summaryrefslogtreecommitdiff
path: root/arch/x86/xen/mmu.c
diff options
context:
space:
mode:
authorJuergen Gross <jgross@suse.com>2015-07-17 06:51:25 +0200
committerDavid Vrabel <david.vrabel@citrix.com>2015-08-20 12:24:18 +0100
commit8f5b0c63987207fd5c3c1f89c9eb6cb95b30386e (patch)
tree1fafc4612d09a433c6e7e0523fb5a110f15aebc6 /arch/x86/xen/mmu.c
parentd51e8b3e85972dee10be7943b0b0106742b1e847 (diff)
xen: eliminate scalability issues from initial mapping setup
Direct Xen to place the initial P->M table outside of the initial mapping, as otherwise the 1G (implementation) / 2G (theoretical) restriction on the size of the initial mapping limits the amount of memory a domain can be handed initially. As the initial P->M table is copied rather early during boot to domain private memory and it's initial virtual mapping is dropped, the easiest way to avoid virtual address conflicts with other addresses in the kernel is to use a user address area for the virtual address of the initial P->M table. This allows us to just throw away the page tables of the initial mapping after the copy without having to care about address invalidation. It should be noted that this patch won't enable a pv-domain to USE more than 512 GB of RAM. It just enables it to be started with a P->M table covering more memory. This is especially important for being able to boot a Dom0 on a system with more than 512 GB memory. Signed-off-by: Juergen Gross <jgross@suse.com> Based-on-patch-by: Jan Beulich <jbeulich@suse.com> Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com> Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Diffstat (limited to 'arch/x86/xen/mmu.c')
-rw-r--r--arch/x86/xen/mmu.c126
1 files changed, 116 insertions, 10 deletions
diff --git a/arch/x86/xen/mmu.c b/arch/x86/xen/mmu.c
index dd151b2045b0..c04e14e6b301 100644
--- a/arch/x86/xen/mmu.c
+++ b/arch/x86/xen/mmu.c
@@ -1114,6 +1114,77 @@ static void __init xen_cleanhighmap(unsigned long vaddr,
xen_mc_flush();
}
+/*
+ * Make a page range writeable and free it.
+ */
+static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
+{
+ void *vaddr = __va(paddr);
+ void *vaddr_end = vaddr + size;
+
+ for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
+ make_lowmem_page_readwrite(vaddr);
+
+ memblock_free(paddr, size);
+}
+
+static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl)
+{
+ unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
+
+ ClearPagePinned(virt_to_page(__va(pa)));
+ xen_free_ro_pages(pa, PAGE_SIZE);
+}
+
+/*
+ * Since it is well isolated we can (and since it is perhaps large we should)
+ * also free the page tables mapping the initial P->M table.
+ */
+static void __init xen_cleanmfnmap(unsigned long vaddr)
+{
+ unsigned long va = vaddr & PMD_MASK;
+ unsigned long pa;
+ pgd_t *pgd = pgd_offset_k(va);
+ pud_t *pud_page = pud_offset(pgd, 0);
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ unsigned int i;
+
+ set_pgd(pgd, __pgd(0));
+ do {
+ pud = pud_page + pud_index(va);
+ if (pud_none(*pud)) {
+ va += PUD_SIZE;
+ } else if (pud_large(*pud)) {
+ pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
+ xen_free_ro_pages(pa, PUD_SIZE);
+ va += PUD_SIZE;
+ } else {
+ pmd = pmd_offset(pud, va);
+ if (pmd_large(*pmd)) {
+ pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
+ xen_free_ro_pages(pa, PMD_SIZE);
+ } else if (!pmd_none(*pmd)) {
+ pte = pte_offset_kernel(pmd, va);
+ for (i = 0; i < PTRS_PER_PTE; ++i) {
+ if (pte_none(pte[i]))
+ break;
+ pa = pte_pfn(pte[i]) << PAGE_SHIFT;
+ xen_free_ro_pages(pa, PAGE_SIZE);
+ }
+ xen_cleanmfnmap_free_pgtbl(pte);
+ }
+ va += PMD_SIZE;
+ if (pmd_index(va))
+ continue;
+ xen_cleanmfnmap_free_pgtbl(pmd);
+ }
+
+ } while (pud_index(va) || pmd_index(va));
+ xen_cleanmfnmap_free_pgtbl(pud_page);
+}
+
static void __init xen_pagetable_p2m_free(void)
{
unsigned long size;
@@ -1128,18 +1199,25 @@ static void __init xen_pagetable_p2m_free(void)
/* using __ka address and sticking INVALID_P2M_ENTRY! */
memset((void *)xen_start_info->mfn_list, 0xff, size);
- /* We should be in __ka space. */
- BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
addr = xen_start_info->mfn_list;
- /* We roundup to the PMD, which means that if anybody at this stage is
- * using the __ka address of xen_start_info or xen_start_info->shared_info
- * they are in going to crash. Fortunatly we have already revectored
- * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
+ /*
+ * We could be in __ka space.
