA_PHY_CR_CLOCK_ADC_OUT = 0x000A,
	SATA_PHY_CR_CLOCK_MPLL_TST = 0x0017,
};

static int write_phy_ctl_ack_polling(u32 data, void __iomem *mmio,
		int max_iterations, u32 exp_val)
{
	u32 i, val;

	writel(data, mmio + PORT_PHY_CTL);

	for (i = 0; i < max_iterations + 1; i++) {
		val = readl(mmio + PORT_PHY_SR);
		val =  (val >> PORT_PHY_STAT_ACK_LOC) & 0x1;
		if (val == exp_val)
			return 0;
		if (i == max_iterations) {
			printk(KERN_ERR "Wait for CR ACK error!\n");
			return 1;
		}
		msleep(1);
	}
	return 0;
}

static int sata_phy_cr_addr(u32 addr, void __iomem *mmio)
{
	u32 temp_wr_data;

	/* write addr */
	temp_wr_data = addr;
	writel(temp_wr_data, mmio + PORT_PHY_CTL);

	/* capture addr */
	temp_wr_data |= PORT_PHY_CTL_CAP_ADR_LOC;

	/* wait for ack */
	if (write_phy_ctl_ack_polling(temp_wr_data, mmio, 100, 1))
		return 1;

	/* deassert cap addr */
	temp_wr_data &= 0xffff;

	/* wait for ack de-assetion */
	if (write_phy_ctl_ack_polling(temp_wr_data, mmio, 100, 0))
		return 1;

	return 0;
}

static int sata_phy_cr_write(u32 data, void __iomem *mmio)
{
	u32 temp_wr_data;

	/* write data */
	temp_wr_data = data;

	/* capture data */
	temp_wr_data |= PORT_PHY_CTL_CAP_DAT_LOC;

	/* wait for ack */
	if (write_phy_ctl_ack_polling(temp_wr_data, mmio, 100, 1))
		return 1;

	/* deassert cap data */
	temp_wr_data &= 0xffff;

	/* wait for ack de-assetion */
	if (write_phy_ctl_ack_polling(temp_wr_data, mmio, 100, 0))
		return 1;

	/* assert wr signal */
	temp_wr_data |= PORT_PHY_CTL_WRITE_LOC;

	/* wait for ack */
	if (write_phy_ctl_ack_polling(temp_wr_data, mmio, 100, 1))
		return 1;

	/* deassert wr _signal */
	temp_wr_data = 0x0;

	/* wait for ack de-assetion */
	if (write_phy_ctl_ack_polling(temp_wr_data, mmio, 100, 0))
		return 1;

	return 0;
}

static int sata_phy_cr_read(u32 *data, void __iomem *mmio)
{
	u32 temp_rd_data, temp_wr_data;

	/* assert rd signal */
	temp_wr_data = PORT_PHY_CTL_READ_LOC;

	/* wait for ack */
	if (write_phy_ctl_ack_polling(temp_wr_data, mmio, 100, 1))
		return 1;

	/* after got ack return data */
	temp_rd_data = readl(mmio + PORT_PHY_SR);
	*data = (temp_rd_data & 0xffff);

	/* deassert rd _signal */
	temp_wr_data = 0x0 ;

	/* wait for ack de-assetion */
	if (write_phy_ctl_ack_polling(temp_wr_data, mmio, 100, 0))
		return 1;

	return 0;
}

/* SATA AHCI temperature monitor */
static ssize_t sata_ahci_current_tmp(struct device *dev, struct device_attribute
			      *devattr, char *buf)
{
	void __iomem *mmio;
	u32 mpll_test_reg, rtune_ctl_reg, dac_ctl_reg, adc_out_reg;
	u32 str1, str2, str3, str4, read_sum, index;
	int m1, m2, a, temp;

	/* map the IO addr */
	mmio = ioremap(MX53_SATA_BASE_ADDR, SZ_2K);
	if (mmio == NULL) {
		printk(KERN_ERR "Failed to map SATA REGS\n");
		return 1;
	}

	/* check rd-wr to reg */
	read_sum = 0;
	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_CRCMP_LT_LIMIT, mmio);
	sata_phy_cr_write(read_sum, mmio);
	sata_phy_cr_read(&read_sum, mmio);
	if ((read_sum & 0xffff) != 0)
		printk(KERN_ERR "Read/Write REG error, 0x%x!\n", read_sum);

	sata_phy_cr_write(0x5A5A, mmio);
	sata_phy_cr_read(&read_sum, mmio);
	if ((read_sum & 0xffff) != 0x5A5A)
		printk(KERN_ERR "Read/Write REG error, 0x%x!\n", read_sum);

	sata_phy_cr_write(0x1234, mmio);
	sata_phy_cr_read(&read_sum, mmio);
	if ((read_sum & 0xffff) != 0x1234)
		printk(KERN_ERR "Read/Write REG error, 0x%x!\n", read_sum);

