summaryrefslogtreecommitdiff
path: root/drivers/lguest/interrupts_and_traps.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/lguest/interrupts_and_traps.c')
-rw-r--r--drivers/lguest/interrupts_and_traps.c446
1 files changed, 446 insertions, 0 deletions
diff --git a/drivers/lguest/interrupts_and_traps.c b/drivers/lguest/interrupts_and_traps.c
new file mode 100644
index 000000000000..39731232d827
--- /dev/null
+++ b/drivers/lguest/interrupts_and_traps.c
@@ -0,0 +1,446 @@
+/*P:800 Interrupts (traps) are complicated enough to earn their own file.
+ * There are three classes of interrupts:
+ *
+ * 1) Real hardware interrupts which occur while we're running the Guest,
+ * 2) Interrupts for virtual devices attached to the Guest, and
+ * 3) Traps and faults from the Guest.
+ *
+ * Real hardware interrupts must be delivered to the Host, not the Guest.
+ * Virtual interrupts must be delivered to the Guest, but we make them look
+ * just like real hardware would deliver them. Traps from the Guest can be set
+ * up to go directly back into the Guest, but sometimes the Host wants to see
+ * them first, so we also have a way of "reflecting" them into the Guest as if
+ * they had been delivered to it directly. :*/
+#include <linux/uaccess.h>
+#include "lg.h"
+
+/* The address of the interrupt handler is split into two bits: */
+static unsigned long idt_address(u32 lo, u32 hi)
+{
+ return (lo & 0x0000FFFF) | (hi & 0xFFFF0000);
+}
+
+/* The "type" of the interrupt handler is a 4 bit field: we only support a
+ * couple of types. */
+static int idt_type(u32 lo, u32 hi)
+{
+ return (hi >> 8) & 0xF;
+}
+
+/* An IDT entry can't be used unless the "present" bit is set. */
+static int idt_present(u32 lo, u32 hi)
+{
+ return (hi & 0x8000);
+}
+
+/* We need a helper to "push" a value onto the Guest's stack, since that's a
+ * big part of what delivering an interrupt does. */
+static void push_guest_stack(struct lguest *lg, unsigned long *gstack, u32 val)
+{
+ /* Stack grows upwards: move stack then write value. */
+ *gstack -= 4;
+ lgwrite_u32(lg, *gstack, val);
+}
+
+/*H:210 The set_guest_interrupt() routine actually delivers the interrupt or
+ * trap. The mechanics of delivering traps and interrupts to the Guest are the
+ * same, except some traps have an "error code" which gets pushed onto the
+ * stack as well: the caller tells us if this is one.
+ *
+ * "lo" and "hi" are the two parts of the Interrupt Descriptor Table for this
+ * interrupt or trap. It's split into two parts for traditional reasons: gcc
+ * on i386 used to be frightened by 64 bit numbers.
