summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-block8
-rw-r--r--Documentation/block/data-integrity.txt54
-rw-r--r--Documentation/devicetree/bindings/mtd/atmel-nand.txt2
-rw-r--r--Documentation/devicetree/bindings/mtd/mtd-physmap.txt4
-rw-r--r--Documentation/devicetree/bindings/net/sti-dwmac.txt91
5 files changed, 66 insertions, 93 deletions
diff --git a/Documentation/ABI/testing/sysfs-block b/Documentation/ABI/testing/sysfs-block
index 279da08f7541..8df003963d99 100644
--- a/Documentation/ABI/testing/sysfs-block
+++ b/Documentation/ABI/testing/sysfs-block
@@ -53,6 +53,14 @@ Description:
512 bytes of data.
+What: /sys/block/<disk>/integrity/device_is_integrity_capable
+Date: July 2014
+Contact: Martin K. Petersen <martin.petersen@oracle.com>
+Description:
+ Indicates whether a storage device is capable of storing
+ integrity metadata. Set if the device is T10 PI-capable.
+
+
What: /sys/block/<disk>/integrity/write_generate
Date: June 2008
Contact: Martin K. Petersen <martin.petersen@oracle.com>
diff --git a/Documentation/block/data-integrity.txt b/Documentation/block/data-integrity.txt
index 2d735b0ae383..f56ec97f0d14 100644
--- a/Documentation/block/data-integrity.txt
+++ b/Documentation/block/data-integrity.txt
@@ -129,11 +129,11 @@ interface for this is being worked on.
4.1 BIO
The data integrity patches add a new field to struct bio when
-CONFIG_BLK_DEV_INTEGRITY is enabled. bio->bi_integrity is a pointer
-to a struct bip which contains the bio integrity payload. Essentially
-a bip is a trimmed down struct bio which holds a bio_vec containing
-the integrity metadata and the required housekeeping information (bvec
-pool, vector count, etc.)
+CONFIG_BLK_DEV_INTEGRITY is enabled. bio_integrity(bio) returns a
+pointer to a struct bip which contains the bio integrity payload.
+Essentially a bip is a trimmed down struct bio which holds a bio_vec
+containing the integrity metadata and the required housekeeping
+information (bvec pool, vector count, etc.)
A kernel subsystem can enable data integrity protection on a bio by
calling bio_integrity_alloc(bio). This will allocate and attach the
@@ -192,16 +192,6 @@ will require extra work due to the application tag.
supported by the block device.
- int bdev_integrity_enabled(block_device, int rw);
-
- bdev_integrity_enabled() will return 1 if the block device
- supports integrity metadata transfer for the data direction
- specified in 'rw'.
-
- bdev_integrity_enabled() honors the write_generate and
- read_verify flags in sysfs and will respond accordingly.
-
-
int bio_integrity_prep(bio);
To generate IMD for WRITE and to set up buffers for READ, the
@@ -216,36 +206,6 @@ will require extra work due to the application tag.
bio_integrity_enabled() returned 1.
- int bio_integrity_tag_size(bio);
-
- If the filesystem wants to use the application tag space it will
- first have to find out how much storage space is available.
- Because tag space is generally limited (usually 2 bytes per
- sector regardless of sector size), the integrity framework
- supports interleaving the information between the sectors in an
- I/O.
-
- Filesystems can call bio_integrity_tag_size(bio) to find out how
- many bytes of storage are available for that particular bio.
-
- Another option is bdev_get_tag_size(block_device) which will
- return the number of available bytes per hardware sector.
-
-
- int bio_integrity_set_tag(bio, void *tag_buf, len);
-
- After a successful return from bio_integrity_prep(),
- bio_integrity_set_tag() can be used to attach an opaque tag
- buffer to a bio. Obviously this only makes sense if the I/O is
- a WRITE.
-
-
- int bio_integrity_get_tag(bio, void *tag_buf, len);
-
- Similarly, at READ I/O completion time the filesystem can
- retrieve the tag buffer using bio_integrity_get_tag().
