summaryrefslogtreecommitdiff
path: root/kernel/locking/rwsem-rt.c
blob: f518495bd6ccdab7b8ad7283ea3f9b7f0cb84457 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
 */
#include <linux/blkdev.h>
#include <linux/rwsem.h>
#include <linux/sched/debug.h>
#include <linux/sched/signal.h>
#include <linux/export.h>

#include "rtmutex_common.h"

/*
 * RT-specific reader/writer semaphores
 *
 * down_write()
 *  1) Lock sem->rtmutex
 *  2) Remove the reader BIAS to force readers into the slow path
 *  3) Wait until all readers have left the critical region
 *  4) Mark it write locked
 *
 * up_write()
 *  1) Remove the write locked marker
 *  2) Set the reader BIAS so readers can use the fast path again
 *  3) Unlock sem->rtmutex to release blocked readers
 *
 * down_read()
 *  1) Try fast path acquisition (reader BIAS is set)
 *  2) Take sem->rtmutex.wait_lock which protects the writelocked flag
 *  3) If !writelocked, acquire it for read
 *  4) If writelocked, block on sem->rtmutex
 *  5) unlock sem->rtmutex, goto 1)
 *
 * up_read()
 *  1) Try fast path release (reader count != 1)
 *  2) Wake the writer waiting in down_write()#3
 *
 * down_read()#3 has the consequence, that rw semaphores on RT are not writer
 * fair, but writers, which should be avoided in RT tasks (think mmap_sem),
 * are subject to the rtmutex priority/DL inheritance mechanism.
 *
 * It's possible to make the rw semaphores writer fair by keeping a list of
 * active readers. A blocked writer would force all newly incoming readers to
 * block on the rtmutex, but the rtmutex would have to be proxy locked for one
 * reader after the other. We can't use multi-reader inheritance because there
 * is no way to support that with SCHED_DEADLINE. Implementing the one by one
 * reader boosting/handover mechanism is a major surgery for a very dubious
 * value.
 *
 * The risk of writer starvation is there, but the pathological use cases
 * which trigger it are not necessarily the typical RT workloads.
 */

void __rwsem_init(struct rw_semaphore *sem, const char *name,
		  struct lock_class_key *key)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	/*
	 * Make sure we are not reinitializing a held semaphore:
	 */
	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
	lockdep_init_map(&sem->dep_map, name, key, 0);
#endif
	atomic_set(&sem->readers, READER_BIAS);
}
EXPORT_SYMBOL(__rwsem_init);

int __down_read_trylock(struct rw_semaphore *sem)
{
	int r, old;

	/*
	 * Increment reader count, if sem->readers < 0, i.e. READER_BIAS is
	 * set.
	 */
	for (r = atomic_read(&sem->readers); r < 0;) {
		old = atomic_cmpxchg(&sem->readers, r, r + 1);
		if (likely(old == r))
			return 1;
		r = old;
	}
	return 0;
}

static int __sched __down_read_common(struct rw_semaphore *sem, int state)
{
	struct rt_mutex *m = &sem->rtmutex;
	struct rt_mutex_waiter waiter;
	int ret;

	if (__down_read_trylock(sem))
		return 0;
	/*
	 * If rt_mutex blocks, the function sched_submit_work will not call
	 * blk_schedule_flush_plug (because tsk_is_pi_blocked would be true).
	 * We must call blk_schedule_flush_plug here, if we don't call it,
	 * a deadlock in I/O may happen.
	 */
	if (unlikely(blk_needs_flush_plug(current)))
		blk_schedule_flush_plug(current);

	might_sleep();
	raw_spin_lock_irq(&m->wait_lock);
	/*
	 * Allow readers as long as the writer has not completely
	 * acquired the semaphore for write.
	 */
	if (atomic_read(&sem->readers) != WRITER_BIAS) {
		atomic_inc(&sem->readers);
		raw_spin_unlock_irq(&m->wait_lock);
		return 0;
	}

	/*
	 * Call into the slow lock path with the rtmutex->wait_lock
	 * held, so this can't result in the following race:
	 *
	 * Reader1		Reader2		Writer
	 *			down_read()
	 *					down_write()
	 *					rtmutex_lock(m)
	 *					swait()
	 * down_read()
	 * unlock(m->wait_lock)
	 *			up_read()
	 *			swake()
	 *					lock(m->wait_lock)
	 *					sem->writelocked=true
	 *					unlock(m->wait_lock)
	 *
	 *					up_write()
	 *					sem->writelocked=false
	 *					rtmutex_unlock(m)
	 *			down_read()
	 *					down_write()
	 *					rtmutex_lock(m)
	 *					swait()
	 * rtmutex_lock(m)
	 *
	 * That would put Reader1 behind the writer waiting on
	 * Reader2 to call up_read() which might be unbound.
	 */
	rt_mutex_init_waiter(&waiter, false);
	ret = rt_mutex_slowlock_locked(m, state, NULL, RT_MUTEX_MIN_CHAINWALK,
				       NULL, &waiter);
	/*
	 * The slowlock() above is guaranteed to return with the rtmutex (for
	 * ret = 0) is now held, so there can't be a writer active. Increment
	 * the reader count and immediately drop the rtmutex again.
	 * For ret != 0 we don't hold the rtmutex and need unlock the wait_lock.
	 * We don't own the lock then.
	 */
	if (!ret)
		atomic_inc(&sem->readers);
	raw_spin_unlock_irq(&m->wait_lock);
	if (!ret)
		__rt_mutex_unlock(m);

