summaryrefslogtreecommitdiff
path: root/services/std_svc/spm/spm_main.c
diff options
context:
space:
mode:
Diffstat (limited to 'services/std_svc/spm/spm_main.c')
-rw-r--r--services/std_svc/spm/spm_main.c452
1 files changed, 452 insertions, 0 deletions
diff --git a/services/std_svc/spm/spm_main.c b/services/std_svc/spm/spm_main.c
new file mode 100644
index 00000000..1b40d81d
--- /dev/null
+++ b/services/std_svc/spm/spm_main.c
@@ -0,0 +1,452 @@
+/*
+ * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <arch_helpers.h>
+#include <assert.h>
+#include <bl31.h>
+#include <context_mgmt.h>
+#include <debug.h>
+#include <errno.h>
+#include <platform.h>
+#include <runtime_svc.h>
+#include <secure_partition.h>
+#include <smcc.h>
+#include <smcc_helpers.h>
+#include <spinlock.h>
+#include <spm_svc.h>
+#include <utils.h>
+#include <xlat_tables_v2.h>
+
+#include "spm_private.h"
+
+/* Lock used for SP_MEMORY_ATTRIBUTES_GET and SP_MEMORY_ATTRIBUTES_SET */
+static spinlock_t mem_attr_smc_lock;
+
+/*******************************************************************************
+ * Secure Partition context information.
+ ******************************************************************************/
+static secure_partition_context_t sp_ctx;
+unsigned int sp_init_in_progress;
+
+/*******************************************************************************
+ * Replace the S-EL1 re-entry information with S-EL0 re-entry
+ * information
+ ******************************************************************************/
+void spm_setup_next_eret_into_sel0(cpu_context_t *secure_context)
+{
+ assert(secure_context == cm_get_context(SECURE));
+
+ cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
+}
+
+/*******************************************************************************
+ * This function takes an SP context pointer and:
+ * 1. Applies the S-EL1 system register context from sp_ctx->cpu_ctx.
+ * 2. Saves the current C runtime state (callee-saved registers) on the stack
+ * frame and saves a reference to this state.
+ * 3. Calls el3_exit() so that the EL3 system and general purpose registers
+ * from the sp_ctx->cpu_ctx are used to enter the secure payload image.
+ ******************************************************************************/
+static uint64_t spm_synchronous_sp_entry(secure_partition_context_t *sp_ctx_ptr)
+{
+ uint64_t rc;
+
+ assert(sp_ctx_ptr != NULL);
+ assert(sp_ctx_ptr->c_rt_ctx == 0);
+ assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx);
+
+ /* Apply the Secure EL1 system register context and switch to it */
+ cm_el1_sysregs_context_restore(SECURE);
+ cm_set_next_eret_context(SECURE);
+
+ VERBOSE("%s: We're about to enter the Secure partition...\n", __func__);
+
+ rc = spm_secure_partition_enter(&sp_ctx_ptr->c_rt_ctx);
+#if ENABLE_ASSERTIONS
+ sp_ctx_ptr->c_rt_ctx = 0;
+#endif
+
+ return rc;
+}
+
+
+/*******************************************************************************
+ * This function takes a Secure partition context pointer and:
+ * 1. Saves the S-EL1 system register context tp sp_ctx->cpu_ctx.
+ * 2. Restores the current C runtime state (callee saved registers) from the
+ * stack frame using the reference to this state saved in
+ * spm_secure_partition_enter().
+ * 3. It does not need to save any general purpose or EL3 system register state
+ * as the generic smc entry routine should have saved those.
+ ******************************************************************************/
+static void __dead2 spm_synchronous_sp_exit(
+ secure_partition_context_t *sp_ctx_ptr, uint64_t ret)
+{
+ assert(sp_ctx_ptr != NULL);
+ /* Save the Secure EL1 system register context */
+ assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx);
+ cm_el1_sysregs_context_save(SECURE);
+
+ assert(sp_ctx_ptr->c_rt_ctx != 0);
+ spm_secure_partition_exit(sp_ctx_ptr->c_rt_ctx, ret);
+
+ /* Should never reach here */
+ assert(0);
+}
+
+/*******************************************************************************
+ * This function passes control to the Secure Partition image (BL32) for the
+ * first time on the primary cpu after a cold boot. It assumes that a valid
+ * secure context has already been created by spm_setup() which can be directly
+ * used. This function performs a synchronous entry into the Secure payload.
