/* * Copyright (C) 2007 Atmel Corporation * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_DM_SPI #include #endif #ifdef CONFIG_DM_GPIO #include #endif #include "atmel_spi.h" DECLARE_GLOBAL_DATA_PTR; #ifndef CONFIG_DM_SPI static int spi_has_wdrbt(struct atmel_spi_slave *slave) { unsigned int ver; ver = spi_readl(slave, VERSION); return (ATMEL_SPI_VERSION_REV(ver) >= 0x210); } void spi_init() { } struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct atmel_spi_slave *as; unsigned int scbr; u32 csrx; void *regs; if (!spi_cs_is_valid(bus, cs)) return NULL; switch (bus) { case 0: regs = (void *)ATMEL_BASE_SPI0; break; #ifdef ATMEL_BASE_SPI1 case 1: regs = (void *)ATMEL_BASE_SPI1; break; #endif #ifdef ATMEL_BASE_SPI2 case 2: regs = (void *)ATMEL_BASE_SPI2; break; #endif #ifdef ATMEL_BASE_SPI3 case 3: regs = (void *)ATMEL_BASE_SPI3; break; #endif default: return NULL; } scbr = (get_spi_clk_rate(bus) + max_hz - 1) / max_hz; if (scbr > ATMEL_SPI_CSRx_SCBR_MAX) /* Too low max SCK rate */ return NULL; if (scbr < 1) scbr = 1; csrx = ATMEL_SPI_CSRx_SCBR(scbr); csrx |= ATMEL_SPI_CSRx_BITS(ATMEL_SPI_BITS_8); if (!(mode & SPI_CPHA)) csrx |= ATMEL_SPI_CSRx_NCPHA; if (mode & SPI_CPOL) csrx |= ATMEL_SPI_CSRx_CPOL; as = spi_alloc_slave(struct atmel_spi_slave, bus, cs); if (!as) return NULL; as->regs = regs; as->mr = ATMEL_SPI_MR_MSTR | ATMEL_SPI_MR_MODFDIS | ATMEL_SPI_MR_PCS(~(1 << cs) & 0xf); if (spi_has_wdrbt(as)) as->mr |= ATMEL_SPI_MR_WDRBT; spi_writel(as, CSR(cs), csrx); return &as->slave; } void spi_free_slave(struct spi_slave *slave) { struct atmel_spi_slave *as = to_atmel_spi(slave); free(as); } int spi_claim_bus(struct spi_slave *slave) { struct atmel_spi_slave *as = to_atmel_spi(slave); /* Enable the SPI hardware */ spi_writel(as, CR, ATMEL_SPI_CR_SPIEN); /* * Select the slave. This should set SCK to the correct * initial state, etc. */ spi_writel(as, MR, as->mr); return 0; } void spi_release_bus(struct spi_slave *slave) { struct atmel_spi_slave *as = to_atmel_spi(slave); /* Disable the SPI hardware */ spi_writel(as, CR, ATMEL_SPI_CR_SPIDIS); } int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct atmel_spi_slave *as = to_atmel_spi(slave); unsigned int len_tx; unsigned int len_rx; unsigned int len; u32 status; const u8 *txp = dout; u8 *rxp = din; u8 value; if (bitlen == 0) /* Finish any previously submitted transfers */ goto out; /* * TODO: The controller can do non-multiple-of-8 bit * transfers, but this driver currently doesn't support it. * * It's also not clear how such transfers are supposed to be * represented as a stream of bytes...this is a limitation of * the current SPI interface. */ if (bitlen % 8) { /* Errors always terminate an ongoing transfer */ flags |= SPI_XFER_END; goto out; } len = bitlen / 8; /* * The controller can do automatic CS control, but it is * somewhat quirky, and it doesn't really buy us much anyway * in the context of U-Boot. */ if (flags & SPI_XFER_BEGIN) { spi_cs_activate(slave); /* * sometimes the RDR is not empty when we get here, * in theory that should not happen, but it DOES happen. * Read it here to be on the safe side. * That also clears the OVRES