summaryrefslogtreecommitdiff
path: root/drivers/mxc/security/rng/fsl_shw_wrap.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mxc/security/rng/fsl_shw_wrap.c')
-rw-r--r--drivers/mxc/security/rng/fsl_shw_wrap.c1301
1 files changed, 1301 insertions, 0 deletions
diff --git a/drivers/mxc/security/rng/fsl_shw_wrap.c b/drivers/mxc/security/rng/fsl_shw_wrap.c
new file mode 100644
index 000000000000..c7d6947296af
--- /dev/null
+++ b/drivers/mxc/security/rng/fsl_shw_wrap.c
@@ -0,0 +1,1301 @@
+/*
+ * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+/*!
+ * @file fsl_shw_wrap.c
+ *
+ * This file implements Key-Wrap (Black Key) and Key Establishment functions of
+ * the FSL SHW API for the SHW (non-SAHARA) driver.
+ *
+ * This is the Black Key information:
+ *
+ * <ul>
+ * <li> Ownerid is an 8-byte, user-supplied, value to keep KEY
+ * confidential.</li>
+ * <li> KEY is a 1-32 byte value which starts in SCC RED RAM before
+ * wrapping, and ends up there on unwrap. Length is limited because of
+ * size of SCC1 RAM.</li>
+ * <li> KEY' is the encrypted KEY</li>
+ * <li> LEN is a 1-byte (for now) byte-length of KEY</li>
+ * <li> ALG is a 1-byte value for the algorithm which which the key is
+ * associated. Values are defined by the FSL SHW API</li>
+ * <li> FLAGS is a 1-byte value contain information like "this key is for
+ * software" (TBD)</li>
+ * <li> Ownerid, LEN, and ALG come from the user's "key_info" object, as does
+ * the slot number where KEY already is/will be.</li>
+ * <li> T is a Nonce</li>
+ * <li> T' is the encrypted T</li>
+ * <li> KEK is a Key-Encryption Key for the user's Key</li>
+ * <li> ICV is the "Integrity Check Value" for the wrapped key</li>
+ * <li> Black Key is the string of bytes returned as the wrapped key</li>
+ * <li> Wrap Key is the user's choice for encrypting the nonce. One of
+ * the Fused Key, the Random Key, or the XOR of the two.
+ * </ul>
+<table border="0">
+<tr><TD align="right">BLACK_KEY <TD width="3">=<TD>ICV | T' | LEN | ALG |
+ FLAGS | KEY'</td></tr>
+<tr><td>&nbsp;</td></tr>
+
+<tr><th>To Wrap</th></tr>
+<tr><TD align="right">T</td> <TD width="3">=</td> <TD>RND()<sub>16</sub>
+ </td></tr>
+<tr><TD align="right">KEK</td><TD width="3">=</td><TD>HASH<sub>sha256</sub>(T |
+ Ownerid)<sub>16</sub></td></tr>
+<tr><TD align="right">KEY'<TD width="3">=</td><TD>
+ TDES<sub>cbc-enc</sub>(Key=KEK, Data=KEY, IV=Ownerid)</td></tr>
+<tr><TD align="right">ICV</td><TD width="3">=</td><td>HMAC<sub>sha256</sub>
+ (Key=T, Data=Ownerid | LEN | ALG | FLAGS | KEY')<sub>16</sub></td></tr>
+<tr><TD align="right">T'</td><TD width="3">=</td><TD>TDES<sub>ecb-enc</sub>
+ (Key=Wrap_Key, IV=Ownerid, Data=T)</td></tr>
+
+<tr><td>&nbsp;</td></tr>
+
+<tr><th>To Unwrap</th></tr>
+<tr><TD align="right">T</td><TD width="3">=</td><TD>TDES<sub>ecb-dec</sub>
+ (Key=Wrap_Key, IV=Ownerid, Data=T')</td></tr>
+<tr><TD align="right">ICV</td><TD width="3">=</td><td>HMAC<sub>sha256</sub>
+ (Key=T, Data=Ownerid | LEN | ALG | FLAGS | KEY')<sub>16</sub></td></tr>
+<tr><TD align="right">KEK</td><TD width="3">=</td><td>HASH<sub>sha256</sub>
+ (T | Ownerid)<sub>16</sub></td></tr>
+<tr><TD align="right">KEY<TD width="3">=</td><TD>TDES<sub>cbc-dec</sub>
+ (Key=KEK, Data=KEY', IV=Ownerid)</td></tr>
+</table>
+
+ * This code supports two types of keys: Software Keys and keys destined for
+ * (or residing in) the DryIce Programmed Key Register.