+ * The SP passes control back to this routine through a SMC.
+ ******************************************************************************/
+int32_t spm_init(void)
+{
+ entry_point_info_t *secure_partition_ep_info;
+ uint64_t rc;
+
+ VERBOSE("%s entry\n", __func__);
+
+ /*
+ * Get information about the Secure Partition (BL32) image. Its
+ * absence is a critical failure.
+ */
+ secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
+ assert(secure_partition_ep_info);
+
+ /*
+ * Initialise the common context and then overlay the S-EL0 specific
+ * context on top of it.
+ */
+ cm_init_my_context(secure_partition_ep_info);
+ secure_partition_setup();
+
+ /*
+ * Arrange for an entry into the secure payload.
+ */
+ sp_init_in_progress = 1;
+ rc = spm_synchronous_sp_entry(&sp_ctx);
+ assert(rc == 0);
+ sp_init_in_progress = 0;
+ VERBOSE("SP_MEM_ATTRIBUTES_SET_AARCH64 availability has been revoked\n");
+
+ return rc;
+}
+
+/*******************************************************************************
+ * Given a secure payload entrypoint info pointer, entry point PC & pointer to
+ * a context data structure, this function will initialize the SPM context and
+ * entry point info for the secure payload
+ ******************************************************************************/
+void spm_init_sp_ep_state(struct entry_point_info *sp_ep_info,
+ uint64_t pc,
+ secure_partition_context_t *sp_ctx_ptr)
+{
+ uint32_t ep_attr;
+
+ assert(sp_ep_info);
+ assert(pc);
+ assert(sp_ctx_ptr);
+
+ cm_set_context(&sp_ctx_ptr->cpu_ctx, SECURE);
+
+ /* initialise an entrypoint to set up the CPU context */
+ ep_attr = SECURE | EP_ST_ENABLE;
+ if (read_sctlr_el3() & SCTLR_EE_BIT)
+ ep_attr |= EP_EE_BIG;
+ SET_PARAM_HEAD(sp_ep_info, PARAM_EP, VERSION_1, ep_attr);
+
+ sp_ep_info->pc = pc;
+ /* The SPM payload runs in S-EL0 */
+ sp_ep_info->spsr = SPSR_64(MODE_EL0,
+ MODE_SP_EL0,
+ DISABLE_ALL_EXCEPTIONS);
+
+ zeromem(&sp_ep_info->args, sizeof(sp_ep_info->args));
+}
+
+/*******************************************************************************
+ * Secure Partition Manager setup. The SPM finds out the SP entrypoint if not
+ * already known and initialises the context for entry into the SP for its
+ * initialisation.
+ ******************************************************************************/
+int32_t spm_setup(void)
+{
+ entry_point_info_t *secure_partition_ep_info;
+
+ VERBOSE("%s entry\n", __func__);
+
+ /*
+ * Get information about the Secure Partition (BL32) image. Its
+ * absence is a critical failure.
+ */
+ secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
+ if (!secure_partition_ep_info) {
+ WARN("No SPM provided by BL2 boot loader, Booting device"
+ " without SPM initialization. SMCs destined for SPM"
+ " will return SMC_UNK\n");
+ return 1;
+ }
+
+ /*
+ * If there's no valid entry point for SP, we return a non-zero value
+ * signalling failure initializing the service. We bail out without
+ * registering any handlers
+ */
+ if (!secure_partition_ep_info->pc) {
+ return 1;
+ }
+
+ spm_init_sp_ep_state(secure_partition_ep_info,
+ secure_partition_ep_info->pc,
+ &sp_ctx);
+
+ /*
+ * All SPM initialization done. Now register our init function with
+ * BL31 for deferred invocation
+ */
+ bl31_register_bl32_init(&spm_init);
+
+ VERBOSE("%s exit\n", __func__);
+
+ return 0;
+}
+
+/*
+ * Attributes are encoded using a different format in the SMC interface than in
+ * the Trusted Firmware, where the mmap_attr_t enum type is used. This function
+ * converts an attributes value from the SMC format to the mmap_attr_t format by
+ * setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and MT_EXECUTE/MT_EXECUTE_NEVER.