-
-
5.3 PASSING EXISTING INTEGRITY METADATA
Filesystems that either generate their own integrity metadata or
@@ -298,8 +258,6 @@ will require extra work due to the application tag.
.name = "STANDARDSBODY-TYPE-VARIANT-CSUM",
.generate_fn = my_generate_fn,
.verify_fn = my_verify_fn,
- .get_tag_fn = my_get_tag_fn,
- .set_tag_fn = my_set_tag_fn,
.tuple_size = sizeof(struct my_tuple_size),
.tag_size = <tag bytes per hw sector>,
};
@@ -321,7 +279,5 @@ will require extra work due to the application tag.
are available per hardware sector. For DIF this is either 2 or
0 depending on the value of the Control Mode Page ATO bit.
- See 6.2 for a description of get_tag_fn and set_tag_fn.
-
----------------------------------------------------------------------
2007-12-24 Martin K. Petersen <martin.petersen@oracle.com>
diff --git a/Documentation/devicetree/bindings/mtd/atmel-nand.txt b/Documentation/devicetree/bindings/mtd/atmel-nand.txt
index c4728839d0c1..6edc3b616e98 100644
--- a/Documentation/devicetree/bindings/mtd/atmel-nand.txt
+++ b/Documentation/devicetree/bindings/mtd/atmel-nand.txt
@@ -36,6 +36,7 @@ Optional properties:
- reg : should specify the address and size used for NFC command registers,
NFC registers and NFC Sram. NFC Sram address and size can be absent
if don't want to use it.
+ - clocks: phandle to the peripheral clock
- Optional properties:
- atmel,write-by-sram: boolean to enable NFC write by sram.
@@ -98,6 +99,7 @@ nand0: nand@40000000 {
compatible = "atmel,sama5d3-nfc";
#address-cells = <1>;
#size-cells = <1>;
+ clocks = <&hsmc_clk>
reg = <
0x70000000 0x10000000 /* NFC Command Registers */
0xffffc000 0x00000070 /* NFC HSMC regs */
diff --git a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt
index 61c5ec850f2f..6b9f680cb579 100644
--- a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt
+++ b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt
@@ -4,8 +4,8 @@ Flash chips (Memory Technology Devices) are often used for solid state
file systems on embedded devices.
- compatible : should contain the specific model of mtd chip(s)
- used, if known, followed by either "cfi-flash", "jedec-flash"
- or "mtd-ram".
+ used, if known, followed by either "cfi-flash", "jedec-flash",
+ "mtd-ram" or "mtd-rom".
- reg : Address range(s) of the mtd chip(s)
It's possible to (optionally) define multiple "reg" tuples so that
non-identical chips can be described in one node.
diff --git a/Documentation/devicetree/bindings/net/sti-dwmac.txt b/Documentation/devicetree/bindings/net/sti-dwmac.txt
index 3dd3d0bf112f..6762a6b5da7e 100644
--- a/Documentation/devicetree/bindings/net/sti-dwmac.txt
+++ b/Documentation/devicetree/bindings/net/sti-dwmac.txt
@@ -1,58 +1,65 @@
STMicroelectronics SoC DWMAC glue layer controller
+This file documents differences between the core properties in
+Documentation/devicetree/bindings/net/stmmac.txt
+and what is needed on STi platforms to program the stmmac glue logic.
+
The device node has following properties.
Required properties:
- - compatible : Can be "st,stih415-dwmac", "st,stih416-dwmac" or
- "st,stid127-dwmac".
- - reg : Offset of the glue configuration register map in system
+ - compatible : Can be "st,stih415-dwmac", "st,stih416-dwmac",
+ "st,stih407-dwmac", "st,stid127-dwmac".
+ - reg : Offset of the glue configuration register map in system
configuration regmap pointed by st,syscon property and size.
-
- - reg-names : Should be "sti-ethconf".
-
- - st,syscon : Should be phandle to system configuration node which
+ - st,syscon : Should be phandle to system configuration node which
encompases this glue registers.
+ - st,gmac_en: this is to enable the gmac into a dedicated sysctl control
+ register available on STiH407 SoC.