+ *
+ * We set up the stack just like the CPU does for a real interrupt, so it's
+ * identical for the Guest (and the standard "iret" instruction will undo
+ * it). */
+static void set_guest_interrupt(struct lguest *lg, u32 lo, u32 hi, int has_err)
+{
+ unsigned long gstack;
+ u32 eflags, ss, irq_enable;
+
+ /* There are two cases for interrupts: one where the Guest is already
+ * in the kernel, and a more complex one where the Guest is in
+ * userspace. We check the privilege level to find out. */
+ if ((lg->regs->ss&0x3) != GUEST_PL) {
+ /* The Guest told us their kernel stack with the SET_STACK
+ * hypercall: both the virtual address and the segment */
+ gstack = guest_pa(lg, lg->esp1);
+ ss = lg->ss1;
+ /* We push the old stack segment and pointer onto the new
+ * stack: when the Guest does an "iret" back from the interrupt
+ * handler the CPU will notice they're dropping privilege
+ * levels and expect these here. */
+ push_guest_stack(lg, &gstack, lg->regs->ss);
+ push_guest_stack(lg, &gstack, lg->regs->esp);
+ } else {
+ /* We're staying on the same Guest (kernel) stack. */
+ gstack = guest_pa(lg, lg->regs->esp);
+ ss = lg->regs->ss;
+ }
+
+ /* Remember that we never let the Guest actually disable interrupts, so
+ * the "Interrupt Flag" bit is always set. We copy that bit from the
+ * Guest's "irq_enabled" field into the eflags word: the Guest copies
+ * it back in "lguest_iret". */
+ eflags = lg->regs->eflags;
+ if (get_user(irq_enable, &lg->lguest_data->irq_enabled) == 0
+ && !(irq_enable & X86_EFLAGS_IF))
+ eflags &= ~X86_EFLAGS_IF;
+
+ /* An interrupt is expected to push three things on the stack: the old
+ * "eflags" word, the old code segment, and the old instruction
+ * pointer. */
+ push_guest_stack(lg, &gstack, eflags);
+ push_guest_stack(lg, &gstack, lg->regs->cs);
+ push_guest_stack(lg, &gstack, lg->regs->eip);
+
+ /* For the six traps which supply an error code, we push that, too. */
+ if (has_err)
+ push_guest_stack(lg, &gstack, lg->regs->errcode);
+
+ /* Now we've pushed all the old state, we change the stack, the code
+ * segment and the address to execute. */
+ lg->regs->ss = ss;
+ lg->regs->esp = gstack + lg->page_offset;
+ lg->regs->cs = (__KERNEL_CS|GUEST_PL);
+ lg->regs->eip = idt_address(lo, hi);
+
+ /* There are two kinds of interrupt handlers: 0xE is an "interrupt
+ * gate" which expects interrupts to be disabled on entry. */
+ if (idt_type(lo, hi) == 0xE)
+ if (put_user(0, &lg->lguest_data->irq_enabled))
+ kill_guest(lg, "Disabling interrupts");
+}
+
+/*H:200
+ * Virtual Interrupts.
+ *
+ * maybe_do_interrupt() gets called before every entry to the Guest, to see if
+ * we should divert the Guest to running an interrupt handler. */
+void maybe_do_interrupt(struct lguest *lg)
+{
+ unsigned int irq;
+ DECLARE_BITMAP(blk, LGUEST_IRQS);
+ struct desc_struct *idt;
+
+ /* If the Guest hasn't even initialized yet, we can do nothing. */
+ if (!lg->lguest_data)
+ return;
+
+ /* Take our "irqs_pending" array and remove any interrupts the Guest
+ * wants blocked: the result ends up in "blk". */
+ if (copy_from_user(&blk, lg->lguest_data->blocked_interrupts,
+ sizeof(blk)))
+ return;
+
+ bitmap_andnot(blk, lg->irqs_pending, blk, LGUEST_IRQS);
+
+ /* Find the first interrupt. */
+ irq = find_first_bit(blk, LGUEST_IRQS);
+ /* None? Nothing to do */
+ if (irq >= LGUEST_IRQS)
+ return;
+
+ /* They may be in the middle of an iret, where they asked us never to
+ * deliver interrupts. */
+ if (lg->regs->eip >= lg->noirq_start && lg->regs->eip < lg->noirq_end)
+ return;
+
+ /* If they're halted, interrupts restart them. */
+ if (lg->halted) {
+ /* Re-enable interrupts. */
+ if (put_user(X86_EFLAGS_IF, &lg->lguest_data->irq_enabled))
+ kill_guest(lg, "Re-enabling interrupts");
+ lg->halted = 0;
+ } else {
+ /* Otherwise we check if they have interrupts disabled. */
+ u32 irq_enabled;
+ if (get_user(irq_enabled, &lg->lguest_data->irq_enabled))
+ irq_enabled = 0;