+ *
+ * Software Keys go to / from the keystore.
+ *
+ * PK keys go to / from the DryIce Programmed Key Register.
+ *
+ * This code only works on a platform with DryIce. "software" keys go into
+ * the keystore. "Program" keys go to the DryIce Programmed Key Register.
+ * As far as this code is concerned, the size of that register is 21 bytes,
+ * the size of a 3DES key with parity stripped.
+ *
+ * The maximum key size supported for wrapped/unwrapped keys depends upon
+ * LENGTH_LENGTH. Currently, it is one byte, so the maximum key size is
+ * 255 bytes. However, key objects cannot currently hold a key of this
+ * length, so a smaller key size is the max.
+ */
+
+#include "fsl_platform.h"
+
+/* This code only works in kernel mode */
+
+#include "shw_driver.h"
+#ifdef DIAG_SECURITY_FUNC
+#include "apihelp.h"
+#endif
+
+#if defined(__KERNEL__) && defined(FSL_HAVE_DRYICE)
+
+#include "../dryice.h"
+#include <linux/mxc_scc_driver.h>
+
+#include "portable_os.h"
+#include "fsl_shw_keystore.h"
+
+#include <diagnostic.h>
+
+#include "shw_hmac.h"
+#include "shw_hash.h"
+
+#define ICV_LENGTH 16
+#define T_LENGTH 16
+#define KEK_LENGTH 21
+#define LENGTH_LENGTH 1
+#define ALGORITHM_LENGTH 1
+#define FLAGS_LENGTH 1
+
+/* ICV | T' | LEN | ALG | FLAGS | KEY' */
+#define ICV_OFFSET 0
+#define T_PRIME_OFFSET (ICV_OFFSET + ICV_LENGTH)
+#define LENGTH_OFFSET (T_PRIME_OFFSET + T_LENGTH)
+#define ALGORITHM_OFFSET (LENGTH_OFFSET + LENGTH_LENGTH)
+#define FLAGS_OFFSET (ALGORITHM_OFFSET + ALGORITHM_LENGTH)
+#define KEY_PRIME_OFFSET (FLAGS_OFFSET + FLAGS_LENGTH)
+
+#define FLAGS_SW_KEY 0x01
+
+#define LENGTH_PATCH 8
+#define LENGTH_PATCH_MASK (LENGTH_PATCH - 1)
+
+/*! rounded up from 168 bits to the next word size */
+#define HW_KEY_LEN_WORDS_BITS 192
+
+/*!
+ * Round a key length up to the TDES block size
+ *
+ * @param len Length of key, in bytes
+ *
+ * @return Length rounded up, if necessary
+ */
+#define ROUND_LENGTH(len) \
+({ \
+ uint32_t orig_len = len; \
+ uint32_t new_len; \
+ \
+ if ((orig_len & LENGTH_PATCH_MASK) != 0) { \
+ new_len = (orig_len + LENGTH_PATCH \
+ - (orig_len & LENGTH_PATCH_MASK)); \
+ } \
+ else { \
+ new_len = orig_len; \
+ } \
+ \
+ new_len; \
+})
+
+/* This is the system keystore object */
+extern fsl_shw_kso_t system_keystore;
+
+#ifdef DIAG_SECURITY_FUNC
+static void dump(const char *name, const uint8_t * data, unsigned int len)
+{
+ os_printk("%s: ", name);
+ while (len > 0) {
+ os_printk("%02x ", (unsigned)*data++);
+ len--;
+ }
+ os_printk("\n");
+}
+#endif
+
+/*
+ * For testing of the algorithm implementation,, the DO_REPEATABLE_WRAP flag
+ * causes the T_block to go into the T field during a wrap operation. This
+ * will make the black key value repeatable (for a given SCC secret key, or
+ * always if the default key is in use).
+ *
+ * Normally, a random sequence is used.
+ */
+#ifdef DO_REPEATABLE_WRAP
+/*!
+ * Block of zeroes which is maximum Symmetric block size, used for
+ * initializing context register, etc.