flag. Required if the * following loop exits due to OVRES! */ spi_readl(as, RDR); } for (len_tx = 0, len_rx = 0; len_rx < len; ) { status = spi_readl(as, SR); if (status & ATMEL_SPI_SR_OVRES) return -1; if (len_tx < len && (status & ATMEL_SPI_SR_TDRE)) { if (txp) value = *txp++; else value = 0; spi_writel(as, TDR, value); len_tx++; } if (status & ATMEL_SPI_SR_RDRF) { value = spi_readl(as, RDR); if (rxp) *rxp++ = value; len_rx++; } } out: if (flags & SPI_XFER_END) { /* * Wait until the transfer is completely done before * we deactivate CS. */ do { status = spi_readl(as, SR); } while (!(status & ATMEL_SPI_SR_TXEMPTY)); spi_cs_deactivate(slave); } return 0; } #else #define MAX_CS_COUNT 4 struct atmel_spi_platdata { struct at91_spi *regs; }; struct atmel_spi_priv { unsigned int freq; /* Default frequency */ unsigned int mode; ulong bus_clk_rate; struct gpio_desc cs_gpios[MAX_CS_COUNT]; }; static int atmel_spi_claim_bus(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct atmel_spi_platdata *bus_plat = dev_get_platdata(bus); struct atmel_spi_priv *priv = dev_get_priv(bus); struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev); struct at91_spi *reg_base = bus_plat->regs; u32 cs = slave_plat->cs; u32 freq = priv->freq; u32 scbr, csrx, mode; scbr = (priv->bus_clk_rate + freq - 1) / freq; if (scbr > ATMEL_SPI_CSRx_SCBR_MAX) return -EINVAL; if (scbr < 1) scbr = 1; csrx = ATMEL_SPI_CSRx_SCBR(scbr); csrx |= ATMEL_SPI_CSRx_BITS(ATMEL_SPI_BITS_8); if (!(priv->mode & SPI_CPHA)) csrx |= ATMEL_SPI_CSRx_NCPHA; if (priv->mode & SPI_CPOL) csrx |= ATMEL_SPI_CSRx_CPOL; writel(csrx, ®_base->csr[cs]); mode = ATMEL_SPI_MR_MSTR | ATMEL_SPI_MR_MODFDIS | ATMEL_SPI_MR_WDRBT | ATMEL_SPI_MR_PCS(~(1 << cs)); writel(mode, ®_base->mr); writel(ATMEL_SPI_CR_SPIEN, ®_base->cr); return 0; } static int atmel_spi_release_bus(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct atmel_spi_platdata *bus_plat = dev_get_platdata(bus); writel(ATMEL_SPI_CR_SPIDIS, &bus_plat->regs->cr); return 0; } static void atmel_spi_cs_activate(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct atmel_spi_priv *priv = dev_get_priv(bus); struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev); u32 cs = slave_plat->cs; dm_gpio_set_value(&priv->cs_gpios[cs], 0); } static void atmel_spi_cs_deactivate(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct atmel_spi_priv *priv = dev_get_priv(bus); struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev); u32 cs = slave_plat->cs; dm_gpio_set_value(&priv->cs_gpios[cs], 1); } static int atmel_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev_get_parent(dev); struct atmel_spi_platdata *bus_plat = dev_get_platdata(bus); struct at91_spi *reg_base = bus_plat->regs; u32 len_tx, len_rx, len; u32 status; const u8 *txp = dout; u8 *rxp = din; u8 value; if (bitlen == 0) goto out; /* * The controller can do non-multiple-of-8 bit * transfers, but this driver currently doesn't support it. * * It's also not clear how such transfers are supposed to be * represented as a stream of bytes...this is a limitation of * the current SPI interface. */ if (bitlen % 8) { /* Errors always terminate an ongoing