/* * RTL8XXXU mac80211 USB driver - 8188e specific subdriver * * Copyright (c) 2014 - 2016 Jes Sorensen * * Portions, notably calibration code: * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This driver was written as a replacement for the vendor provided * rtl8723au driver. As the Realtek 8xxx chips are very similar in * their programming interface, I have started adding support for * additional 8xxx chips like the 8192cu, 8188cus, etc. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rtl8xxxu.h" #include "rtl8xxxu_regs.h" static struct rtl8xxxu_reg8val rtl8188e_mac_init_table[] = { {0x026, 0x41}, {0x027, 0x35}, {0x428, 0x0a}, {0x429, 0x10}, {0x430, 0x00}, {0x431, 0x01}, {0x432, 0x02}, {0x433, 0x04}, {0x434, 0x05}, {0x435, 0x06}, {0x436, 0x07}, {0x437, 0x08}, {0x438, 0x00}, {0x439, 0x00}, {0x43a, 0x01}, {0x43b, 0x02}, {0x43c, 0x04}, {0x43d, 0x05}, {0x43e, 0x06}, {0x43f, 0x07}, {0x440, 0x5d}, {0x441, 0x01}, {0x442, 0x00}, {0x444, 0x15}, {0x445, 0xf0}, {0x446, 0x0f}, {0x447, 0x00}, {0x458, 0x41}, {0x459, 0xa8}, {0x45a, 0x72}, {0x45b, 0xb9}, {0x460, 0x66}, {0x461, 0x66}, {0x480, 0x08}, {0x4c8, 0xff}, {0x4c9, 0x08}, {0x4cc, 0xff}, {0x4cd, 0xff}, {0x4ce, 0x01}, {0x4d3, 0x01}, {0x500, 0x26}, {0x501, 0xa2}, {0x502, 0x2f}, {0x503, 0x00}, {0x504, 0x28}, {0x505, 0xa3}, {0x506, 0x5e}, {0x507, 0x00}, {0x508, 0x2b}, {0x509, 0xa4}, {0x50a, 0x5e}, {0x50b, 0x00}, {0x50c, 0x4f}, {0x50d, 0xa4}, {0x50e, 0x00}, {0x50f, 0x00}, {0x512, 0x1c}, {0x514, 0x0a}, {0x516, 0x0a}, {0x525, 0x4f}, {0x550, 0x10}, {0x551, 0x10}, {0x559, 0x02}, {0x55d, 0xff}, {0x605, 0x30}, {0x608, 0x0e}, {0x609, 0x2a}, {0x620, 0xff}, {0x621, 0xff}, {0x622, 0xff}, {0x623, 0xff}, {0x624, 0xff}, {0x625, 0xff}, {0x626, 0xff}, {0x627, 0xff}, {0x652, 0x20}, {0x63c, 0x0a}, {0x63d, 0x0a}, {0x63e, 0x0e}, {0x63f, 0x0e}, {0x640, 0x40}, {0x66e, 0x05}, {0x700, 0x21}, {0x701, 0x43}, {0x702, 0x65}, {0x703, 0x87}, {0x708, 0x21}, {0x709, 0x43}, {0x70a, 0x65}, {0x70b, 0x87}, {0xffff, 0xff}, }; static struct rtl8xxxu_reg32val rtl8188eu_phy_init_table[] = { {0x800, 0x80040000}, {0x804, 0x00000003}, {0x808, 0x0000fc00}, {0x80c, 0x0000000a}, {0x810, 0x10001331}, {0x814, 0x020c3d10}, {0x818, 0x02200385}, {0x81c, 0x00000000}, {0x820, 0x01000100}, {0x824, 0x00390204}, {0x828, 0x00000000}, {0x82c, 0x00000000}, {0x830, 0x00000000}, {0x834, 0x00000000}, {0x838, 0x00000000}, {0x83c, 0x00000000}, {0x840, 0x00010000}, {0x844, 0x00000000}, {0x848, 0x00000000}, {0x84c, 0x00000000}, {0x850, 0x00000000}, {0x854, 0x00000000}, {0x858, 0x569a11a9}, {0x85c, 0x01000014}, {0x860, 0x66f60110}, {0x864, 0x061f0649}, {0x868, 0x00000000}, {0x86c, 0x27272700}, {0x870, 0x07000760}, {0x874, 0x25004000}, {0x878, 0x00000808}, {0x87c, 0x00000000}, {0x880, 0xb0000c1c}, {0x884, 0x00000001}, {0x888, 0x00000000}, {0x88c, 0xccc000c0}, {0x890, 0x00000800}, {0x894, 0xfffffffe}, {0x898, 0x40302010}, {0x89c, 0x00706050}, {0x900, 0x00000000}, {0x904, 0x00000023}, {0x908, 0x00000000}, {0x90c, 0x81121111}, {0x910, 0x00000002}, {0x914, 0x00000201}, {0xa00, 0x00d047c8}, {0xa04, 0x80ff000c}, {0xa08, 0x8c838300}, {0xa0c, 0x2e7f120f}, {0xa10, 0x9500bb78}, {0xa14, 0x1114d028}, {0xa18, 0x00881117}, {0xa1c, 0x89140f00}, {0xa20, 0x1a1b0000}, {0xa24, 0x090e1317}, {0xa28, 0x00000204}, {0xa2c, 0x00d30000}, {0xa70, 0x101fbf00}, {0xa74, 0x00000007}, {0xa78, 0x00000900}, {0xa7c, 0x225b0606}, {0xa80, 0x218075b1}, {0xb2c, 0x80000000}, {0xc00, 0x48071d40}, {0xc04, 0x03a05611}, {0xc08, 0x000000e4}, {0xc0c, 0x6c6c6c6c}, {0xc10, 0x08800000}, {0xc14, 0x40000100}, {0xc18, 0x08800000}, {0xc1c, 0x40000100}, {0xc20, 0x00000000}, {0xc24, 0x00000000}, {0xc28, 0x00000000}, {0xc2c, 0x00000000}, {0xc30, 0x69e9ac47}, {0xc34, 0x469652af}, {0xc38, 0x49795994}, {0xc3c, 0x0a97971c}, {0xc40, 0x1f7c403f}, {0xc44, 0x000100b7}, {0xc48, 0xec020107}, {0xc4c, 0x007f037f}, {0xc50, 0x69553420}, {0xc54, 0x43bc0094}, {0xc58, 0x00013169}, {0xc5c, 0x00250492}, {0xc60, 0x00000000}, {0xc64, 0x7112848b}, {0xc68, 0x47c00bff}, {0xc6c, 0x00000036}, {0xc70, 0x2c7f000d}, {0xc74, 0x020610db}, {0xc78, 0x0000001f}, {0xc7c, 0x00b91612}, {0xc80, 0x390000e4}, {0xc84, 0x20f60000}, {0xc88, 0x40000100}, {0xc8c, 0x20200000}, {0xc90, 0x00091521}, {0xc94, 0x00000000}, {0xc98, 0x00121820}, {0xc9c, 0x00007f7f}, {0xca0, 0x00000000}, {0xca4, 0x000300a0}, {0xca8, 0x00000000}, {0xcac, 0x00000000}, {0xcb0, 0x00000000}, {0xcb4, 0x00000000}, {0xcb8, 0x00000000}, {0xcbc, 0x28000000}, {0xcc0, 0x00000000}, {0xcc4, 0x00000000}, {0xcc8, 0x00000000}, {0xccc, 0x00000000}, {0xcd0, 0x00000000}, {0xcd4, 0x00000000}, {0xcd8, 0x64b22427}, {0xcdc, 0x00766932}, {0xce0, 0x00222222}, {0xce4, 0x00000000}, {0xce8, 0x37644302}, {0xcec, 0x2f97d40c}, {0xd00, 0x00000740}, {0xd04, 0x00020401}, {0xd08, 0x0000907f}, {0xd0c, 0x20010201}, {0xd10, 0xa0633333}, {0xd14, 0x3333bc43}, {0xd18, 0x7a8f5b6f}, {0xd2c, 0xcc979975}, {0xd30, 0x00000000}, {0xd34, 0x80608000}, {0xd38, 0x00000000}, {0xd3c, 0x00127353}, {0xd40, 0x00000000}, {0xd44, 0x00000000}, {0xd48, 0x00000000}, {0xd4c, 0x00000000}, {0xd50, 0x6437140a}, {0xd54, 0x00000000}, {0xd58, 0x00000282}, {0xd5c, 0x30032064}, {0xd60, 0x4653de68}, {0xd64, 0x04518a3c}, {0xd68, 0x00002101}, {0xd6c, 0x2a201c16}, {0xd70, 0x1812362e}, {0xd74, 0x322c2220}, {0xd78, 0x000e3c24}, {0xe00, 0x2d2d2d2d}, {0xe04, 0x2d2d2d2d}, {0xe08, 0x0390272d}, {0xe10, 