+ */
+static uint8_t T_block[16] = {
+ 0x42, 0, 0, 0x42, 0x42, 0, 0, 0x42,
+ 0x42, 0, 0, 0x42, 0x42, 0, 0, 0x42
+};
+#endif
+
+EXPORT_SYMBOL(fsl_shw_establish_key);
+EXPORT_SYMBOL(fsl_shw_read_key);
+EXPORT_SYMBOL(fsl_shw_extract_key);
+EXPORT_SYMBOL(fsl_shw_release_key);
+
+extern fsl_shw_return_t alloc_slot(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info);
+
+extern fsl_shw_return_t load_slot(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ const uint8_t * key);
+
+extern fsl_shw_return_t dealloc_slot(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info);
+
+/*!
+ * Initalialize SKO and SCCO used for T <==> T' cipher operation
+ *
+ * @param wrap_key Which wrapping key user wants
+ * @param key_info Key object for selecting wrap key
+ * @param wrap_ctx Sym Context object for doing the cipher op
+ */
+static inline void init_wrap_key(fsl_shw_pf_key_t wrap_key,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_scco_t * wrap_ctx)
+{
+ fsl_shw_sko_init_pf_key(key_info, FSL_KEY_ALG_TDES, wrap_key);
+ fsl_shw_scco_init(wrap_ctx, FSL_KEY_ALG_TDES, FSL_SYM_MODE_ECB);
+}
+
+/*!
+ * Insert descriptors to calculate ICV = HMAC(key=T, data=LEN|ALG|KEY')
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param T Location of nonce (length is T_LENGTH bytes)
+ * @param userid Location of userid/ownerid
+ * @param userid_len Length, in bytes of @c userid
+ * @param black_key Beginning of Black Key region
+ * @param key_length Number of bytes of key' there are in @c black_key
+ * @param[out] hmac Location to store ICV. Will be tagged "USES" so
+ * sf routines will not try to free it.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+static fsl_shw_return_t calc_icv(const uint8_t * T,
+ const uint8_t * userid,
+ unsigned int userid_len,
+ const uint8_t * black_key,
+ uint32_t key_length, uint8_t * hmac)
+{
+ fsl_shw_return_t code;
+ shw_hmac_state_t hmac_state;
+
+ /* Load up T as key for the HMAC */
+ code = shw_hmac_init(&hmac_state, T, T_LENGTH);
+ if (code != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ /* Previous step loaded key; Now set up to hash the data */
+
+ /* Input - start with ownerid */
+ code = shw_hmac_update(&hmac_state, userid, userid_len);
+ if (code != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ /* Still input - Append black-key fields len, alg, key' */
+ code = shw_hmac_update(&hmac_state,
+ (void *)black_key + LENGTH_OFFSET,
+ (LENGTH_LENGTH
+ + ALGORITHM_LENGTH
+ + FLAGS_LENGTH + key_length));
+ if (code != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ /* Output - computed ICV/HMAC */
+ code = shw_hmac_final(&hmac_state, hmac, ICV_LENGTH);
+ if (code != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ out:
+
+ return code;
+} /* calc_icv */
+
+/*!
+ * Compute and return the KEK (Key Encryption Key) from the inputs
+ *
+ * @param userid The user's 'secret' for the key
+ * @param userid_len Length, in bytes of @c userid
+ * @param T The nonce
+ * @param[out] kek Location to store the computed KEK. It will
+ * be 21 bytes long.
+ *
+ * @return the usual error code
+ */
+static fsl_shw_return_t calc_kek(const uint8_t * userid,
+ unsigned int userid_len,
+ const uint8_t * T, uint8_t * kek)
+{
+ fsl_shw_return_t code = FSL_RETURN_INTERNAL_ERROR_S;
+ shw_hash_state_t hash_state;
+
+ code = shw_hash_init(&hash_state, FSL_HASH_ALG_SHA256);
+ if (code != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Hash init failed: %s\n", fsl_error_string(code));
+#endif
+ goto out;
+ }
+
+ code = shw_hash_update(&hash_state, T, T_LENGTH);
+ if (code != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Hash for T failed: %s\n",
+ fsl_error_string(code));
+#endif
+ goto out;
+ }
+
+ code = shw_hash_update(&hash_state, userid, userid_len);
+ if (code != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Hash for userid failed: %s\n",
+ fsl_error_string(code));
+#endif
+ goto out;
+ }
+
+ code = shw_hash_final(&hash_state, kek, KEK_LENGTH);
+ if (code != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Could not extract kek: %s\n",
+ fsl_error_string(code));
+#endif
+ goto out;
+ }
+
+#if KEK_LENGTH != 21
+ {
+ uint8_t permuted_kek[21];
+
+ fsl_shw_permute1_bytes(kek, permuted_kek, KEK_LENGTH / 8);
+ memcpy(kek, permuted_kek, 21);
+ memset(permuted_kek, 0, sizeof(permuted_kek));
+ }
+#endif
+
+#ifdef DIAG_SECURITY_FUNC
+ dump("kek", kek, 21);
+#endif
+
+ out:
+
+ return code;
+} /* end fn calc_kek */
+
+/*!