transfer */ flags |= SPI_XFER_END; goto out; } len = bitlen / 8; /* * The controller can do automatic CS control, but it is * somewhat quirky, and it doesn't really buy us much anyway * in the context of U-Boot. */ if (flags & SPI_XFER_BEGIN) { atmel_spi_cs_activate(dev); /* * sometimes the RDR is not empty when we get here, * in theory that should not happen, but it DOES happen. * Read it here to be on the safe side. * That also clears the OVRES flag. Required if the * following loop exits due to OVRES! */ readl(®_base->rdr); } for (len_tx = 0, len_rx = 0; len_rx < len; ) { status = readl(®_base->sr); if (status & ATMEL_SPI_SR_OVRES) return -1; if ((len_tx < len) && (status & ATMEL_SPI_SR_TDRE)) { if (txp) value = *txp++; else value = 0; writel(value, ®_base->tdr); len_tx++; } if (status & ATMEL_SPI_SR_RDRF) { value = readl(®_base->rdr); if (rxp) *rxp++ = value; len_rx++; } } out: if (flags & SPI_XFER_END) { /* * Wait until the transfer is completely done before * we deactivate CS. */ wait_for_bit(__func__, ®_base->sr, ATMEL_SPI_SR_TXEMPTY, true, 1000, false); atmel_spi_cs_deactivate(dev); } return 0; } static int atmel_spi_set_speed(struct udevice *bus, uint speed) { struct atmel_spi_priv *priv = dev_get_priv(bus); priv->freq = speed; return 0; } static int atmel_spi_set_mode(struct udevice *bus, uint mode) { struct atmel_spi_priv *priv = dev_get_priv(bus); priv->mode = mode; return 0; } static const struct dm_spi_ops atmel_spi_ops = { .claim_bus = atmel_spi_claim_bus, .release_bus = atmel_spi_release_bus, .xfer = atmel_spi_xfer, .set_speed = atmel_spi_set_speed, .set_mode = atmel_spi_set_mode, /* * cs_info is not needed, since we require all chip selects to be * in the device tree explicitly */ }; static int atmel_spi_enable_clk(struct udevice *bus) { struct atmel_spi_priv *priv = dev_get_priv(bus); struct clk clk; ulong clk_rate; int ret; ret = clk_get_by_index(bus, 0, &clk); if (ret) return -EINVAL; ret = clk_enable(&clk); if (ret) return ret; clk_rate = clk_get_rate(&clk); if (!clk_rate) return -EINVAL; priv->bus_clk_rate = clk_rate; clk_free(&clk); return 0; } static int atmel_spi_probe(struct udevice *bus) { struct atmel_spi_platdata *bus_plat = dev_get_platdata(bus); struct atmel_spi_priv *priv = dev_get_priv(bus); int i, ret; ret = atmel_spi_enable_clk(bus); if (ret) return ret; bus_plat->regs = (struct at91_spi *)dev_get_addr(bus); ret = gpio_request_list_by_name(bus, "cs-gpios", priv->cs_gpios, ARRAY_SIZE(priv->cs_gpios), 0); if (ret < 0) { error("Can't get %s gpios! Error: %d", bus->name, ret); return ret; } for(i = 0; i < ARRAY_SIZE(priv->cs_gpios); i++) { dm_gpio_set_dir_flags(&priv->cs_gpios[i], GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE); } writel(ATMEL_SPI_CR_SWRST, &bus_plat->regs->cr); return 0; } static const struct udevice_id atmel_spi_ids[] = { { .compatible = "atmel,at91rm9200-spi" }, { } }; U_BOOT_DRIVER(atmel_spi) = { .name = "atmel_spi", .id = UCLASS_SPI, .of_match = atmel_spi_ids, .ops = &atmel_spi_ops, .platdata_auto_alloc_size = sizeof(struct atmel_spi_platdata), .priv_auto_alloc_size = sizeof(struct atmel_spi_priv), .probe = atmel_spi_probe, }; #endif