0x2d2d2d2d}, {0xe14, 0x2d2d2d2d}, {0xe18, 0x2d2d2d2d}, {0xe1c, 0x2d2d2d2d}, {0xe28, 0x00000000}, {0xe30, 0x1000dc1f}, {0xe34, 0x10008c1f}, {0xe38, 0x02140102}, {0xe3c, 0x681604c2}, {0xe40, 0x01007c00}, {0xe44, 0x01004800}, {0xe48, 0xfb000000}, {0xe4c, 0x000028d1}, {0xe50, 0x1000dc1f}, {0xe54, 0x10008c1f}, {0xe58, 0x02140102}, {0xe5c, 0x28160d05}, {0xe60, 0x00000008}, {0xe68, 0x001b25a4}, {0xe6c, 0x00c00014}, {0xe70, 0x00c00014}, {0xe74, 0x01000014}, {0xe78, 0x01000014}, {0xe7c, 0x01000014}, {0xe80, 0x01000014}, {0xe84, 0x00c00014}, {0xe88, 0x01000014}, {0xe8c, 0x00c00014}, {0xed0, 0x00c00014}, {0xed4, 0x00c00014}, {0xed8, 0x00c00014}, {0xedc, 0x00000014}, {0xee0, 0x00000014}, {0xeec, 0x01c00014}, {0xf14, 0x00000003}, {0xf4c, 0x00000000}, {0xf00, 0x00000300}, {0xffff, 0xffffffff}, }; static struct rtl8xxxu_reg32val rtl8188e_agc_table[] = { {0xc78, 0xfb000001}, {0xc78, 0xfb010001}, {0xc78, 0xfb020001}, {0xc78, 0xfb030001}, {0xc78, 0xfb040001}, {0xc78, 0xfb050001}, {0xc78, 0xfa060001}, {0xc78, 0xf9070001}, {0xc78, 0xf8080001}, {0xc78, 0xf7090001}, {0xc78, 0xf60a0001}, {0xc78, 0xf50b0001}, {0xc78, 0xf40c0001}, {0xc78, 0xf30d0001}, {0xc78, 0xf20e0001}, {0xc78, 0xf10f0001}, {0xc78, 0xf0100001}, {0xc78, 0xef110001}, {0xc78, 0xee120001}, {0xc78, 0xed130001}, {0xc78, 0xec140001}, {0xc78, 0xeb150001}, {0xc78, 0xea160001}, {0xc78, 0xe9170001}, {0xc78, 0xe8180001}, {0xc78, 0xe7190001}, {0xc78, 0xe61a0001}, {0xc78, 0xe51b0001}, {0xc78, 0xe41c0001}, {0xc78, 0xe31d0001}, {0xc78, 0xe21e0001}, {0xc78, 0xe11f0001}, {0xc78, 0x8a200001}, {0xc78, 0x89210001}, {0xc78, 0x88220001}, {0xc78, 0x87230001}, {0xc78, 0x86240001}, {0xc78, 0x85250001}, {0xc78, 0x84260001}, {0xc78, 0x83270001}, {0xc78, 0x82280001}, {0xc78, 0x6b290001}, {0xc78, 0x6a2a0001}, {0xc78, 0x692b0001}, {0xc78, 0x682c0001}, {0xc78, 0x672d0001}, {0xc78, 0x662e0001}, {0xc78, 0x652f0001}, {0xc78, 0x64300001}, {0xc78, 0x63310001}, {0xc78, 0x62320001}, {0xc78, 0x61330001}, {0xc78, 0x46340001}, {0xc78, 0x45350001}, {0xc78, 0x44360001}, {0xc78, 0x43370001}, {0xc78, 0x42380001}, {0xc78, 0x41390001}, {0xc78, 0x403a0001}, {0xc78, 0x403b0001}, {0xc78, 0x403c0001}, {0xc78, 0x403d0001}, {0xc78, 0x403e0001}, {0xc78, 0x403f0001}, {0xc78, 0xfb400001}, {0xc78, 0xfb410001}, {0xc78, 0xfb420001}, {0xc78, 0xfb430001}, {0xc78, 0xfb440001}, {0xc78, 0xfb450001}, {0xc78, 0xfb460001}, {0xc78, 0xfb470001}, {0xc78, 0xfb480001}, {0xc78, 0xfa490001}, {0xc78, 0xf94a0001}, {0xc78, 0xf84b0001}, {0xc78, 0xf74c0001}, {0xc78, 0xf64d0001}, {0xc78, 0xf54e0001}, {0xc78, 0xf44f0001}, {0xc78, 0xf3500001}, {0xc78, 0xf2510001}, {0xc78, 0xf1520001}, {0xc78, 0xf0530001}, {0xc78, 0xef540001}, {0xc78, 0xee550001}, {0xc78, 0xed560001}, {0xc78, 0xec570001}, {0xc78, 0xeb580001}, {0xc78, 0xea590001}, {0xc78, 0xe95a0001}, {0xc78, 0xe85b0001}, {0xc78, 0xe75c0001}, {0xc78, 0xe65d0001}, {0xc78, 0xe55e0001}, {0xc78, 0xe45f0001}, {0xc78, 0xe3600001}, {0xc78, 0xe2610001}, {0xc78, 0xc3620001}, {0xc78, 0xc2630001}, {0xc78, 0xc1640001}, {0xc78, 0x8b650001}, {0xc78, 0x8a660001}, {0xc78, 0x89670001}, {0xc78, 0x88680001}, {0xc78, 0x87690001}, {0xc78, 0x866a0001}, {0xc78, 0x856b0001}, {0xc78, 0x846c0001}, {0xc78, 0x676d0001}, {0xc78, 0x666e0001}, {0xc78, 0x656f0001}, {0xc78, 0x64700001}, {0xc78, 0x63710001}, {0xc78, 0x62720001}, {0xc78, 0x61730001}, {0xc78, 0x60740001}, {0xc78, 0x46750001}, {0xc78, 0x45760001}, {0xc78, 0x44770001}, {0xc78, 0x43780001}, {0xc78, 0x42790001}, {0xc78, 0x417a0001}, {0xc78, 0x407b0001}, {0xc78, 0x407c0001}, {0xc78, 0x407d0001}, {0xc78, 0x407e0001}, {0xc78, 0x407f0001}, {0xffff, 0xffffffff} }; static struct rtl8xxxu_rfregval rtl8188eu_radioa_init_table[] = { {0x00, 0x00030000}, {0x08, 0x00084000}, {0x18, 0x00000407}, {0x19, 0x00000012}, {0x1e, 0x00080009}, {0x1f, 0x00000880}, {0x2f, 0x0001a060}, {0x3f, 0x00000000}, {0x42, 0x000060c0}, {0x57, 0x000d0000}, {0x58, 0x000be180}, {0x67, 0x00001552}, {0x83, 0x00000000}, {0xb0, 0x000ff8fc}, {0xb1, 0x00054400}, {0xb2, 0x000ccc19}, {0xb4, 0x00043003}, {0xb6, 0x0004953e}, {0xb7, 0x0001c718}, {0xb8, 0x000060ff}, {0xb9, 0x00080001}, {0xba, 0x00040000}, {0xbb, 0x00000400}, {0xbf, 0x000c0000}, {0xc2, 0x00002400}, {0xc3, 0x00000009}, {0xc4, 0x00040c91}, {0xc5, 0x00099999}, {0xc6, 0x000000a3}, {0xc7, 0x00088820}, {0xc8, 0x00076c06}, {0xc9, 0x00000000}, {0xca, 0x00080000}, {0xdf, 0x00000180}, {0xef, 0x000001a0}, {0x51, 0x0006b27d}, {0x52, 0x0007e49d}, /* Set to 0x0007e4dd for SDIO */ {0x53, 0x00000073}, {0x56, 0x00051ff3}, {0x35, 0x00000086}, {0x35, 0x00000186}, {0x35, 0x00000286}, {0x36, 0x00001c25}, {0x36, 0x00009c25}, {0x36, 0x00011c25}, {0x36, 0x00019c25}, {0xb6, 0x00048538}, {0x18, 0x00000c07}, {0x5a, 0x0004bd00}, {0x19, 0x000739d0}, {0x34, 0x0000adf3}, {0x34, 0x00009df0}, {0x34, 0x00008ded}, {0x34, 0x00007dea}, {0x34, 0x00006de7}, {0x34, 0x000054ee}, {0x34, 0x000044eb}, {0x34, 0x000034e8}, {0x34, 0x0000246b}, {0x34, 0x00001468}, {0x34, 0x0000006d}, {0x00, 0x00030159}, {0x84, 0x00068200}, {0x86, 0x000000ce}, {0x87, 0x00048a00}, {0x8e, 0x00065540}, {0x8f, 0x00088000}, {0xef, 0x000020a0}, {0x3b, 0x000f02b0}, {0x3b, 0x000ef7b0}, {0x3b, 0x000d4fb0}, {0x3b, 0x000cf060}, {0x3b, 0x000b0090}, {0x3b, 0x000a0080}, {0x3b, 0x00090080}, {0x3b, 0x0008f780}, {0x3b, 0x000722b0}, {0x3b, 0x0006f7b0}, {0x3b, 0x00054fb0}, {0x3b, 0x0004f060}, {0x3b, 