+ * Validate user's wrap key selection
+ *
+ * @param wrap_key The user's desired wrapping key
+ */
+static fsl_shw_return_t check_wrap_key(fsl_shw_pf_key_t wrap_key)
+{
+ /* unable to use desired key */
+ fsl_shw_return_t ret = FSL_RETURN_NO_RESOURCE_S;
+
+ if ((wrap_key != FSL_SHW_PF_KEY_IIM) &&
+ (wrap_key != FSL_SHW_PF_KEY_RND) &&
+ (wrap_key != FSL_SHW_PF_KEY_IIM_RND)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Invalid wrap_key in key wrap/unwrap attempt");
+#endif
+ goto out;
+ }
+ ret = FSL_RETURN_OK_S;
+
+ out:
+ return ret;
+} /* end fn check_wrap_key */
+
+/*!
+ * Perform unwrapping of a black key into a RED slot
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param[in,out] key_info The information about the key to be which will
+ * be unwrapped... key length, slot info, etc.
+ * @param black_key Encrypted key
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+static fsl_shw_return_t unwrap(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ const uint8_t * black_key)
+{
+ fsl_shw_return_t ret;
+ uint8_t hmac[ICV_LENGTH];
+ uint8_t T[T_LENGTH];
+ uint8_t kek[KEK_LENGTH + 20];
+ int key_length = black_key[LENGTH_OFFSET];
+ int rounded_key_length = ROUND_LENGTH(key_length);
+ uint8_t key[rounded_key_length];
+ fsl_shw_sko_t t_key_info;
+ fsl_shw_scco_t t_key_ctx;
+ fsl_shw_sko_t kek_key_info;
+ fsl_shw_scco_t kek_ctx;
+ int unwrapping_sw_key = key_info->flags & FSL_SKO_KEY_SW_KEY;
+ int pk_needs_restoration = 0; /* bool */
+ unsigned original_key_length = key_info->key_length;
+ int pk_was_held = 0;
+ uint8_t current_pk[21];
+ di_return_t di_code;
+
+ ret = check_wrap_key(user_ctx->wrap_key);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ if (black_key == NULL) {
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ dump("black", black_key, KEY_PRIME_OFFSET + key_length);
+#endif
+ /* Validate SW flags to prevent misuse */
+ if ((key_info->flags & FSL_SKO_KEY_SW_KEY)
+ && !(black_key[FLAGS_OFFSET] & FLAGS_SW_KEY)) {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ /* Compute T = 3des-dec-ecb(wrap_key, T') */
+ init_wrap_key(user_ctx->wrap_key, &t_key_info, &t_key_ctx);
+ ret = fsl_shw_symmetric_decrypt(user_ctx, &t_key_info, &t_key_ctx,
+ T_LENGTH,
+ black_key + T_PRIME_OFFSET, T);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Recovery of nonce (T) failed");
+#endif /*DIAG_SECURITY_FUNC */
+ goto out;
+ }
+
+ /* Compute ICV = HMAC(T, ownerid | len | alg | flags | key' */
+ ret = calc_icv(T, (uint8_t *) & key_info->userid,
+ sizeof(key_info->userid),
+ black_key, original_key_length, hmac);
+
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Calculation of ICV failed");
+#endif /*DIAG_SECURITY_FUNC */
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Validating MAC of wrapped key");
+#endif
+
+ /* Check computed ICV against value in Black Key */
+ if (memcmp(black_key + ICV_OFFSET, hmac, ICV_LENGTH) != 0) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Computed ICV fails validation\n");
+#endif
+ ret = FSL_RETURN_AUTH_FAILED_S;
+ goto out;
+ }
+
+ /* Compute KEK = SHA256(T | ownerid). */
+ ret = calc_kek((uint8_t *) & key_info->userid, sizeof(key_info->userid),
+ T, kek);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ if (unwrapping_sw_key) {
+ di_code = dryice_get_programmed_key(current_pk, 8 * 21);
+ if (di_code != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Could not save current PK: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ }
+
+ /*
+ * "Establish" the KEK in the PK. If the PK was held and unwrapping a
+ * software key, then release it and try again, but remember that we need
+ * to leave it 'held' if we are unwrapping a software key.
