/* * Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include "../xlat_tables_private.h" #if (ARM_ARCH_MAJOR == 7) && !defined(ARMV7_SUPPORTS_LARGE_PAGE_ADDRESSING) #error ARMv7 target does not support LPAE MMU descriptors #endif /* * Returns true if the provided granule size is supported, false otherwise. */ bool xlat_arch_is_granule_size_supported(size_t size) { /* * The library uses the long descriptor translation table format, which * supports 4 KiB pages only. */ return size == PAGE_SIZE_4KB; } size_t xlat_arch_get_max_supported_granule_size(void) { return PAGE_SIZE_4KB; } #if ENABLE_ASSERTIONS unsigned long long xlat_arch_get_max_supported_pa(void) { /* Physical address space size for long descriptor format. */ return (1ULL << 40) - 1ULL; } /* * Return minimum virtual address space size supported by the architecture */ uintptr_t xlat_get_min_virt_addr_space_size(void) { return MIN_VIRT_ADDR_SPACE_SIZE; } #endif /* ENABLE_ASSERTIONS*/ bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx) { if (ctx->xlat_regime == EL1_EL0_REGIME) { assert(xlat_arch_current_el() == 1U); return (read_sctlr() & SCTLR_M_BIT) != 0U; } else { assert(ctx->xlat_regime == EL2_REGIME); assert(xlat_arch_current_el() == 2U); return (read_hsctlr() & HSCTLR_M_BIT) != 0U; } } bool is_dcache_enabled(void) { if (IS_IN_EL2()) { return (read_hsctlr() & HSCTLR_C_BIT) != 0U; } else { return (read_sctlr() & SCTLR_C_BIT) != 0U; } } uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime) { if (xlat_regime == EL1_EL0_REGIME) { return UPPER_ATTRS(XN) | UPPER_ATTRS(PXN); } else { assert(xlat_regime == EL2_REGIME); return UPPER_ATTRS(XN); } } void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime) { /* * Ensure the translation table write has drained into memory before * invalidating the TLB entry. */ dsbishst(); if (xlat_regime == EL1_EL0_REGIME) { tlbimvaais(TLBI_ADDR(va)); } else { assert(xlat_regime == EL2_REGIME); tlbimvahis(TLBI_ADDR(va)); } } void xlat_arch_tlbi_va_sync(void) { /* Invalidate all entries from branch predictors. */ bpiallis(); /* * A TLB maintenance instruction can complete at any time after * it is issued, but is only guaranteed to be complete after the * execution of DSB by the PE that executed the TLB maintenance * instruction. After the TLB invalidate instruction is * complete, no new memory accesses using the invalidated TLB * entries will be observed by any observer of the system * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph * "Ordering and completion of TLB maintenance instructions". */ dsbish(); /* * The effects of a completed TLB maintenance instruction are * only guaranteed to be visible on the PE that executed the * instruction after the execution of an ISB instruction by the * PE that executed the TLB maintenance instruction. */ isb(); } unsigned int xlat_arch_current_el(void) { if (IS_IN_HYP()) { return 2U; } else { assert(IS_IN_SVC() || IS_IN_MON()); /* * If EL3 is in AArch32 mode, all secure PL1 modes (Monitor, * System, SVC, Abort, UND, IRQ and FIQ modes) execute at EL3. * * The PL1&0 translation regime in AArch32 behaves like the * EL1&0 regime in AArch64 except for the XN bits, but we set * and unset them at the same time, so there's no difference in * practice. */ return 1U; } } /******************************************************************************* * Function for enabling the MMU in PL1 or PL2, assuming that the page tables * have already been created. ******************************************************************************/ void setup_mmu_cfg(uint64_t *params, unsigned int flags, const uint64_t *base_table, unsigned long long max_pa, uintptr_t max_va, __unused int xlat_regime) { uint64_t mair, ttbr0; uint32_t ttbcr; /* Set attributes in the right indices of the MAIR */ mair = MAIR0_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX); mair |= MAIR0_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX); mair |= MAIR0_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX); /* * Configure the control register for stage 1 of the PL1&0 or EL2 * translation regimes. */ /* Use the Long-descriptor translation table format. */ ttbcr = TTBCR_EAE_BIT; if (xlat_regime == EL1_EL0_REGIME) { assert(IS_IN_SVC() || IS_IN_MON()); /* * Disable translation table walk for addresses that are * translated using TTBR1. Therefore, only TTBR0 is used. */ ttbcr |= TTBCR_EPD1_BIT; } else { assert(xlat_regime == EL2_REGIME); assert(IS_IN_HYP()); /* * Set HTCR bits as well. Set HTTBR table properties * as Inner & outer WBWA & shareable. */ ttbcr |= HTCR_RES1 | HTCR_SH0_INNER_SHAREABLE | HTCR_RGN0_OUTER_WBA | HTCR_RGN0_INNER_WBA; } /* * Limit the input address ranges and memory region sizes translated * using TTBR0 to the given virtual address space size, if smaller than * 32 bits. */ if (max_va != UINT32_MAX) { uintptr_t virtual_addr_space_size = max_va + 1U; assert(virtual_addr_space_size >= xlat_get_min_virt_addr_space_size()); assert(virtual_addr_space_size <= MAX_VIRT_ADDR_SPACE_SIZE); assert(IS_POWER_OF_TWO(virtual_addr_space_size)); /* * __builtin_ctzll(0) is undefined but here we are guaranteed * that virtual_addr_space_size is in the range [1, UINT32_MAX]. */ int t0sz = 32 - __builtin_ctzll(virtual_addr_space_size); ttbcr |= (uint32_t) t0sz; } /* * Set the cacheability and shareability attributes for memory * associated with translation table walks using TTBR0. */ if ((flags & XLAT_TABLE_NC) != 0U) { /* Inner & outer non-cacheable non-shareable. */ ttbcr |= TTBCR_SH0_NON_SHAREABLE | TTBCR_RGN0_OUTER_NC | TTBCR_RGN0_INNER_NC; } else { /* Inner & outer WBWA & shareable. */ ttbcr |= TTBCR_SH0_INNER_SHAREABLE | TTBCR_RGN0_OUTER_WBA | TTBCR_RGN0_INNER_WBA; } /* Set TTBR0 bits as well */ ttbr0 = (uint64_t)(uintptr_t) base_table; if (is_armv8_2_ttcnp_present()) { /* Enable CnP bit so as to share page tables with all PEs. */ ttbr0 |= TTBR_CNP_BIT; } /* Now populate MMU configuration */ params[MMU_CFG_MAIR] = mair; params[MMU_CFG_TCR] = (uint64_t) ttbcr; params[MMU_CFG_TTBR0] = ttbr0; }