0x00030090}, {0x3b, 0x00020080}, {0x3b, 0x00010080}, {0x3b, 0x0000f780}, {0xef, 0x000000a0}, {0x00, 0x00010159}, {0x18, 0x0000f407}, {0xff, 0xffffffff} }; int rtl8xxxu_8188e_channel_to_group(int channel) { int group; if (channel < 3) group = 0; else if (channel < 6) group = 1; else if (channel < 9) group = 2; else if (channel < 12) group = 3; else if (channel < 14) group = 4; else group = 5; return group; } static void rtl8188e_set_tx_power(struct rtl8xxxu_priv *priv, int channel, bool ht40) { u32 val32, ofdm, mcs; u8 cck, ofdmbase, mcsbase; int group, tx_idx; tx_idx = 0; group = rtl8xxxu_8188e_channel_to_group(channel); cck = priv->cck_tx_power_index_A[group]; val32 = rtl8xxxu_read32(priv, REG_TX_AGC_A_CCK1_MCS32); val32 &= 0xffff00ff; val32 |= (cck << 8); rtl8xxxu_write32(priv, REG_TX_AGC_A_CCK1_MCS32, val32); val32 = rtl8xxxu_read32(priv, REG_TX_AGC_B_CCK11_A_CCK2_11); val32 &= 0xff; val32 |= ((cck << 8) | (cck << 16) | (cck << 24)); rtl8xxxu_write32(priv, REG_TX_AGC_B_CCK11_A_CCK2_11, val32); ofdmbase = priv->ht40_1s_tx_power_index_A[group]; ofdmbase += priv->ofdm_tx_power_diff[tx_idx].a; ofdm = ofdmbase | ofdmbase << 8 | ofdmbase << 16 | ofdmbase << 24; rtl8xxxu_write32(priv, REG_TX_AGC_A_RATE18_06, ofdm); rtl8xxxu_write32(priv, REG_TX_AGC_A_RATE54_24, ofdm); mcsbase = priv->ht40_1s_tx_power_index_A[group]; if (ht40) mcsbase += priv->ht40_tx_power_diff[tx_idx++].a; else mcsbase += priv->ht20_tx_power_diff[tx_idx++].a; mcs = mcsbase | mcsbase << 8 | mcsbase << 16 | mcsbase << 24; rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS03_MCS00, mcs); rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS07_MCS04, mcs); rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS11_MCS08, mcs); rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS15_MCS12, mcs); } void rtl8188eu_config_channel(struct ieee80211_hw *hw) { struct rtl8xxxu_priv *priv = hw->priv; u32 val32, rsr; u8 val8, opmode; bool ht = true; int sec_ch_above, channel; int i; opmode = rtl8xxxu_read8(priv, REG_BW_OPMODE); rsr = rtl8xxxu_read32(priv, REG_RESPONSE_RATE_SET); channel = hw->conf.chandef.chan->hw_value; switch (hw->conf.chandef.width) { case NL80211_CHAN_WIDTH_20_NOHT: ht = false; case NL80211_CHAN_WIDTH_20: opmode |= BW_OPMODE_20MHZ; rtl8xxxu_write8(priv, REG_BW_OPMODE, opmode); val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 &= ~FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE); val32 &= ~FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32); break; case NL80211_CHAN_WIDTH_40: if (hw->conf.chandef.center_freq1 > hw->conf.chandef.chan->center_freq) { sec_ch_above = 1; channel += 2; } else { sec_ch_above = 0; channel -= 2; } opmode &= ~BW_OPMODE_20MHZ; rtl8xxxu_write8(priv, REG_BW_OPMODE, opmode); rsr &= ~RSR_RSC_BANDWIDTH_40M; if (sec_ch_above) rsr |= RSR_RSC_UPPER_SUB_CHANNEL; else rsr |= RSR_RSC_LOWER_SUB_CHANNEL; rtl8xxxu_write32(priv, REG_RESPONSE_RATE_SET, rsr); val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 |= FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE); val32 |= FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32); /* * Set Control channel to upper or lower. These settings * are required only for 40MHz */ val32 = rtl8xxxu_read32(priv, REG_CCK0_SYSTEM); val32 &= ~CCK0_SIDEBAND; if (!sec_ch_above) val32 |= CCK0_SIDEBAND; rtl8xxxu_write32(priv, REG_CCK0_SYSTEM, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM1_LSTF); val32 &= ~OFDM_LSTF_PRIME_CH_MASK; /* 0xc00 */ if (sec_ch_above) val32 |= OFDM_LSTF_PRIME_CH_LOW; else val32 |= OFDM_LSTF_PRIME_CH_HIGH; rtl8xxxu_write32(priv, REG_OFDM1_LSTF, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA0_POWER_SAVE); val32 &= ~(FPGA0_PS_LOWER_CHANNEL | FPGA0_PS_UPPER_CHANNEL); if (sec_ch_above) val32 |= FPGA0_PS_UPPER_CHANNEL; else val32 |= FPGA0_PS_LOWER_CHANNEL; rtl8xxxu_write32(priv, REG_FPGA0_POWER_SAVE, val32); break; default: break; } for (i = RF_A; i < priv->rf_paths; i++) { val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG); val32 &= ~MODE_AG_CHANNEL_MASK; val32 |= channel; rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32); } if (ht) val8 = 0x0e; else val8 = 0x0a; #if 0 rtl8xxxu_write8(priv, REG_SIFS_CCK + 1, val8); rtl8xxxu_write8(priv, REG_SIFS_OFDM + 1, val8); rtl8xxxu_write16(priv, REG_R2T_SIFS, 0x0808); rtl8xxxu_write16(priv, REG_T2T_SIFS, 0x0a0a); #endif for (i = RF_A; i < priv->rf_paths; i++) { val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG); if (hw->conf.chandef.width == NL80211_CHAN_WIDTH_40) val32 &= ~MODE_AG_CHANNEL_20MHZ; else val32 |= MODE_AG_CHANNEL_20MHZ; rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32); } } void rtl8188eu_init_aggregation(struct rtl8xxxu_priv *priv) { u8 agg_ctrl, usb_spec; usb_spec = rtl8xxxu_read8(priv, REG_USB_SPECIAL_OPTION); usb_spec &= ~USB_SPEC_USB_AGG_ENABLE; rtl8xxxu_write8(priv, REG_USB_SPECIAL_OPTION, usb_spec); agg_ctrl = rtl8xxxu_read8(priv, REG_TRXDMA_CTRL); agg_ctrl &= ~TRXDMA_CTRL_RXDMA_AGG_EN; rtl8xxxu_write8(priv, REG_TRXDMA_CTRL, agg_ctrl); } static int rtl8188eu_parse_efuse(struct rtl8xxxu_priv *priv) { struct rtl8188eu_efuse *efuse = &priv->efuse_wifi.efuse8188eu; int i; if (efuse->rtl_id != cpu_to_le16(0x8129)) return -EINVAL; ether_addr_copy(priv->mac_addr, efuse->mac_addr); memcpy(priv->cck_tx_power_index_A, efuse->tx_power_index_A.cck_base, sizeof(efuse->tx_power_index_A.cck_base)); /* * Efuse