+ *
+ * If the PK is held while we are unwrapping a key for the PK, then
+ * the user didn't call release, so gets an error.
+ */
+ di_code = dryice_set_programmed_key(kek, 8 * 21, 0);
+ if ((di_code == DI_ERR_INUSE) && unwrapping_sw_key) {
+ /* Temporarily reprogram the PK out from under the user */
+ pk_was_held = 1;
+ dryice_release_programmed_key();
+ di_code = dryice_set_programmed_key(kek, 8 * 21, 0);
+ }
+ if (di_code != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Could not program KEK: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+
+ if (unwrapping_sw_key) {
+ pk_needs_restoration = 1;
+ }
+ dryice_release_programmed_key(); /* Because of previous 'set' */
+
+ /* Compute KEY = TDES-decrypt(KEK, KEY') */
+ fsl_shw_sko_init_pf_key(&kek_key_info, FSL_KEY_ALG_TDES,
+ FSL_SHW_PF_KEY_PRG);
+ fsl_shw_sko_set_key_length(&kek_key_info, KEK_LENGTH);
+
+ fsl_shw_scco_init(&kek_ctx, FSL_KEY_ALG_TDES, FSL_SYM_MODE_CBC);
+ fsl_shw_scco_set_flags(&kek_ctx, FSL_SYM_CTX_LOAD);
+ fsl_shw_scco_set_context(&kek_ctx, (uint8_t *) & key_info->userid);
+#ifdef DIAG_SECURITY_FUNC
+ dump("KEY'", black_key + KEY_PRIME_OFFSET, rounded_key_length);
+#endif
+ ret = fsl_shw_symmetric_decrypt(user_ctx, &kek_key_info, &kek_ctx,
+ rounded_key_length,
+ black_key + KEY_PRIME_OFFSET, key);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ dump("KEY", key, original_key_length);
+#endif
+ /* Now either put key into PK or into a slot */
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ ret = load_slot(user_ctx, key_info, key);
+ } else {
+ /*
+ * Since we have just unwrapped a program key, it had
+ * to have been wrapped as a program key, so it must
+ * be 168 bytes long and permuted ...
+ */
+ ret = dryice_set_programmed_key(key, 8 * key_length, 0);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+ }
+
+ out:
+ key_info->key_length = original_key_length;
+
+ if (pk_needs_restoration) {
+ di_code = dryice_set_programmed_key(current_pk, 8 * 21, 0);
+ }
+
+ if (!pk_was_held) {
+ dryice_release_programmed_key();
+ }
+
+ /* Erase tracks of confidential data */
+ memset(T, 0, T_LENGTH);
+ memset(key, 0, rounded_key_length);
+ memset(current_pk, 0, sizeof(current_pk));
+ memset(&t_key_info, 0, sizeof(t_key_info));
+ memset(&t_key_ctx, 0, sizeof(t_key_ctx));
+ memset(&kek_key_info, 0, sizeof(kek_key_info));
+ memset(&kek_ctx, 0, sizeof(kek_ctx));
+ memset(kek, 0, KEK_LENGTH);
+
+ return ret;
+} /* unwrap */
+
+/*!
+ * Perform wrapping of a black key from a RED slot (or the PK register)
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param[in,out] key_info The information about the key to be which will
+ * be wrapped... key length, slot info, etc.