+ * The other fields are left as 0 because they are ignored by the function
+ * change_mem_attributes().
+ */
+static mmap_attr_t smc_attr_to_mmap_attr(unsigned int attributes)
+{
+ mmap_attr_t tf_attr = 0;
+
+ unsigned int access = (attributes & SP_MEM_ATTR_ACCESS_MASK)
+ >> SP_MEM_ATTR_ACCESS_SHIFT;
+
+ if (access == SP_MEM_ATTR_ACCESS_RW) {
+ tf_attr |= MT_RW | MT_USER;
+ } else if (access == SP_MEM_ATTR_ACCESS_RO) {
+ tf_attr |= MT_RO | MT_USER;
+ } else {
+ /* Other values are reserved. */
+ assert(access == SP_MEM_ATTR_ACCESS_NOACCESS);
+ /* The only requirement is that there's no access from EL0 */
+ tf_attr |= MT_RO | MT_PRIVILEGED;
+ }
+
+ if ((attributes & SP_MEM_ATTR_NON_EXEC) == 0) {
+ tf_attr |= MT_EXECUTE;
+ } else {
+ tf_attr |= MT_EXECUTE_NEVER;
+ }
+
+ return tf_attr;
+}
+
+/*
+ * This function converts attributes from the Trusted Firmware format into the
+ * SMC interface format.
+ */
+static int smc_mmap_to_smc_attr(mmap_attr_t attr)
+{
+ int smc_attr = 0;
+
+ int data_access;
+
+ if ((attr & MT_USER) == 0) {
+ /* No access from EL0. */
+ data_access = SP_MEM_ATTR_ACCESS_NOACCESS;
+ } else {
+ if ((attr & MT_RW) != 0) {
+ assert(MT_TYPE(attr) != MT_DEVICE);
+ data_access = SP_MEM_ATTR_ACCESS_RW;
+ } else {
+ data_access = SP_MEM_ATTR_ACCESS_RO;
+ }
+ }
+
+ smc_attr |= (data_access & SP_MEM_ATTR_ACCESS_MASK) << SP_MEM_ATTR_ACCESS_SHIFT;
+
+ if (attr & MT_EXECUTE_NEVER) {
+ smc_attr |= SP_MEM_ATTR_NON_EXEC;
+ }
+
+ return smc_attr;
+}
+
+static int spm_memory_attributes_get_smc_handler(uintptr_t base_va)
+{
+ spin_lock(&mem_attr_smc_lock);
+
+ mmap_attr_t attributes;
+ int rc = get_mem_attributes(secure_partition_xlat_ctx_handle,
+ base_va, &attributes);
+
+ spin_unlock(&mem_attr_smc_lock);
+
+ /* Convert error codes of get_mem_attributes() into SPM ones. */
+ assert(rc == 0 || rc == -EINVAL);
+
+ if (rc == 0) {
+ return smc_mmap_to_smc_attr(attributes);
+ } else {
+ return SPM_INVALID_PARAMETER;
+ }
+}
+
+static int spm_memory_attributes_set_smc_handler(u_register_t page_address,
+ u_register_t pages_count,
+ u_register_t smc_attributes)
+{
+ uintptr_t base_va = (uintptr_t) page_address;
+ size_t size = (size_t) (pages_count * PAGE_SIZE);
+ unsigned int attributes = (unsigned int) smc_attributes;
+
+ INFO(" Start address : 0x%lx\n", base_va);
+ INFO(" Number of pages: %i (%zi bytes)\n", (int) pages_count, size);
+ INFO(" Attributes : 0x%x\n", attributes);
+
+ spin_lock(&mem_attr_smc_lock);
+
+ int ret = change_mem_attributes(secure_partition_xlat_ctx_handle,
+ base_va, size, smc_attr_to_mmap_attr(attributes));
+
+ spin_unlock(&mem_attr_smc_lock);
+
+ /* Convert error codes of change_mem_attributes() into SPM ones. */
+ assert(ret == 0 || ret == -EINVAL);
+
+ return (ret == 0) ? SPM_SUCCESS : SPM_INVALID_PARAMETER;
+}
+
+
+uint64_t spm_smc_handler(uint32_t smc_fid,
+ uint64_t x1,
+ uint64_t x2,
+ uint64_t x3,
+ uint64_t x4,
+ void *cookie,
+ void *handle,
+ uint64_t flags)
+{
+ cpu_context_t *ns_cpu_context;
+ unsigned int ns;
+
+ /* Determine which security state this SMC originated from */
+ ns = is_caller_non_secure(flags);
+
+ if (ns == SMC_FROM_SECURE) {
+
+ /* Handle SMCs from Secure world. */
+
+ switch (smc_fid) {
+
+ case SPM_VERSION_AARCH32:
+ SMC_RET1(handle, SPM_VERSION_COMPILED);
+
+ case SP_EVENT_COMPLETE_AARCH64:
+ assert(handle == cm_get_context(SECURE));
+ cm_el1_sysregs_context_save(SECURE);
+ spm_setup_next_eret_into_sel0(handle);
+
+ if (sp_init_in_progress) {
+ /*
+ * SPM reports completion. The SPM must have
+ * initiated the original request through a
+ * synchronous entry into the secure
+ * partition. Jump back to the original C
+ * runtime context.