	debug_rt_mutex_free_waiter(&waiter);
	return ret;
}

void __down_read(struct rw_semaphore *sem)
{
	int ret;

	ret = __down_read_common(sem, TASK_UNINTERRUPTIBLE);
	WARN_ON_ONCE(ret);
}

int __down_read_killable(struct rw_semaphore *sem)
{
	int ret;

	ret = __down_read_common(sem, TASK_KILLABLE);
	if (likely(!ret))
		return ret;
	WARN_ONCE(ret != -EINTR, "Unexpected state: %d\n", ret);
	return -EINTR;
}

void __up_read(struct rw_semaphore *sem)
{
	struct rt_mutex *m = &sem->rtmutex;
	struct task_struct *tsk;

	/*
	 * sem->readers can only hit 0 when a writer is waiting for the
	 * active readers to leave the critical region.
	 */
	if (!atomic_dec_and_test(&sem->readers))
		return;

	might_sleep();
	raw_spin_lock_irq(&m->wait_lock);
	/*
	 * Wake the writer, i.e. the rtmutex owner. It might release the
	 * rtmutex concurrently in the fast path (due to a signal), but to
	 * clean up the rwsem it needs to acquire m->wait_lock. The worst
	 * case which can happen is a spurious wakeup.
	 */
	tsk = rt_mutex_owner(m);
	if (tsk)
		wake_up_process(tsk);

	raw_spin_unlock_irq(&m->wait_lock);
}

static void __up_write_unlock(struct rw_semaphore *sem, int bias,
			      unsigned long flags)
{
	struct rt_mutex *m = &sem->rtmutex;

	atomic_add(READER_BIAS - bias, &sem->readers);
	raw_spin_unlock_irqrestore(&m->wait_lock, flags);
	__rt_mutex_unlock(m);
}

static int __sched __down_write_common(struct rw_semaphore *sem, int state)
{
	struct rt_mutex *m = &sem->rtmutex;
	unsigned long flags;

	/* Take the rtmutex as a first step */
	if (__rt_mutex_lock_state(m, state))
		return -EINTR;

	/* Force readers into slow path */
	atomic_sub(READER_BIAS, &sem->readers);
	might_sleep();

	set_current_state(state);
	for (;;) {
		raw_spin_lock_irqsave(&m->wait_lock, flags);
		/* Have all readers left the critical region? */
		if (!atomic_read(&sem->readers)) {
			atomic_set(&sem->readers, WRITER_BIAS);
			__set_current_state(TASK_RUNNING);
			raw_spin_unlock_irqrestore(&m->wait_lock, flags);
			return 0;
		}

		if (signal_pending_state(state, current)) {
			__set_current_state(TASK_RUNNING);
			__up_write_unlock(sem, 0, flags);
			return -EINTR;
		}
		raw_spin_unlock_irqrestore(&m->wait_lock, flags);

		if (atomic_read(&sem->readers) != 0) {
			schedule();
			set_current_state(state);
		}
	}
}

void __sched __down_write(struct rw_semaphore *sem)
{
	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
}

int __sched __down_write_killable(struct rw_semaphore *sem)
{
	return __down_write_common(sem, TASK_KILLABLE);
}

int __down_write_trylock(struct rw_semaphore *sem)
{
	struct rt_mutex *m = &sem->rtmutex;
	unsigned long flags;

	if (!__rt_mutex_trylock(m))
		return 0;

	atomic_sub(READER_BIAS, &sem->readers);

	raw_spin_lock_irqsave(&m->wait_lock, flags);
	if (!atomic_read(&sem->readers)) {
		atomic_set(&sem->readers, WRITER_BIAS);
		raw_spin_unlock_irqrestore(&m->wait_lock, flags);
		return 1;
	}
	__up_write_unlock(sem, 0, flags);
	return 0;
}

void __up_write(struct rw_semaphore *sem)
{
	struct rt_mutex *m = &sem->rtmutex;
	unsigned long flags;

	raw_spin_lock_irqsave(&m->wait_lock, flags);
	__up_write_unlock(sem, WRITER_BIAS, flags);
}

void __downgrade_write(struct rw_semaphore *sem)
{
	struct rt_mutex *m = &sem->rtmutex;
	unsigned long flags;

	raw_spin_lock_irqsave(&m->wait_lock, flags);
	/* Release it and account current as reader */
	__up_write_unlock(sem, WRITER_BIAS - 1, flags);
}