+ if (!irq_enabled)
+ return;
+ }
+
+ /* Look at the IDT entry the Guest gave us for this interrupt. The
+ * first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip
+ * over them. */
+ idt = &lg->idt[FIRST_EXTERNAL_VECTOR+irq];
+ /* If they don't have a handler (yet?), we just ignore it */
+ if (idt_present(idt->a, idt->b)) {
+ /* OK, mark it no longer pending and deliver it. */
+ clear_bit(irq, lg->irqs_pending);
+ /* set_guest_interrupt() takes the interrupt descriptor and a
+ * flag to say whether this interrupt pushes an error code onto
+ * the stack as well: virtual interrupts never do. */
+ set_guest_interrupt(lg, idt->a, idt->b, 0);
+ }
+
+ /* Every time we deliver an interrupt, we update the timestamp in the
+ * Guest's lguest_data struct. It would be better for the Guest if we
+ * did this more often, but it can actually be quite slow: doing it
+ * here is a compromise which means at least it gets updated every
+ * timer interrupt. */
+ write_timestamp(lg);
+}
+
+/*H:220 Now we've got the routines to deliver interrupts, delivering traps
+ * like page fault is easy. The only trick is that Intel decided that some
+ * traps should have error codes: */
+static int has_err(unsigned int trap)
+{
+ return (trap == 8 || (trap >= 10 && trap <= 14) || trap == 17);
+}
+
+/* deliver_trap() returns true if it could deliver the trap. */
+int deliver_trap(struct lguest *lg, unsigned int num)
+{
+ /* Trap numbers are always 8 bit, but we set an impossible trap number
+ * for traps inside the Switcher, so check that here. */
+ if (num >= ARRAY_SIZE(lg->idt))
+ return 0;
+
+ /* Early on the Guest hasn't set the IDT entries (or maybe it put a
+ * bogus one in): if we fail here, the Guest will be killed. */
+ if (!idt_present(lg->idt[num].a, lg->idt[num].b))
+ return 0;
+ set_guest_interrupt(lg, lg->idt[num].a, lg->idt[num].b, has_err(num));
+ return 1;
+}
+
+/*H:250 Here's the hard part: returning to the Host every time a trap happens
+ * and then calling deliver_trap() and re-entering the Guest is slow.
+ * Particularly because Guest userspace system calls are traps (trap 128).
+ *
+ * So we'd like to set up the IDT to tell the CPU to deliver traps directly
+ * into the Guest. This is possible, but the complexities cause the size of
+ * this file to double! However, 150 lines of code is worth writing for taking
+ * system calls down from 1750ns to 270ns. Plus, if lguest didn't do it, all
+ * the other hypervisors would tease it.
+ *
+ * This routine determines if a trap can be delivered directly. */
+static int direct_trap(const struct lguest *lg,
+ const struct desc_struct *trap,
+ unsigned int num)
+{
+ /* Hardware interrupts don't go to the Guest at all (except system
+ * call). */
+ if (num >= FIRST_EXTERNAL_VECTOR && num != SYSCALL_VECTOR)
+ return 0;
+
+ /* The Host needs to see page faults (for shadow paging and to save the
+ * fault address), general protection faults (in/out emulation) and
+ * device not available (TS handling), and of course, the hypercall
+ * trap. */
+ if (num == 14 || num == 13 || num == 7 || num == LGUEST_TRAP_ENTRY)
+ return 0;
+
+ /* Only trap gates (type 15) can go direct to the Guest. Interrupt
+ * gates (type 14) disable interrupts as they are entered, which we
+ * never let the Guest do. Not present entries (type 0x0) also can't
+ * go direct, of course 8) */
+ return idt_type(trap->a, trap->b) == 0xF;
+}
+/*:*/
+
+/*M:005 The Guest has the ability to turn its interrupt gates into trap gates,
+ * if it is careful. The Host will let trap gates can go directly to the
+ * Guest, but the Guest needs the interrupts atomically disabled for an
+ * interrupt gate. It can do this by pointing the trap gate at instructions
+ * within noirq_start and noirq_end, where it can safely disable interrupts. */
+
+/*M:006 The Guests do not use the sysenter (fast system call) instruction,
+ * because it's hardcoded to enter privilege level 0 and so can't go direct.