+ */
+ spm_synchronous_sp_exit(&sp_ctx, x1);
+ assert(0);
+ }
+
+ /*
+ * This is the result from the Secure partition of an
+ * earlier request. Copy the result into the non-secure
+ * context, save the secure state and return to the
+ * non-secure state.
+ */
+
+ /* Get a reference to the non-secure context */
+ ns_cpu_context = cm_get_context(NON_SECURE);
+ assert(ns_cpu_context);
+
+ /* Restore non-secure state */
+ cm_el1_sysregs_context_restore(NON_SECURE);
+ cm_set_next_eret_context(NON_SECURE);
+
+ /* Return to normal world */
+ SMC_RET1(ns_cpu_context, x1);
+
+ case SP_MEM_ATTRIBUTES_GET_AARCH64:
+ INFO("Received SP_MEM_ATTRIBUTES_GET_AARCH64 SMC\n");
+
+ if (!sp_init_in_progress) {
+ WARN("SP_MEM_ATTRIBUTES_GET_AARCH64 is available at boot time only\n");
+ SMC_RET1(handle, SPM_NOT_SUPPORTED);
+ }
+ SMC_RET1(handle, spm_memory_attributes_get_smc_handler(x1));
+
+ case SP_MEM_ATTRIBUTES_SET_AARCH64:
+ INFO("Received SP_MEM_ATTRIBUTES_SET_AARCH64 SMC\n");
+
+ if (!sp_init_in_progress) {
+ WARN("SP_MEM_ATTRIBUTES_SET_AARCH64 is available at boot time only\n");
+ SMC_RET1(handle, SPM_NOT_SUPPORTED);
+ }
+ SMC_RET1(handle, spm_memory_attributes_set_smc_handler(x1, x2, x3));
+ default:
+ break;
+ }
+ } else {
+
+ /* Handle SMCs from Non-secure world. */
+
+ switch (smc_fid) {
+
+ case SP_VERSION_AARCH64:
+ case SP_VERSION_AARCH32:
+ SMC_RET1(handle, SP_VERSION_COMPILED);
+
+ case SP_COMMUNICATE_AARCH32:
+ case SP_COMMUNICATE_AARCH64:
+
+ /* Save the Normal world context */
+ cm_el1_sysregs_context_save(NON_SECURE);
+
+ /*
+ * Restore the secure world context and prepare for
+ * entry in S-EL0
+ */
+ assert(&sp_ctx.cpu_ctx == cm_get_context(SECURE));
+ cm_el1_sysregs_context_restore(SECURE);
+ cm_set_next_eret_context(SECURE);
+
+ if (x2 != 0) {
+ VERBOSE("SP_COMMUNICATE_AARCH32/64: X2 is not 0 as recommended.");
+ }
+
+ SMC_RET4(&sp_ctx.cpu_ctx,
+ smc_fid, x2, x3, plat_my_core_pos());
+
+ case SP_MEM_ATTRIBUTES_GET_AARCH64:
+ case SP_MEM_ATTRIBUTES_SET_AARCH64:
+ /* SMC interfaces reserved for secure callers. */
+ SMC_RET1(handle, SPM_NOT_SUPPORTED);
+
+ default:
+ break;
+ }
+ }
+
+ SMC_RET1(handle, SMC_UNK);
+}