+ - sti-ethconf: this is the gmac glue logic register to enable the GMAC,
+ select among the different modes and program the clk retiming.
+ - pinctrl-0: pin-control for all the MII mode supported.
- - st,tx-retime-src: On STi Parts for Giga bit speeds, 125Mhz clocks can be
- wired up in from different sources. One via TXCLK pin and other via CLK_125
- pin. This wiring is totally board dependent. However the retiming glue
- logic should be configured accordingly. Possible values for this property
-
- "txclk" - if 125Mhz clock is wired up via txclk line.
- "clk_125" - if 125Mhz clock is wired up via clk_125 line.
-
- This property is only valid for Giga bit setup( GMII, RGMII), and it is
- un-used for non-giga bit (MII and RMII) setups. Also note that internal
- clockgen can not generate stable 125Mhz clock.
-
- - st,ext-phyclk: This boolean property indicates who is generating the clock
- for tx and rx. This property is only valid for RMII case where the clock can
- be generated from the MAC or PHY.
-
- - clock-names: should be "sti-ethclk".
- - clocks: Should point to ethernet clockgen which can generate phyclk.
-
+Optional properties:
+ - resets : phandle pointing to the system reset controller with correct
+ reset line index for ethernet reset.
+ - st,ext-phyclk: valid only for RMII where PHY can generate 50MHz clock or
+ MAC can generate it.
+ - st,tx-retime-src: This specifies which clk is wired up to the mac for
+ retimeing tx lines. This is totally board dependent and can take one of the
+ posssible values from "txclk", "clk_125" or "clkgen".
+ If not passed, the internal clock will be used by default.
+ - sti-ethclk: this is the phy clock.
+ - sti-clkconf: this is an extra sysconfig register, available in new SoCs,
+ to program the clk retiming.
+ - st,gmac_en: to enable the GMAC, this only is present in some SoCs; e.g.
+ STiH407.
Example:
-ethernet0: dwmac@fe810000 {
- device_type = "network";
- compatible = "st,stih416-dwmac", "snps,dwmac", "snps,dwmac-3.710";
- reg = <0xfe810000 0x8000>, <0x8bc 0x4>;
- reg-names = "stmmaceth", "sti-ethconf";
- interrupts = <0 133 0>, <0 134 0>, <0 135 0>;
- interrupt-names = "macirq", "eth_wake_irq", "eth_lpi";
- phy-mode = "mii";
+ethernet0: dwmac@9630000 {
+ device_type = "network";
+ status = "disabled";
+ compatible = "st,stih407-dwmac", "snps,dwmac", "snps,dwmac-3.710";
+ reg = <0x9630000 0x8000>, <0x80 0x4>;
+ reg-names = "stmmaceth", "sti-ethconf";
- st,syscon = <&syscfg_rear>;
+ st,syscon = <&syscfg_sbc_reg>;
+ st,gmac_en;
+ resets = <&softreset STIH407_ETH1_SOFTRESET>;
+ reset-names = "stmmaceth";
- snps,pbl = <32>;
+ interrupts = <GIC_SPI 98 IRQ_TYPE_NONE>,
+ <GIC_SPI 99 IRQ_TYPE_NONE>,
+ <GIC_SPI 100 IRQ_TYPE_NONE>;
+ interrupt-names = "macirq", "eth_wake_irq", "eth_lpi";
+
+ snps,pbl = <32>;
snps,mixed-burst;
- resets = <&softreset STIH416_ETH0_SOFTRESET>;
- reset-names = "stmmaceth";
- pinctrl-0 = <&pinctrl_mii0>;
- pinctrl-names = "default";
- clocks = <&CLK_S_GMAC0_PHY>;
- clock-names = "stmmaceth";
+ pinctrl-names = "default";
+ pinctrl-0 = <&pinctrl_rgmii1>;
+
+ clock-names = "stmmaceth", "sti-ethclk";
+ clocks = <&CLK_S_C0_FLEXGEN CLK_EXT2F_A9>,
+ <&CLK_S_C0_FLEXGEN CLK_ETH_PHY>;
};