+ * It's about twice as fast as the older "int 0x80" system call, so it might
+ * still be worthwhile to handle it in the Switcher and lcall down to the
+ * Guest. The sysenter semantics are hairy tho: search for that keyword in
+ * entry.S :*/
+
+/*H:260 When we make traps go directly into the Guest, we need to make sure
+ * the kernel stack is valid (ie. mapped in the page tables). Otherwise, the
+ * CPU trying to deliver the trap will fault while trying to push the interrupt
+ * words on the stack: this is called a double fault, and it forces us to kill
+ * the Guest.
+ *
+ * Which is deeply unfair, because (literally!) it wasn't the Guests' fault. */
+void pin_stack_pages(struct lguest *lg)
+{
+ unsigned int i;
+
+ /* Depending on the CONFIG_4KSTACKS option, the Guest can have one or
+ * two pages of stack space. */
+ for (i = 0; i < lg->stack_pages; i++)
+ /* The stack grows *upwards*, so the address we're given is the
+ * start of the page after the kernel stack. Subtract one to
+ * get back onto the first stack page, and keep subtracting to
+ * get to the rest of the stack pages. */
+ pin_page(lg, lg->esp1 - 1 - i * PAGE_SIZE);
+}
+
+/* Direct traps also mean that we need to know whenever the Guest wants to use
+ * a different kernel stack, so we can change the IDT entries to use that
+ * stack. The IDT entries expect a virtual address, so unlike most addresses
+ * the Guest gives us, the "esp" (stack pointer) value here is virtual, not
+ * physical.
+ *
+ * In Linux each process has its own kernel stack, so this happens a lot: we
+ * change stacks on each context switch. */
+void guest_set_stack(struct lguest *lg, u32 seg, u32 esp, unsigned int pages)
+{
+ /* You are not allowd have a stack segment with privilege level 0: bad
+ * Guest! */
+ if ((seg & 0x3) != GUEST_PL)
+ kill_guest(lg, "bad stack segment %i", seg);
+ /* We only expect one or two stack pages. */
+ if (pages > 2)
+ kill_guest(lg, "bad stack pages %u", pages);
+ /* Save where the stack is, and how many pages */
+ lg->ss1 = seg;
+ lg->esp1 = esp;
+ lg->stack_pages = pages;
+ /* Make sure the new stack pages are mapped */
+ pin_stack_pages(lg);
+}
+
+/* All this reference to mapping stacks leads us neatly into the other complex
+ * part of the Host: page table handling. */
+
+/*H:235 This is the routine which actually checks the Guest's IDT entry and
+ * transfers it into our entry in "struct lguest": */
+static void set_trap(struct lguest *lg, struct desc_struct *trap,
+ unsigned int num, u32 lo, u32 hi)
+{
+ u8 type = idt_type(lo, hi);
+
+ /* We zero-out a not-present entry */
+ if (!idt_present(lo, hi)) {
+ trap->a = trap->b = 0;
+ return;
+ }
+
+ /* We only support interrupt and trap gates. */
+ if (type != 0xE && type != 0xF)
+ kill_guest(lg, "bad IDT type %i", type);
+
+ /* We only copy the handler address, present bit, privilege level and
+ * type. The privilege level controls where the trap can be triggered
+ * manually with an "int" instruction. This is usually GUEST_PL,
+ * except for system calls which userspace can use. */
+ trap->a = ((__KERNEL_CS|GUEST_PL)<<16) | (lo&0x0000FFFF);
+ trap->b = (hi&0xFFFFEF00);
+}
+
+/*H:230 While we're here, dealing with delivering traps and interrupts to the
+ * Guest, we might as well complete the picture: how the Guest tells us where
+ * it wants them to go. This would be simple, except making traps fast
+ * requires some tricks.
