summaryrefslogtreecommitdiff
path: root/Documentation/memory-barriers.txt
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-06-23 11:53:03 +0200
committerIngo Molnar <mingo@elte.hu>2008-06-23 11:53:03 +0200
commit009b9fc98ddd83f9139fdabb12c0d7a8535d5421 (patch)
treef7d3e182407d2ebe50a9b8db6361ac910027a1cf /Documentation/memory-barriers.txt
parent3711ccb07b7f0a13f4f1aa16a8fdca9c930f21ca (diff)
parent481c5346d0981940ee63037eb53e4e37b0735c10 (diff)
Merge branch 'linus' into x86/threadinfotip-x86-threadinfo-2008-06-23_09.53_Mon
Diffstat (limited to 'Documentation/memory-barriers.txt')
-rw-r--r--Documentation/memory-barriers.txt12
1 files changed, 11 insertions, 1 deletions
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index e5a819a4f0c9..f5b7127f54ac 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -994,7 +994,17 @@ The Linux kernel has eight basic CPU memory barriers:
DATA DEPENDENCY read_barrier_depends() smp_read_barrier_depends()
-All CPU memory barriers unconditionally imply compiler barriers.
+All memory barriers except the data dependency barriers imply a compiler
+barrier. Data dependencies do not impose any additional compiler ordering.
+
+Aside: In the case of data dependencies, the compiler would be expected to
+issue the loads in the correct order (eg. `a[b]` would have to load the value
+of b before loading a[b]), however there is no guarantee in the C specification
+that the compiler may not speculate the value of b (eg. is equal to 1) and load
+a before b (eg. tmp = a[1]; if (b != 1) tmp = a[b]; ). There is also the
+problem of a compiler reloading b after having loaded a[b], thus having a newer
+copy of b than a[b]. A consensus has not yet been reached about these problems,
+however the ACCESS_ONCE macro is a good place to start looking.
SMP memory barriers are reduced to compiler barriers on uniprocessor compiled
systems because it is assumed that a CPU will appear to be self-consistent,