+ * We roundup to the PMD, which means that if anybody at this stage is
+ * using the __ka address of xen_start_info or
+ * xen_start_info->shared_info they are in going to crash. Fortunatly
+ * we have already revectored in xen_setup_kernel_pagetable and in
+ * xen_setup_shared_info.
+ */
size = roundup(size, PMD_SIZE);
- xen_cleanhighmap(addr, addr + size);
- size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
- memblock_free(__pa(xen_start_info->mfn_list), size);
+ if (addr >= __START_KERNEL_map) {
+ xen_cleanhighmap(addr, addr + size);
+ size = PAGE_ALIGN(xen_start_info->nr_pages *
+ sizeof(unsigned long));
+ memblock_free(__pa(addr), size);
+ } else {
+ xen_cleanmfnmap(addr);
+ }
/* At this stage, cleanup_highmap has already cleaned __ka space
* from _brk_limit way up to the max_pfn_mapped (which is the end of
@@ -1461,6 +1539,24 @@ static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
#else /* CONFIG_X86_64 */
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
{
+ unsigned long pfn;
+
+ if (xen_feature(XENFEAT_writable_page_tables) ||
+ xen_feature(XENFEAT_auto_translated_physmap) ||
+ xen_start_info->mfn_list >= __START_KERNEL_map)
+ return pte;
+
+ /*
+ * Pages belonging to the initial p2m list mapped outside the default
+ * address range must be mapped read-only. This region contains the
+ * page tables for mapping the p2m list, too, and page tables MUST be
+ * mapped read-only.
+ */
+ pfn = pte_pfn(pte);
+ if (pfn >= xen_start_info->first_p2m_pfn &&
+ pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
+ pte = __pte_ma(pte_val_ma(pte) & ~_PAGE_RW);
+
return pte;
}
#endif /* CONFIG_X86_64 */
@@ -1815,7 +1911,10 @@ void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
* mappings. Considering that on Xen after the kernel mappings we
* have the mappings of some pages that don't exist in pfn space, we
* set max_pfn_mapped to the last real pfn mapped. */
- max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
+ if (xen_start_info->mfn_list < __START_KERNEL_map)
+ max_pfn_mapped = xen_start_info->first_p2m_pfn;
+ else
+ max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
pt_end = pt_base + xen_start_info->nr_pt_frames;
@@ -1855,6 +1954,11 @@ void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
/* Graft it onto L4[511][510] */
copy_page(level2_kernel_pgt, l2);
+ /* Copy the initial P->M table mappings if necessary. */
+ i = pgd_index(xen_start_info->mfn_list);
+ if (i && i < pgd_index(__START_KERNEL_map))
+ init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
+
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
/* Make pagetable pieces RO */
set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
@@ -1895,6 +1999,8 @@ void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
/* Our (by three pages) smaller Xen pagetable that we are using */
memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
+ /* protect xen_start_info */
+ memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
/* Revector the xen_start_info */
xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
}