+ *
+ * We saw the Guest setting Interrupt Descriptor Table (IDT) entries with the
+ * LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here. */
+void load_guest_idt_entry(struct lguest *lg, unsigned int num, u32 lo, u32 hi)
+{
+ /* Guest never handles: NMI, doublefault, spurious interrupt or
+ * hypercall. We ignore when it tries to set them. */
+ if (num == 2 || num == 8 || num == 15 || num == LGUEST_TRAP_ENTRY)
+ return;
+
+ /* Mark the IDT as changed: next time the Guest runs we'll know we have
+ * to copy this again. */
+ lg->changed |= CHANGED_IDT;
+
+ /* The IDT which we keep in "struct lguest" only contains 32 entries
+ * for the traps and LGUEST_IRQS (32) entries for interrupts. We
+ * ignore attempts to set handlers for higher interrupt numbers, except
+ * for the system call "interrupt" at 128: we have a special IDT entry
+ * for that. */
+ if (num < ARRAY_SIZE(lg->idt))
+ set_trap(lg, &lg->idt[num], num, lo, hi);
+ else if (num == SYSCALL_VECTOR)
+ set_trap(lg, &lg->syscall_idt, num, lo, hi);
+}
+
+/* The default entry for each interrupt points into the Switcher routines which
+ * simply return to the Host. The run_guest() loop will then call
+ * deliver_trap() to bounce it back into the Guest. */
+static void default_idt_entry(struct desc_struct *idt,
+ int trap,
+ const unsigned long handler)
+{
+ /* A present interrupt gate. */
+ u32 flags = 0x8e00;
+
+ /* Set the privilege level on the entry for the hypercall: this allows
+ * the Guest to use the "int" instruction to trigger it. */
+ if (trap == LGUEST_TRAP_ENTRY)
+ flags |= (GUEST_PL << 13);
+
+ /* Now pack it into the IDT entry in its weird format. */
+ idt->a = (LGUEST_CS<<16) | (handler&0x0000FFFF);
+ idt->b = (handler&0xFFFF0000) | flags;
+}
+
+/* When the Guest first starts, we put default entries into the IDT. */
+void setup_default_idt_entries(struct lguest_ro_state *state,
+ const unsigned long *def)
+{
+ unsigned int i;
+
+ for (i = 0; i < ARRAY_SIZE(state->guest_idt); i++)
+ default_idt_entry(&state->guest_idt[i], i, def[i]);
+}
+
+/*H:240 We don't use the IDT entries in the "struct lguest" directly, instead
+ * we copy them into the IDT which we've set up for Guests on this CPU, just
+ * before we run the Guest. This routine does that copy. */
+void copy_traps(const struct lguest *lg, struct desc_struct *idt,
+ const unsigned long *def)
+{
+ unsigned int i;
+
+ /* We can simply copy the direct traps, otherwise we use the default
+ * ones in the Switcher: they will return to the Host. */
+ for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) {
+ if (direct_trap(lg, &lg->idt[i], i))
+ idt[i] = lg->idt[i];
+ else
+ default_idt_entry(&idt[i], i, def[i]);
+ }
+
+ /* Don't forget the system call trap! The IDT entries for other
+ * interupts never change, so no need to copy them. */
+ i = SYSCALL_VECTOR;
+ if (direct_trap(lg, &lg->syscall_idt, i))
+ idt[i] = lg->syscall_idt;
+ else
+ default_idt_entry(&idt[i], i, def[i]);
+}
+
+void guest_set_clockevent(struct lguest *lg, unsigned long delta)
+{
+ ktime_t expires;
+
+ if (unlikely(delta == 0)) {
+ /* Clock event device is shutting down. */
+ hrtimer_cancel(&lg->hrt);
+ return;
+ }
+
+ expires = ktime_add_ns(ktime_get_real(), delta);
+ hrtimer_start(&lg->hrt, expires, HRTIMER_MODE_ABS);
+}
+
+static enum hrtimer_restart clockdev_fn(struct hrtimer *timer)
+{
+ struct lguest *lg = container_of(timer, struct lguest, hrt);
+
+ set_bit(0, lg->irqs_pending);
+ if (lg->halted)
+ wake_up_process(lg->tsk);
+ return HRTIMER_NORESTART;
+}
+
+void init_clockdev(struct lguest *lg)
+{
+ hrtimer_init(&lg->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
+ lg->hrt.function = clockdev_fn;
+}