	/* stat temperature test */
	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_MPLL_TST, mmio);
	sata_phy_cr_read(&mpll_test_reg, mmio);
	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio);
	sata_phy_cr_read(&rtune_ctl_reg, mmio);
	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_DAC_CTL, mmio);
	sata_phy_cr_read(&dac_ctl_reg, mmio);

	/* mpll_tst.meas_iv   ([12:2]) */
	str1 = (mpll_test_reg >> 2) & 0x7FF;
	/* rtune_ctl.mode     ([1:0]) */
	str2 = (rtune_ctl_reg) & 0x3;
	/* dac_ctl.dac_mode   ([14:12]) */
	str3 = (dac_ctl_reg >> 12)  & 0x7;
	/* rtune_ctl.sel_atbp ([4]) */
	str4 = (rtune_ctl_reg >> 4);

	/* Caculate the m1 */
	/* mpll_tst.meas_iv */
	mpll_test_reg = (mpll_test_reg & 0xE03) | (512) << 2;
	/* rtune_ctl.mode */
	rtune_ctl_reg = (rtune_ctl_reg & 0xFFC) | (1);
	/* dac_ctl.dac_mode */
	dac_ctl_reg = (dac_ctl_reg & 0x8FF) | (4) << 12;
	/* rtune_ctl.sel_atbp */
	rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (0) << 4;

	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_MPLL_TST, mmio);
	sata_phy_cr_write(mpll_test_reg, mmio);
	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_DAC_CTL, mmio);
	sata_phy_cr_write(dac_ctl_reg, mmio);
	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio);
	sata_phy_cr_write(rtune_ctl_reg, mmio);

	/* two dummy read */
	index = 0;
	read_sum = 0;
	adc_out_reg = 0;
	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_ADC_OUT, mmio);
	while (index < 2) {
		sata_phy_cr_read(&adc_out_reg, mmio);
		/* check if valid */
		if (adc_out_reg & 0x400)
			index = index + 1;
		read_sum++;
		if (read_sum > 100000) {
			printk(KERN_ERR "Read REG more than 100000 times!\n");
			break;
		}
	}

	index = 0;
	read_sum = 0;
	while (index < 80) {
		sata_phy_cr_read(&adc_out_reg, mmio);
		if (adc_out_reg & 0x400) {
			read_sum = read_sum + (adc_out_reg & 0x3FF);
			index = index + 1;
		}
	}
	/* Use the U32 to make 1000 precision */
	m1 = (read_sum * 1000) / 80;

	/* Caculate the m2 */
	/* rtune_ctl.sel_atbp */
	rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (1) << 4;
	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio);
	sata_phy_cr_write(rtune_ctl_reg, mmio);

	/* two dummy read */
	index = 0;
	read_sum = 0;
	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_ADC_OUT, mmio);
	while (index < 2) {
		sata_phy_cr_read(&adc_out_reg, mmio);
		/* check if valid */
		if (adc_out_reg & 0x400)
			index = index + 1;
		read_sum++;
		if (read_sum > 100000) {
			printk(KERN_ERR "Read REG more than 100000 times!\n");
			break;
		}
	}

	index = 0;
	read_sum = 0;
	while (index < 80) {
		/* FIX ME dead loop protection??? */
		sata_phy_cr_read(&adc_out_reg, mmio);
		if (adc_out_reg & 0x400) {
			read_sum = read_sum + (adc_out_reg & 0x3FF);
			index = index + 1;
		}
	}
	/* Use the U32 to make 1000 precision */
	m2 = (read_sum * 1000) / 80;

	/* restore the status  */
	/* mpll_tst.meas_iv */
	mpll_test_reg = (mpll_test_reg & 0xE03) | (str1) << 2;
	/* rtune_ctl.mode */
	rtune_ctl_reg = (rtune_ctl_reg & 0xFFC) | (str2);
	/* dac_ctl.dac_mode */
	dac_ctl_reg = (dac_ctl_reg & 0x8FF) | (str3) << 12;
	/* rtune_ctl.sel_atbp */
	rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (str4) << 4;

	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_MPLL_TST, mmio);
	sata_phy_cr_write(mpll_test_reg, mmio);
	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_DAC_CTL, mmio);
	sata_phy_cr_write(dac_ctl_reg, mmio);
	sata_phy_cr_addr(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio);
	sata_phy_cr_write(rtune_ctl_reg, mmio);