+ * @param black_key Place to store encrypted key
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+static fsl_shw_return_t wrap(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info, uint8_t * black_key)
+{
+ fsl_shw_return_t ret = FSL_RETURN_OK_S;
+ fsl_shw_sko_t t_key_info; /* for holding T */
+ fsl_shw_scco_t t_key_ctx;
+ fsl_shw_sko_t kek_key_info;
+ fsl_shw_scco_t kek_ctx;
+ unsigned original_key_length = key_info->key_length;
+ unsigned rounded_key_length;
+ uint8_t T[T_LENGTH];
+ uint8_t kek[KEK_LENGTH + 20];
+ uint8_t *red_key = 0;
+ int red_key_malloced = 0; /* bool */
+ int pk_was_held = 0; /* bool */
+ uint8_t saved_pk[21];
+ uint8_t pk_needs_restoration; /* bool */
+ di_return_t di_code;
+
+ ret = check_wrap_key(user_ctx->wrap_key);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ if (black_key == NULL) {
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+
+ if (key_info->flags & FSL_SKO_KEY_SELECT_PF_KEY) {
+ if ((key_info->pf_key != FSL_SHW_PF_KEY_PRG)
+ && (key_info->pf_key != FSL_SHW_PF_KEY_IIM_PRG)) {
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ } else {
+ if (!(key_info->flags & FSL_SKO_KEY_ESTABLISHED)) {
+ ret = FSL_RETURN_BAD_FLAG_S; /* not established! */
+ goto out;
+ }
+ }
+
+ black_key[ALGORITHM_OFFSET] = key_info->algorithm;
+
+#ifndef DO_REPEATABLE_WRAP
+ /* Compute T = RND() */
+ ret = fsl_shw_get_random(user_ctx, T_LENGTH, T);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+#else
+ memcpy(T, T_block, T_LENGTH);
+#endif
+
+ /* Compute KEK = SHA256(T | ownerid). */
+ ret = calc_kek((uint8_t *) & key_info->userid, sizeof(key_info->userid),
+ T, kek);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Calculation of KEK failed\n");
+#endif /*DIAG_SECURITY_FUNC */
+ goto out;
+ }
+
+ rounded_key_length = ROUND_LENGTH(original_key_length);
+
+ di_code = dryice_get_programmed_key(saved_pk, 8 * 21);
+ if (di_code != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Could not save current PK: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+
+ /*
+ * Load KEK into DI PKR. Note that we are NOT permuting it before loading,
+ * so we are using it as though it is a 168-bit key ready for the SCC.
+ */
+ di_code = dryice_set_programmed_key(kek, 8 * 21, 0);
+ if (di_code == DI_ERR_INUSE) {
+ /* Temporarily reprogram the PK out from under the user */
+ pk_was_held = 1;
+ dryice_release_programmed_key();
+ di_code = dryice_set_programmed_key(kek, 8 * 21, 0);
+ }
+ if (di_code != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Could not program KEK: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ pk_needs_restoration = 1;
+ dryice_release_programmed_key();
+
+ /* Find red key */
+ if (key_info->flags & FSL_SKO_KEY_SELECT_PF_KEY) {
+ black_key[LENGTH_OFFSET] = 21;
+ rounded_key_length = 24;
+
+ red_key = saved_pk;
+ } else {
+ black_key[LENGTH_OFFSET] = key_info->key_length;
+
+ red_key = os_alloc_memory(key_info->key_length, 0);
+ if (red_key == NULL) {
+ ret = FSL_RETURN_NO_RESOURCE_S;
+ goto out;
+ }
+ red_key_malloced = 1;
+
+ ret = fsl_shw_read_key(user_ctx, key_info, red_key);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+ }
+
+#ifdef DIAG_SECURITY_FUNC
+ dump("KEY", red_key, black_key[LENGTH_OFFSET]);
+#endif
+ /* Compute KEY' = TDES-encrypt(KEK, KEY) */
+ fsl_shw_sko_init_pf_key(&kek_key_info, FSL_KEY_ALG_TDES,
+ FSL_SHW_PF_KEY_PRG);
+ fsl_shw_sko_set_key_length(&kek_key_info, KEK_LENGTH);
+
+ fsl_shw_scco_init(&kek_ctx, FSL_KEY_ALG_TDES, FSL_SYM_MODE_CBC);
+ fsl_shw_scco_set_flags(&kek_ctx, FSL_SYM_CTX_LOAD);
+ fsl_shw_scco_set_context(&kek_ctx, (uint8_t *) & key_info->userid);
+ ret = fsl_shw_symmetric_encrypt(user_ctx, &kek_key_info, &kek_ctx,
+ rounded_key_length,
+ red_key, black_key + KEY_PRIME_OFFSET);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Encryption of KEY failed\n");
+#endif /*DIAG_SECURITY_FUNC */
+ goto out;
+ }
+
+ /* Set up flags info */
+ black_key[FLAGS_OFFSET] = 0;
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ black_key[FLAGS_OFFSET] |= FLAGS_SW_KEY;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ dump("KEY'", black_key + KEY_PRIME_OFFSET, rounded_key_length);
+#endif
+ /* Compute and store ICV into Black Key */
+ ret = calc_icv(T,
+ (uint8_t *) & key_info->userid,
+ sizeof(key_info->userid),
+ black_key, original_key_length, black_key + ICV_OFFSET);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Calculation of ICV failed\n");
+#endif /*DIAG_SECURITY_FUNC */
+ goto out;
+ }
+
+ /* Compute T' = 3des-enc-ecb(wrap_key, T); Result goes to Black Key */
+ init_wrap_key(user_ctx->wrap_key, &t_key_info, &t_key_ctx);
+ ret = fsl_shw_symmetric_encrypt(user_ctx, &t_key_info, &t_key_ctx,