is empty for path B, so copy in values from path A */ memcpy(priv->cck_tx_power_index_B, efuse->tx_power_index_A.cck_base, sizeof(efuse->tx_power_index_A.cck_base)); memcpy(priv->ht40_1s_tx_power_index_A, efuse->tx_power_index_A.ht40_base, sizeof(efuse->tx_power_index_A.ht40_base)); memcpy(priv->ht40_1s_tx_power_index_B, efuse->tx_power_index_A.ht40_base, sizeof(efuse->tx_power_index_A.ht40_base)); priv->xtalk = priv->efuse_wifi.efuse8188eu.xtal_k & 0x3f; dev_info(&priv->udev->dev, "Vendor: %.7s\n", efuse->vendor_name); dev_info(&priv->udev->dev, "Product: %.11s\n", efuse->device_name); dev_info(&priv->udev->dev, "Serial: %.11s\n", efuse->serial); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_EFUSE) { unsigned char *raw = priv->efuse_wifi.raw; dev_info(&priv->udev->dev, "%s: dumping efuse (0x%02zx bytes):\n", __func__, sizeof(struct rtl8188eu_efuse)); for (i = 0; i < sizeof(struct rtl8188eu_efuse); i += 8) dev_info(&priv->udev->dev, "%02x: %8ph\n", i, &raw[i]); } return 0; } void rtl8188eu_reset_8051(struct rtl8xxxu_priv *priv) { u16 sys_func; sys_func = rtl8xxxu_read16(priv, REG_SYS_FUNC); sys_func &= ~SYS_FUNC_CPU_ENABLE; rtl8xxxu_write16(priv, REG_SYS_FUNC, sys_func); sys_func |= SYS_FUNC_CPU_ENABLE; rtl8xxxu_write16(priv, REG_SYS_FUNC, sys_func); } static int rtl8188eu_load_firmware(struct rtl8xxxu_priv *priv) { char *fw_name; int ret; fw_name = "rtlwifi/rtl8188eufw.bin"; ret = rtl8xxxu_load_firmware(priv, fw_name); return ret; } static void rtl8188eu_init_phy_bb(struct rtl8xxxu_priv *priv) { u8 val8; u16 val16; u32 val32; val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC); val16 |= SYS_FUNC_BB_GLB_RSTN | SYS_FUNC_BBRSTB | SYS_FUNC_DIO_RF; rtl8xxxu_write16(priv, REG_SYS_FUNC, val16); /* * Per vendor driver, run power sequence before init of RF */ val8 = RF_ENABLE | RF_RSTB | RF_SDMRSTB; rtl8xxxu_write8(priv, REG_RF_CTRL, val8); val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC); val16 |= (SYS_FUNC_USBA | SYS_FUNC_USBD | SYS_FUNC_BB_GLB_RSTN | SYS_FUNC_BBRSTB); val16 &= ~SYS_FUNC_UPLL; rtl8xxxu_write16(priv, REG_SYS_FUNC, val16); rtl8xxxu_init_phy_regs(priv, rtl8188eu_phy_init_table); rtl8xxxu_init_phy_regs(priv, rtl8188e_agc_table); val32 = rtl8xxxu_read32(priv, REG_AFE_XTAL_CTRL); val8 = priv->xtalk; val32 &= 0xff8007ff; val32 |= ((val8 | (val8 << 6)) << 11); rtl8xxxu_write32(priv, REG_AFE_XTAL_CTRL, val32); } static int rtl8188eu_init_phy_rf(struct rtl8xxxu_priv *priv) { int ret; ret = rtl8xxxu_init_phy_rf(priv, rtl8188eu_radioa_init_table, RF_A); msleep(100); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_RCK2, 0x80003); msleep(100); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_RCK1, 0x00001); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_RCK2, 0x80000); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_AC, 0x33e60); return ret; } static int rtl8188eu_iqk_path_a(struct rtl8xxxu_priv *priv) { u32 reg_eac, reg_e94, reg_e9c; int result = 0; /* Path A IQK setting */ rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x10008c1c); rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x30008c1c); rtl8xxxu_write32(priv, REG_TX_IQK_PI_A, 0x8214032a); rtl8xxxu_write32(priv, REG_RX_IQK_PI_A, 0x28160000); /* LO calibration setting */ rtl8xxxu_write32(priv, REG_IQK_AGC_RSP, 0x00462911); /* One shot, path A LOK & IQK */ rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf9000000); rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf8000000); mdelay(10); /* Check failed */ reg_eac = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); reg_e94 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_A); reg_e9c = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_A); if (!(reg_eac & BIT(28)) && ((reg_e94 & 0x03ff0000) != 0x01420000) && ((reg_e9c & 0x03ff0000) != 0x00420000)) result |= 0x01; return result; } static int rtl8188eu_rx_iqk_path_a(struct rtl8xxxu_priv *priv) { u32 reg_ea4, reg_eac, reg_e94, reg_e9c, val32; int result = 0; /* Leave IQK mode */ rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x00); /* Enable path A PA in TX IQK mode */ rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_WE_LUT, 0x800a0); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_RCK_OS, 0x30000); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_TXPA_G1, 0x0000f); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_TXPA_G2, 0xf117b); /* PA/PAD control by 0x56, and set = 0x0 */ rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_UNKNOWN_DF, 0x00980); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_UNKNOWN_56, 0x51000); /* Enter IQK mode */ rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x80800000); /* TX IQK setting */ rtl8xxxu_write32(priv, REG_TX_IQK, 0x01007c00); rtl8xxxu_write32(priv, REG_RX_IQK, 0x81004800); /* path-A IQK setting */ rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x10008c1c); rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x30008c1c); rtl8xxxu_write32(priv, REG_TX_IQK_PI_A, 0x82160c1f); rtl8xxxu_write32(priv, REG_RX_IQK_PI_A, 0x28160000); /* LO calibration setting */ rtl8xxxu_write32(priv, REG_IQK_AGC_RSP, 0x0046a911); /* One shot, path A LOK & IQK */ rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf9000000); rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf8000000); mdelay(10); /* Check failed */ reg_eac = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); reg_e94 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_A); reg_e9c = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_A); if (!