	/* Compute temperature */
	if (!(m2 / 1000))
		m2 = 1000;
	a = (m2 - m1) / (m2 / 1000);
	temp = ((((-559) * a) / 1000) * a) / 1000 + (1379) * a / 1000 + (-458);

	iounmap(mmio);
	return sprintf(buf, "SATA AHCI current temperature:%d\n", temp);
}

static DEVICE_ATTR(temperature, S_IRUGO, sata_ahci_current_tmp, NULL);

static struct attribute *fsl_sata_ahci_attr[] = {
	&dev_attr_temperature.attr,
	NULL
};

static const struct attribute_group fsl_sata_ahci_group = {
	.attrs = fsl_sata_ahci_attr,
};

/* HW Initialization, if return 1, initialization is failed. */
static int sata_init(struct device *dev)
{
	void __iomem *mmio;
	struct clk *clk;
	int ret = 0;
	u32 tmpdata;
	struct regulator *reg_2v5, *reg_1v3;

	/* AHCI SATA PWR EN */
	if (machine_is_mx53_smd() || machine_is_mx53_loco()) {
		/* PWR(VBUCKPERI and VLDO5) on SATA AHCI */
		reg_2v5 = regulator_get(dev, "DA9052_BUCK_PERI");
		ret = IS_ERR(reg_2v5);
		if (ret) {
			printk(KERN_ERR "AHCI can't get 2v5 PWR.\n");
			goto err0;
		}
		ret = regulator_enable(reg_2v5);
		if (ret) {
			printk(KERN_ERR "AHCI: enable 2v5 regulator error.\n");
			goto err0;
		}
		msleep(25);

		reg_1v3 = regulator_get(dev, "DA9052_LDO5");
		ret = IS_ERR(reg_1v3);
		if (ret) {
			printk(KERN_ERR "AHCI can't get 1v3 PWR.\n");
			goto err0;
		}
		ret = regulator_enable(reg_1v3);
		if (ret) {
			printk(KERN_ERR "AHCI: enable 1v3 regulator error.\n");
			goto err0;
		}
		msleep(25);
	}

	clk = clk_get(dev, "imx_sata_clk");
	ret = IS_ERR(clk);
	if (ret) {
		printk(KERN_ERR "AHCI can't get clock.\n");
		goto err0;
	}
	ret = clk_enable(clk);
	if (ret) {
		printk(KERN_ERR "AHCI can't enable clock.\n");
		goto err0;
	}

	/* Get the AHB clock rate, and configure the TIMER1MS reg later */
	clk = clk_get(NULL, "ahb_clk");
	ret = IS_ERR(clk);
	if (ret) {
		printk(KERN_ERR "AHCI can't get AHB clock.\n");
		goto err0;
	}

	mmio = ioremap(MX53_SATA_BASE_ADDR, SZ_2K);
	if (mmio == NULL) {
		printk(KERN_ERR "Failed to map SATA REGS\n");
		goto err0;
	}

	tmpdata = readl(mmio + HOST_CAP);
	if (!(tmpdata & HOST_CAP_SSS)) {
		tmpdata |= HOST_CAP_SSS;
		writel(tmpdata, mmio + HOST_CAP);
	}

	if (!(readl(mmio + HOST_PORTS_IMPL) & 0x1))
		writel((readl(mmio + HOST_PORTS_IMPL) | 0x1),
			mmio + HOST_PORTS_IMPL);

	tmpdata = clk_get_rate(clk) / 1000;
	writel(tmpdata, mmio + HOST_TIMER1MS);

	if (machine_is_mx53_smd() || machine_is_mx53_loco()) {
		/* Internal CLK input is used for AHCI */
		iounmap(mmio);
		/* Eanble the IIM CLK */
		clk = clk_get(dev, "iim_clk");
		ret = IS_ERR(clk);
		if (ret) {
			printk(KERN_ERR "AHCI can't get IIM CLK.\n");
			goto err0;
		}
		ret = clk_enable(clk);
		if (ret) {
			printk(KERN_ERR "AHCI can't enable IIM clock.\n");
			goto err0;
		}
		/* SMD or loco boards use the IC internal clk */
		mmio = ioremap(0x63F98000 + 0x180C, SZ_16);
		if (mmio == NULL) {
			printk(KERN_ERR "Failed to map IIM interface.\n");
			goto err0;
		}
		/* USB_PHY1 clk, fuse bank4 row3 bit2 */
		writel((readl(mmio) & (~0x7)) | 0x4, mmio);
		iounmap(mmio);
		/* release IIM clk */
		clk_disable(clk);
		clk_put(clk);
		clk = clk_get(dev, "usb_phy1_clk");
		ret = IS_ERR(clk);
		if (ret) {
			printk(KERN_ERR "AHCI can't get USB PHY1 CLK.\n");
			goto err0;
		}
		ret = clk_enable(clk);
		if (ret) {
			printk(KERN_ERR "AHCI Can't enable USB PHY1 clock.\n");
			goto err0;
		}
	} else {
		/* External CLK input is used for AHCI */
		/* write addr */
		tmpdata = PHY_CR_CLOCK_FREQ_OVRD;
		writel(tmpdata, mmio + PORT_PHY_CTL);
		/* capture addr */
		tmpdata |= PORT_PHY_CTL_CAP_ADR_LOC;
		/* Wait for ack */
		if (write_phy_ctl_ack_polling(tmpdata, mmio, 100, 1)) {
			ret = -EIO;
			goto err0;
		}