+ T_LENGTH,
+ T, black_key + T_PRIME_OFFSET);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Encryption of nonce failed");
+#endif
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ dump("black", black_key, KEY_PRIME_OFFSET + black_key[LENGTH_OFFSET]);
+#endif
+
+ out:
+ if (pk_needs_restoration) {
+ dryice_set_programmed_key(saved_pk, 8 * 21, 0);
+ }
+
+ if (!pk_was_held) {
+ dryice_release_programmed_key();
+ }
+
+ if (red_key_malloced) {
+ memset(red_key, 0, key_info->key_length);
+ os_free_memory(red_key);
+ }
+
+ key_info->key_length = original_key_length;
+
+ /* Erase tracks of confidential data */
+ memset(T, 0, T_LENGTH);
+ memset(&t_key_info, 0, sizeof(t_key_info));
+ memset(&t_key_ctx, 0, sizeof(t_key_ctx));
+ memset(&kek_key_info, 0, sizeof(kek_key_info));
+ memset(&kek_ctx, 0, sizeof(kek_ctx));
+ memset(kek, 0, sizeof(kek));
+ memset(saved_pk, 0, sizeof(saved_pk));
+
+ return ret;
+} /* wrap */
+
+static fsl_shw_return_t create(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+ unsigned key_length = key_info->key_length;
+ di_return_t di_code;
+
+ if (!(key_info->flags & FSL_SKO_KEY_SW_KEY)) {
+ /* Must be creating key for PK */
+ if ((key_info->algorithm != FSL_KEY_ALG_TDES) ||
+ ((key_info->key_length != 16)
+ && (key_info->key_length != 21) /* permuted 168-bit key */
+ &&(key_info->key_length != 24))) {
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+
+ key_length = 21; /* 168-bit PK */
+ }
+
+ /* operational block */
+ {
+ uint8_t key_value[key_length];
+
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Creating random key\n");
+#endif
+ ret = fsl_shw_get_random(user_ctx, key_length, key_value);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("get_random for CREATE KEY failed\n");
+#endif
+ goto out;
+ }
+
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ ret = load_slot(user_ctx, key_info, key_value);
+ } else {
+ di_code =
+ dryice_set_programmed_key(key_value, 8 * key_length,
+ 0);
+ if (di_code != 0) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("di set_pk failed: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ ret = FSL_RETURN_OK_S;
+ }
+ memset(key_value, 0, key_length);
+ } /* end operational block */
+
+#ifdef DIAG_SECURITY_FUNC
+ if (ret != FSL_RETURN_OK_S) {
+ LOG_DIAG("Loading random key failed");
+ }
+#endif
+
+ out:
+
+ return ret;
+} /* end fn create */
+
+static fsl_shw_return_t accept(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info, const uint8_t * key)
+{
+ uint8_t permuted_key[21];
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+
+ if (key == NULL) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("ACCEPT: Red Key is NULL");
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ dump("red", key, key_info->key_length);
+#endif
+ /* Only SW keys go into the keystore */
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+
+ /* Copy in safe number of bytes of Red key */
+ ret = load_slot(user_ctx, key_info, key);
+ } else { /* not SW key */
+ di_return_t di_ret;
+
+ /* Only 3DES PGM key types can be established */
+ if (((key_info->pf_key != FSL_SHW_PF_KEY_PRG)
+ && (key_info->pf_key != FSL_SHW_PF_KEY_IIM_PRG))
+ || (key_info->algorithm != FSL_KEY_ALG_TDES)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS
+ ("ACCEPT: Failed trying to establish non-PRG"
+ " or invalid 3DES Key: iim%d, iim_prg%d, alg%d\n",
+ (key_info->pf_key != FSL_SHW_PF_KEY_PRG),
+ (key_info->pf_key != FSL_SHW_PF_KEY_IIM_PRG),
+ (key_info->algorithm != FSL_KEY_ALG_TDES));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ if ((key_info->key_length != 16)
+ && (key_info->key_length != 21)
+ && (key_info->key_length != 24)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("ACCEPT: Failed trying to establish"
+ " invalid 3DES Key: len=%d (%d)\n",
+ key_info->key_length,
+ ((key_info->key_length != 16)
+ && (key_info->key_length != 21)
+ && (key_info->key_length != 24)));
+#endif
+ ret = FSL_RETURN_BAD_KEY_LENGTH_S;
+ goto out;
+ }
+
+ /* Convert key into 168-bit value and put it into PK */
+ if (key_info->key_length != 21) {
+ fsl_shw_permute1_bytes(key, permuted_key,
+ key_info->key_length / 8);
+ di_ret =
+ dryice_set_programmed_key(permuted_key, 168, 0);
+ } else {
+ /* Already permuted ! */
+ di_ret = dryice_set_programmed_key(key, 168, 0);
+ }
+ if (di_ret != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS
+ ("ACCEPT: DryIce error setting Program Key: %s",
+ di_error_string(di_ret));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ }
+
+ ret = FSL_RETURN_OK_S;
+
+ out:
+ memset(permuted_key, 0, 21);
+
+ return ret;
+} /* end fn accept */
+
+/*!