(reg_eac & BIT(28)) && ((reg_e94 & 0x03ff0000) != 0x01420000) && ((reg_e9c & 0x03ff0000) != 0x00420000)) { result |= 0x01; } else { /* PA/PAD controlled by 0x0 */ rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x00000000); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_UNKNOWN_DF, 0x180); goto out; } val32 = 0x80007c00 | (reg_e94 & 0x03ff0000) | ((reg_e9c >> 16) & 0x03ff); rtl8xxxu_write32(priv, REG_TX_IQK, val32); /* Modify RX IQK mode table */ rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x00000000); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_WE_LUT, 0x800a0); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_RCK_OS, 0x30000); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_TXPA_G1, 0x0000f); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_TXPA_G2, 0xf7ffa); /* Enter IQK mode */ rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x80800000); /* IQK setting */ rtl8xxxu_write32(priv, REG_RX_IQK, 0x01004800); /* Path A IQK setting */ rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x38008c1c); rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x18008c1c); rtl8xxxu_write32(priv, REG_TX_IQK_PI_A, 0x82160c05); rtl8xxxu_write32(priv, REG_RX_IQK_PI_A, 0x28160c1f); /* LO calibration setting */ rtl8xxxu_write32(priv, REG_IQK_AGC_RSP, 0x0046a911); /* One shot, path A LOK & IQK */ rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf9000000); rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf8000000); mdelay(10); reg_eac = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); reg_ea4 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_A_2); rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x00000000); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_UNKNOWN_DF, 0x180); if (!(reg_eac & BIT(27)) && ((reg_ea4 & 0x03ff0000) != 0x01320000) && ((reg_eac & 0x03ff0000) != 0x00360000)) result |= 0x02; else dev_warn(&priv->udev->dev, "%s: Path A RX IQK failed!\n", __func__); out: return result; } static int rtl8188eu_iqk_path_b(struct rtl8xxxu_priv *priv) { u32 reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc; int result = 0; rtl8xxxu_write32(priv, REG_IQK_AGC_CONT, 0x00000002); rtl8xxxu_write32(priv, REG_IQK_AGC_CONT, 0x00000000); mdelay(1); /* Check failed */ reg_eac = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); reg_eb4 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_B); reg_ebc = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_B); reg_ec4 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_B_2); reg_ecc = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_B_2); if (!(reg_eac & BIT(31)) && ((reg_eb4 & 0x03ff0000) != 0x01420000) && ((reg_ebc & 0x03ff0000) != 0x00420000)) result |= 0x01; else dev_warn(&priv->udev->dev, "%s: Path B IQK failed!\n", __func__); if (!(reg_eac & BIT(30)) && ((reg_ec4 & 0x03ff0000) != 0x01320000) && ((reg_ecc & 0x03ff0000) != 0x00360000)) result |= 0x01; else dev_warn(&priv->udev->dev, "%s: Path B RX IQK failed!\n", __func__); return result; } static void rtl8188eu_phy_iqcalibrate(struct rtl8xxxu_priv *priv, int result[][8], int t) { struct device *dev = &priv->udev->dev; u32 i, val32; int path_a_ok, path_b_ok; int retry = 2; const u32 adda_regs[RTL8XXXU_ADDA_REGS] = { REG_FPGA0_XCD_SWITCH_CTRL, REG_BLUETOOTH, REG_RX_WAIT_CCA, REG_TX_CCK_RFON, REG_TX_CCK_BBON, REG_TX_OFDM_RFON, REG_TX_OFDM_BBON, REG_TX_TO_RX, REG_TX_TO_TX, REG_RX_CCK, REG_RX_OFDM, REG_RX_WAIT_RIFS, REG_RX_TO_RX, REG_STANDBY, REG_SLEEP, REG_PMPD_ANAEN }; const u32 iqk_mac_regs[RTL8XXXU_MAC_REGS] = { REG_TXPAUSE, REG_BEACON_CTRL, REG_BEACON_CTRL_1, REG_GPIO_MUXCFG }; const u32 iqk_bb_regs[RTL8XXXU_BB_REGS] = { REG_OFDM0_TRX_PATH_ENABLE, REG_OFDM0_TR_MUX_PAR, REG_FPGA0_XCD_RF_SW_CTRL, REG_CONFIG_ANT_A, REG_CONFIG_ANT_B, REG_FPGA0_XAB_RF_SW_CTRL, REG_FPGA0_XA_RF_INT_OE, REG_FPGA0_XB_RF_INT_OE, REG_FPGA0_RF_MODE }; /* * Note: IQ calibration must be performed after loading * PHY_REG.txt , and radio_a, radio_b.txt */ if (t == 0) { /* Save ADDA parameters, turn Path A ADDA on */ rtl8xxxu_save_regs(priv, adda_regs, priv->adda_backup, RTL8XXXU_ADDA_REGS); rtl8xxxu_save_mac_regs(priv, iqk_mac_regs, priv->mac_backup); rtl8xxxu_save_regs(priv, iqk_bb_regs, priv->bb_backup, RTL8XXXU_BB_REGS); } rtl8xxxu_path_adda_on(priv, adda_regs, true); if (t == 0) { val32 = rtl8xxxu_read32(priv, REG_FPGA0_XA_HSSI_PARM1); if (val32 & FPGA0_HSSI_PARM1_PI) priv->pi_enabled = 1; } if (!priv->pi_enabled) { /* Switch BB to PI mode to do IQ Calibration. */ rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM1, 0x01000100); rtl8xxxu_write32(priv, REG_FPGA0_XB_HSSI_PARM1, 0x01000100); } val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 &= ~FPGA_RF_MODE_CCK; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, 0x03a05600); rtl8xxxu_write32(priv, REG_OFDM0_TR_MUX_PAR, 0x000800e4); rtl8xxxu_write32(priv, REG_FPGA0_XCD_RF_SW_CTRL, 0x22204000); if (!priv->no_pape) { val32 = rtl8xxxu_read32(priv, REG_FPGA0_XAB_RF_SW_CTRL); val32 |= (FPGA0_RF_PAPE | (FPGA0_RF_PAPE << FPGA0_RF_BD_CTRL_SHIFT)); rtl8xxxu_write32(priv, REG_FPGA0_XAB_RF_SW_CTRL, val32); } val32 = rtl8xxxu_read32(priv, REG_FPGA0_XA_RF_INT_OE); val32 &= ~BIT(10); rtl8xxxu_write32(priv, REG_FPGA0_XA_RF_INT_OE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA0_XB_RF_INT_OE); val32 &= ~BIT(10); rtl8xxxu_write32(priv, REG_FPGA0_XB_RF_INT_OE, val32); if (priv->tx_paths > 1) { rtl8xxxu_write32(priv, REG_FPGA0_XA_LSSI_PARM, 0x00010000); rtl8xxxu_write32(priv, REG_FPGA0_XB_LSSI_PARM, 0x00010000); } /* MAC settings */ rtl8xxxu_mac_calibration(priv, iqk_mac_regs, priv->mac_backup); /* Page B init */ rtl8xxxu_write32(priv, REG_CONFIG_ANT_A, 0x0f600000); if (priv->tx_paths > 1) rtl8xxxu_write32(priv, REG_CONFIG_ANT_B, 0x0f600000); /* IQ calibration setting */ rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x80800000); rtl8xxxu_write32(priv, REG_TX_IQK, 0x01007c00); rtl8xxxu_write32(priv, REG_RX_IQK, 0x81004800); for (i = 0; i < retry; i++) { path_a_ok = rtl8188eu_iqk_path_a(priv); if (path_a_ok == 0x01) { val32 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_A); result[t][0] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_A); result[t][1] = (val32 >> 16) & 0x3ff; break; } } if (!path_a_ok) dev_dbg(dev, "%s: Path A TX IQK failed!\n", __func__); for (i = 0; i < retry; i++) { path_a_ok = rtl8188eu_rx_iqk_path_a(priv); if (path_a_ok == 0x03) { val32 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_A_2); result[t][2] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); result[t][3] = (val32 >> 16) & 0x3ff; break; } } if (!path_a_ok) dev_dbg(dev, "%s: Path A RX IQK failed!\n", __func__); /* * Path B calibration code in the vendor driver seems to be * old style and not updated for the 8188eu since it's a 1T1R * part. Keeping the code here in sync with the vendor code * to not divert unncessarily, but probably would be good to * look into modernizing all the code including that for the * old gen1 devices */ if (priv->tx_paths > 1) { /* * Path A into standby */ rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x0); rtl8xxxu_write32(priv, REG_FPGA0_XA_LSSI_PARM, 0x00010000); rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x80800000); /* Turn Path B ADDA on */ rtl8xxxu_path_adda_on(priv, adda_regs, false); for (i = 0; i < retry; i++) { path_b_ok = rtl8188eu_iqk_path_b(priv); if (path_b_ok == 0x03) { val32 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_B); result[t][4] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_B); result[t][5] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_B_2); result[t][6] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_B_2); result[t][7] = (val32 >> 16) & 0x3ff; break; } else if (i == (retry - 1) && path_b_ok == 0x01) { /* TX IQK OK */ val32 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_B); result[t][4] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_B); result[t][5] = (val32 >> 16) & 0x3ff; } } if (!path_b_ok) dev_dbg(dev, "%s: Path B IQK failed!\n", __func__); } /* Back to BB mode, load original value */ rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0); if (t) { if (!priv->pi_enabled) { /* * Switch back BB to SI mode after finishing * IQ Calibration */ val32 = 0x01000000; rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM1, val32); rtl8xxxu_write32(priv, REG_FPGA0_XB_HSSI_PARM1, val32); } /* Reload ADDA power saving parameters */ rtl8xxxu_restore_regs(priv, adda_regs, priv->adda_backup, RTL8XXXU_ADDA_REGS); /* Reload MAC parameters */ rtl8xxxu_restore_mac_regs(priv, iqk_mac_regs, priv->mac_backup); /* Reload BB parameters */ rtl8xxxu_restore_regs(priv, iqk_bb_regs, priv->bb_backup, RTL8XXXU_BB_REGS); /* Restore RX initial gain */ rtl8xxxu_write32(priv, REG_FPGA0_XA_LSSI_PARM, 0x00032ed3); if (priv->tx_paths > 1) { rtl8xxxu_write32(priv, REG_FPGA0_XB_LSSI_PARM, 0x00032ed3); } /* Load 0xe30 IQC default value */ rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x01008c00); rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x01008c00); } } static void rtl8188eu_phy_iq_calibrate(struct rtl8xxxu_priv *priv) { struct device *dev = &priv->udev->dev; int result[4][8]; /* last is final result */ int i, candidate; bool path_a_ok, path_b_ok; u32 reg_e94, reg_e9c, reg_ea4, reg_eac; u32 reg_eb4, reg_ebc, reg_ec4, reg_ecc; bool simu; memset(result, 0, sizeof(result)); result[3][0] = 0x100; result[3][2] = 0x100; result[3][4] = 0x100; result[3][6] = 0x100; candidate = -1; path_a_ok = false; path_b_ok = false; for (i = 0; i < 3; i++) { rtl8188eu_phy_iqcalibrate(priv, result, i); if (i == 1) { simu = rtl8xxxu_gen2_simularity_compare(priv, result, 0, 1); if (simu) { candidate = 0; break; } } if (i == 2) { simu = rtl8xxxu_gen2_simularity_compare(priv, result, 0, 2); if (simu) { candidate = 0; break; } simu = rtl8xxxu_gen2_simularity_compare(priv, result, 1, 2); if (simu) candidate = 1; else candidate = 3; } } for (i = 0; i < 4; i++) { reg_e94 = result[i][0]; reg_e9c = result[i][1]; reg_ea4 = result[i][2]; reg_eb4 = result[i][4]; reg_ebc = result[i][5]; reg_ec4 = result[i][6]; } if (candidate >= 0) { reg_e94 = result[candidate][0]; priv->rege94 = reg_e94; reg_e9c = result[candidate][1]; priv->rege9c = reg_e9c; reg_ea4 = result[candidate][2]; reg_eac = result[candidate][3]; reg_eb4 = result[candidate][4]; priv->regeb4 = reg_eb4; reg_ebc = result[candidate][5]; priv->regebc = reg_ebc; reg_ec4 = result[candidate][6]; reg_ecc = result[candidate][7]; dev_dbg(dev, "%s: candidate is %x\n", __func__, candidate); dev_dbg(dev, "%s: e94 =%x e9c=%x ea4=%x eac=%x eb4=%x ebc=%x ec4=%x " "ecc=%x\n ", __func__, reg_e94, reg_e9c, reg_ea4, reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc); path_a_ok = true; path_b_ok = true; } else { reg_e94 = reg_eb4 = priv->rege94 = priv->regeb4 = 0x100; reg_e9c = reg_ebc = priv->rege9c = priv->regebc = 0x0; } if (reg_e94 && candidate >= 0) rtl8xxxu_fill_iqk_matrix_a(priv, path_a_ok, result, candidate, (reg_ea4 == 0)); if (priv->rf_paths > 1 && reg_eb4) rtl8xxxu_fill_iqk_matrix_b(priv, path_b_ok, result, candidate, (reg_ec4 == 0)); rtl8xxxu_save_regs(priv, rtl8xxxu_iqk_phy_iq_bb_reg, priv->bb_recovery_backup, RTL8XXXU_BB_REGS); } static void rtl8188e_disabled_to_emu(struct rtl8xxxu_priv *priv) { u16 val16; val16 = rtl8xxxu_read16(priv, REG_APS_FSMCO); val16 &= ~(APS_FSMCO_PFM_WOWL | APS_FSMCO_ENABLE_POWERDOWN | APS_FSMCO_HW_POWERDOWN); rtl8xxxu_write16(priv, REG_APS_FSMCO, val16); } static int rtl8188e_emu_to_active(struct rtl8xxxu_priv *priv) { u8 val8; u32 val32; u16 val16; int count, ret = 0; /* wait till 0x04[17] = 1 power ready*/ for (count = RTL8XXXU_MAX_REG_POLL; count; count--) { val32 = rtl8xxxu_read32(priv, REG_APS_FSMCO); if (val32 & BIT(17)) break; udelay(10); } if (!count) { ret = -EBUSY; goto exit; } /* reset baseband */ val8 = rtl8xxxu_read8(priv, REG_SYS_FUNC); val8 &= ~(SYS_FUNC_BBRSTB | SYS_FUNC_BB_GLB_RSTN); rtl8xxxu_write8(priv, REG_SYS_FUNC, val8); /*0x24[23] = 2b'01 schmit trigger */ val32 = rtl8xxxu_read32(priv, REG_AFE_XTAL_CTRL); val32 |= BIT(23); rtl8xxxu_write32(priv, REG_AFE_XTAL_CTRL, val32); /* 0x04[15] = 0 disable HWPDN (control by DRV)*/ val16 = rtl8xxxu_read16(priv, REG_APS_FSMCO); val16 &= ~APS_FSMCO_HW_POWERDOWN; rtl8xxxu_write16(priv, REG_APS_FSMCO, val16); /*0x04[12:11] = 2b'00 disable WL suspend*/ val16 = rtl8xxxu_read16(priv, REG_APS_FSMCO); val16 &= ~(APS_FSMCO_HW_SUSPEND | APS_FSMCO_PCIE); rtl8xxxu_write16(priv, REG_APS_FSMCO, val16); /* set, then poll until 0 */ val32 = rtl8xxxu_read32(priv, REG_APS_FSMCO); val32 |= APS_FSMCO_MAC_ENABLE; rtl8xxxu_write32(priv, REG_APS_FSMCO, val32); for (count = RTL8XXXU_MAX_REG_POLL; count; count--) { val32 = rtl8xxxu_read32(priv, REG_APS_FSMCO); if ((val32 & APS_FSMCO_MAC_ENABLE) == 0) { ret = 0; break; } udelay(10); } if (!count) { ret = -EBUSY; goto exit; } /* LDO normal mode*/ val8 = rtl8xxxu_read8(priv, REG_LPLDO_CTRL); val8 &= ~BIT(4); rtl8xxxu_write8(priv, REG_LPLDO_CTRL, val8); exit: return ret; } static int rtl8188eu_active_to_emu(struct rtl8xxxu_priv *priv) { u8 val8; /* Turn off RF */ val8 = rtl8xxxu_read8(priv, REG_RF_CTRL); val8 &= ~RF_ENABLE; rtl8xxxu_write8(priv, REG_RF_CTRL, val8); /* LDO Sleep mode */ val8 = rtl8xxxu_read8(priv, REG_LPLDO_CTRL); val8 |= BIT(4); rtl8xxxu_write8(priv, REG_LPLDO_CTRL, val8); return 0; } static int rtl8188eu_emu_to_disabled(struct rtl8xxxu_priv *priv) { u8 val8; val8 = rtl8xxxu_read8(priv, REG_AFE_XTAL_CTRL + 2); val8 |= BIT(7); rtl8xxxu_write8(priv, REG_AFE_XTAL_CTRL + 2, val8); val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1); val8 &= ~(BIT(3) | BIT(4)); val8 |= BIT(3); rtl8xxxu_write8(priv, REG_APS_FSMCO + 1, val8); rtl8xxxu_write8(priv, REG_APS_FSMCO + 3, 0x00); val8 = rtl8xxxu_read8(priv, REG_GPIO_MUXCFG + 1); val8 &= ~BIT(4); rtl8xxxu_write8(priv, REG_GPIO_MUXCFG + 1, val8); /* Set USB suspend enable local register 0xfe10[4]=1 */ val8 = rtl8xxxu_read8(priv, 0xfe10); val8 |= BIT(4); rtl8xxxu_write8(priv, 0xfe10, val8); return 0; } static int rtl8188eu_active_to_lps(struct rtl8xxxu_priv *priv) { struct device *dev = &priv->udev->dev; u8 val8; u16 val16; u32 val32; int retry, retval; rtl8xxxu_write8(priv, REG_TXPAUSE, 0x7f); retry = 100; retval = -EBUSY; /* * Poll 32 bit wide 0x05f8 for 0x00000000 to ensure no TX is pending. */ do { val32 = rtl8xxxu_read32(priv, 0x05f8); if (!val32) { retval = 0; break; } } while (retry--); if (!retry) { dev_warn(dev, "Failed to flush TX queue\n"); retval = -EBUSY; goto out; } /* Disable CCK and OFDM, clock gated */ val8 = rtl8xxxu_read8(priv, REG_SYS_FUNC); val8 &= ~SYS_FUNC_BBRSTB; rtl8xxxu_write8(priv, REG_SYS_FUNC, val8); udelay(2); /* Reset MAC TRX */ val16 = rtl8xxxu_read16(priv, REG_CR); val16 &= ~(CR_MAC_TX_ENABLE | CR_MAC_RX_ENABLE | CR_SECURITY_ENABLE); rtl8xxxu_write16(priv, REG_CR, val16); val8 = rtl8xxxu_read8(priv, REG_DUAL_TSF_RST); val8 |= DUAL_TSF_TX_OK; rtl8xxxu_write8(priv, REG_DUAL_TSF_RST, val8); out: return retval; } static int rtl8188eu_power_on(struct rtl8xxxu_priv *priv) { u16 val16; int ret; rtl8188e_disabled_to_emu(priv); ret = rtl8188e_emu_to_active(priv); if (ret) goto exit; /* * Enable MAC DMA/WMAC/SCHEDULE/SEC block * Set CR bit10 to enable 32k calibration. * We do not set CR_MAC_TX_ENABLE | CR_MAC_RX_ENABLE here * due to a hardware bug in the 88E, requiring those to be * set after REG_TRXFF_BNDY is set. If not the RXFF bundary * will get set to a larger buffer size than the real buffer * size. */ val16 = (CR_HCI_TXDMA_ENABLE | CR_HCI_RXDMA_ENABLE | CR_TXDMA_ENABLE | CR_RXDMA_ENABLE | CR_PROTOCOL_ENABLE | CR_SCHEDULE_ENABLE | CR_SECURITY_ENABLE | CR_CALTIMER_ENABLE); rtl8xxxu_write16(priv, REG_CR, val16); exit: return ret; } void rtl8188eu_power_off(struct rtl8xxxu_priv *priv) { u8 val8; u16 val16; rtl8xxxu_flush_fifo(priv); val8 = rtl8xxxu_read8(priv, REG_TX_REPORT_CTRL); val8 &= ~TX_REPORT_CTRL_TIMER_ENABLE; rtl8xxxu_write8(priv, REG_TX_REPORT_CTRL, val8); /* Turn off RF */ rtl8xxxu_write8(priv, REG_RF_CTRL, 0x00); rtl8188eu_active_to_lps(priv); /* Reset Firmware if running in RAM */ if (rtl8xxxu_read8(priv, REG_MCU_FW_DL) & MCU_FW_RAM_SEL) rtl8xxxu_firmware_self_reset(priv); /* Reset MCU */ val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC); val16 &= ~SYS_FUNC_CPU_ENABLE; rtl8xxxu_write16(priv, REG_SYS_FUNC, val16); /* Reset MCU ready status */ rtl8xxxu_write8(priv, REG_MCU_FW_DL, 0x00); /* 32K_CTRL looks to be very 8188e specific */ val8 = rtl8xxxu_read8(priv, REG_32K_CTRL); val8 &= ~BIT(0); rtl8xxxu_write8(priv, REG_32K_CTRL, val8); rtl8188eu_active_to_emu(priv); rtl8188eu_emu_to_disabled(priv); /* Reset MCU IO Wrapper */ val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1); val8 &= ~BIT(3); rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8); val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1); val8 |= BIT(3); rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8); /* Vendor driver refers to GPIO_IN */ val8 = rtl8xxxu_read8(priv, REG_GPIO_PIN_CTRL); /* Vendor driver refers to GPIO_OUT */ rtl8xxxu_write8(priv, REG_GPIO_PIN_CTRL + 1, val8); rtl8xxxu_write8(priv, REG_GPIO_PIN_CTRL + 2, 0xff); val8 = rtl8xxxu_read8(priv, REG_GPIO_IO_SEL); rtl8xxxu_write8(priv, REG_GPIO_IO_SEL, val8 << 4); val8 = rtl8xxxu_read8(priv, REG_GPIO_IO_SEL + 1); rtl8xxxu_write8(priv, REG_GPIO_IO_SEL + 1, val8 | 0x0f); /* * Set LNA, TRSW, EX_PA Pin to output mode * Referred to as REG_BB_PAD_CTRL in 8188eu vendor driver */ rtl8xxxu_write32(priv, REG_PAD_CTRL1, 0x00080808); rtl8xxxu_write8(priv, REG_RSV_CTRL, 0x00); rtl8xxxu_write32(priv, REG_GPIO_MUXCFG, 0x00000000); val16 = rtl8xxxu_read16(priv, REG_APS_FSMCO); val16 |= APS_FSMCO_ENABLE_POWERDOWN | APS_FSMCO_HW_POWERDOWN; rtl8xxxu_write16(priv, REG_APS_FSMCO, val16); } static void rtl8188e_enable_rf(struct rtl8xxxu_priv *priv) { u32 val32; rtl8xxxu_write8(priv, REG_RF_CTRL, RF_ENABLE | RF_RSTB | RF_SDMRSTB); val32 = rtl8xxxu_read32(priv, REG_OFDM0_TRX_PATH_ENABLE); val32 &= ~(OFDM_RF_PATH_RX_MASK | OFDM_RF_PATH_TX_MASK); if (priv->rx_paths == 2) val32 |= OFDM_RF_PATH_RX_A | OFDM_RF_PATH_RX_B; else val32 |= OFDM_RF_PATH_RX_A; if (priv->tx_paths == 2) val32 |= OFDM_RF_PATH_TX_A | OFDM_RF_PATH_TX_B; else val32 |= OFDM_RF_PATH_TX_A; rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, val32); rtl8xxxu_write8(priv, REG_TXPAUSE, 0x00); } static void rtl8188e_disable_rf(struct rtl8xxxu_priv *priv) { u32 val32; val32 = rtl8xxxu_read32(priv, REG_OFDM0_TRX_PATH_ENABLE); val32 &= ~OFDM_RF_PATH_TX_MASK; rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, val32); /* Power down RF module */ rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_AC, 0); if (priv->rf_paths == 2) rtl8xxxu_write_rfreg(priv, RF_B, RF6052_REG_AC, 0); rtl8188eu_active_to_emu(priv); } static void rtl8188e_usb_quirks(struct rtl8xxxu_priv *priv) { u16 val16; u32 val32; /* * Technically this is not a USB quirk, but a chip quirk. * This has to be done after REG_TRXFF_BNDY is set, see * rtl8188eu_power_on() for details. */ val16 = rtl8xxxu_read16(priv, REG_CR); val16 |= (CR_MAC_TX_ENABLE | CR_MAC_RX_ENABLE); rtl8xxxu_write16(priv, REG_CR, val16); val32 = rtl8xxxu_read32(priv, REG_TXDMA_OFFSET_CHK); val32 |= TXDMA_OFFSET_DROP_DATA_EN; rtl8xxxu_write32(priv, REG_TXDMA_OFFSET_CHK, val32); /* Pre-TX enable WEP/TKIP security */ rtl8xxxu_write8(priv, REG_EARLY_MODE_CONTROL_8188E + 3, 0x01); } struct rtl8xxxu_fileops rtl8188eu_fops = { .parse_efuse = rtl8188eu_parse_efuse, .load_firmware = rtl8188eu_load_firmware, .power_on = rtl8188eu_power_on, .power_off = rtl8188eu_power_off, .reset_8051 = rtl8188eu_reset_8051, .llt_init = rtl8xxxu_init_llt_table, .init_phy_bb = rtl8188eu_init_phy_bb, .init_phy_rf = rtl8188eu_init_phy_rf, .phy_iq_calibrate = rtl8188eu_phy_iq_calibrate, .config_channel = rtl8188eu_config_channel, .parse_rx_desc = rtl8xxxu_parse_rxdesc16, .init_aggregation = rtl8188eu_init_aggregation, .enable_rf = rtl8188e_enable_rf, .disable_rf = rtl8188e_disable_rf, .usb_quirks = rtl8188e_usb_quirks, .set_tx_power = rtl8188e_set_tx_power, .update_rate_mask = rtl8xxxu_gen2_update_rate_mask, .report_connect = rtl8xxxu_gen2_report_connect, .fill_txdesc = rtl8xxxu_fill_txdesc_v3, .writeN_block_size = 128, .rx_desc_size = sizeof(struct rtl8xxxu_rxdesc16), .tx_desc_size = sizeof(struct rtl8xxxu_txdesc32), .has_tx_report = 1, .gen2_thermal_meter = 1, .adda_1t_init = 0x0b1b25a0, .adda_1t_path_on = 0x0bdb25a0, .adda_2t_path_on_a = 0x04db25a4, .adda_2t_path_on_b = 0x0b1b25a4, /* * Use 9K for 8188e normal chip * Max RX buffer = 10K - max(TxReportSize(64*8), WOLPattern(16*24)) */ .trxff_boundary = 0x23ff, .pbp_rx = PBP_PAGE_SIZE_128, .pbp_tx = PBP_PAGE_SIZE_128, .mactable = rtl8188e_mac_init_table, .total_page_num = TX_TOTAL_PAGE_NUM_8188E, .page_num_hi = TX_PAGE_NUM_HI_PQ_8188E, .page_num_lo = TX_PAGE_NUM_LO_PQ_8188E, .page_num_norm = TX_PAGE_NUM_NORM_PQ_8188E, .last_llt_entry = 176, };