		/* deassert cap data */
		tmpdata &= 0xFFFF;
		/* wait for ack de-assertion */
		if (write_phy_ctl_ack_polling(tmpdata, mmio, 100, 0)) {
			ret = -EIO;
			goto err0;
		}

		/* write data */
		/* Configure the PHY CLK input refer to different OSC
		 * For 25MHz, pre[13,14]:01, ncy[12,8]:06,
		 * ncy5[7,6]:02, int_ctl[5,3]:0, prop_ctl[2,0]:7.
		 * For 50MHz, pre:00, ncy:06, ncy5:02, int_ctl:0, prop_ctl:7.
		 */
		/* EVK revA */
		if (board_is_mx53_evk_a())
			tmpdata = (0x1 << 15) | (0x1 << 13) | (0x6 << 8)
				| (0x2 << 6) | 0x7;
		/* Others are 50MHz */
		else
			tmpdata = (0x1 << 15) | (0x0 << 13) | (0x6 << 8)
				| (0x2 << 6) | 0x7;

		writel(tmpdata, mmio + PORT_PHY_CTL);
		/* capture data */
		tmpdata |= PORT_PHY_CTL_CAP_DAT_LOC;
		/* wait for ack */
		if (write_phy_ctl_ack_polling(tmpdata, mmio, 100, 1)) {
			ret = -EIO;
			goto err0;
		}

		/* deassert cap data */
		tmpdata &= 0xFFFF;
		/* wait for ack de-assertion */
		if (write_phy_ctl_ack_polling(tmpdata, mmio, 100, 0)) {
			ret = -EIO;
			goto err0;
		}

		/* assert wr signal and wait for ack */
		if (write_phy_ctl_ack_polling(PORT_PHY_CTL_WRITE_LOC, mmio,
					100, 1)) {
			ret = -EIO;
			goto err0;
		}
		/* deassert rd _signal and wait for ack de-assertion */
		if (write_phy_ctl_ack_polling(0, mmio, 100, 0)) {
			ret = -EIO;
			goto err0;
		}
		iounmap(mmio);
	}
	msleep(10);

	/* Add the temperature monitor */
	ret = sysfs_create_group(&dev->kobj, &fsl_sata_ahci_group);
	if (ret)
		sysfs_remove_group(&dev->kobj, &fsl_sata_ahci_group);

err0:
	reg_1v3 = NULL;
	reg_2v5 = NULL;
	clk = NULL;
	return ret;
}

static void sata_exit(struct device *dev)
{
	struct clk *clk;
	struct regulator *reg_2v5, *reg_1v3;

	sysfs_remove_group(&dev->kobj, &fsl_sata_ahci_group);
	clk = clk_get(dev, "usb_phy1_clk");
	if (IS_ERR(clk)) {
		clk = NULL;
		printk(KERN_ERR "AHCI can't get USB PHY1 CLK.\n");
	} else {
		clk_disable(clk);
		clk_put(clk);
	}

	clk = clk_get(dev, "imx_sata_clk");
	if (IS_ERR(clk)) {
		clk = NULL;
		printk(KERN_ERR "IMX SATA can't get clock.\n");
	} else {
		clk_disable(clk);
		clk_put(clk);
	}

	/* AHCI SATA PWR disable */
	if (machine_is_mx53_smd() || machine_is_mx53_loco()) {
		reg_2v5 = regulator_get(dev, "DA9052_BUCK_PERI");
		if (IS_ERR(reg_2v5)) {
			printk(KERN_ERR "AHCI: get 2v5 regulator error.\n");
			reg_2v5 = NULL;
		} else {
			regulator_disable(reg_2v5);
			regulator_put(reg_2v5);
		}

		reg_1v3 = regulator_get(dev, "DA9052_LDO5");
		if (IS_ERR(reg_1v3)) {
			printk(KERN_ERR "AHCI: get 2v5 regulator error.\n");
			reg_1v3 = NULL;
		} else {
			regulator_disable(reg_1v3);
			regulator_put(reg_1v3);
		}
	}
}

struct ahci_platform_data sata_data = {
	.init = sata_init,
	.exit = sata_exit,
};