+ * Place a key into a protected location for use only by cryptographic
+ * algorithms.
+ *
+ * This only needs to be used to a) unwrap a key, or b) set up a key which
+ * could be wrapped by calling #fsl_shw_extract_key() at some later time).
+ *
+ * The protected key will not be available for use until this operation
+ * successfully completes.
+ *
+ * @bug This whole discussion needs review.
+ *
+ * This feature is not available for all platforms, nor for all algorithms and
+ * modes.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param[in,out] key_info The information about the key to be which will
+ * be established. In the create case, the key
+ * length must be set.
+ * @param establish_type How @a key will be interpreted to establish a
+ * key for use.
+ * @param key If @a establish_type is #FSL_KEY_WRAP_UNWRAP,
+ * this is the location of a wrapped key. If
+ * @a establish_type is #FSL_KEY_WRAP_CREATE, this
+ * parameter can be @a NULL. If @a establish_type
+ * is #FSL_KEY_WRAP_ACCEPT, this is the location
+ * of a plaintext key.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_establish_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_key_wrap_t establish_type,
+ const uint8_t * key)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+ unsigned original_key_length = key_info->key_length;
+ unsigned rounded_key_length;
+ unsigned slot_allocated = 0;
+
+ /* For now, only blocking mode calls are supported */
+ if (!(user_ctx->flags & FSL_UCO_BLOCKING_MODE)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("%s: Non-blocking call not supported\n",
+ __FUNCTION__);
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ /*
+ HW keys are always 'established', but otherwise do not allow user
+ * to establish over the top of an established key.
+ */
+ if ((key_info->flags & FSL_SKO_KEY_ESTABLISHED)
+ && !(key_info->flags & FSL_SKO_KEY_SELECT_PF_KEY)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("%s: Key already established\n", __FUNCTION__);
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ /* @bug VALIDATE KEY flags here -- SW or PRG/IIM_PRG */
+
+ /* Write operations into SCC memory require word-multiple number of
+ * bytes. For ACCEPT and CREATE functions, the key length may need
+ * to be rounded up. Calculate. */
+ if (LENGTH_PATCH && (original_key_length & LENGTH_PATCH_MASK) != 0) {
+ rounded_key_length = original_key_length + LENGTH_PATCH
+ - (original_key_length & LENGTH_PATCH_MASK);
+ } else {
+ rounded_key_length = original_key_length;
+ }
+
+ /* SW keys need a place to live */
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ ret = alloc_slot(user_ctx, key_info);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Slot allocation failed\n");
+#endif
+ goto out;
+ }
+ slot_allocated = 1;
+ }
+
+ switch (establish_type) {
+ case FSL_KEY_WRAP_CREATE:
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Creating random key\n");
+#endif
+ ret = create(user_ctx, key_info);
+ break;
+
+ case FSL_KEY_WRAP_ACCEPT:
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Accepting plaintext key\n");
+#endif
+ ret = accept(user_ctx, key_info, key);
+ break;
+
+ case FSL_KEY_WRAP_UNWRAP:
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Unwrapping wrapped key\n");
+#endif
+ ret = unwrap(user_ctx, key_info, key);
+ break;
+
+ default:
+ ret = FSL_RETURN_BAD_FLAG_S;
+ break;
+ } /* switch */
+
+ out:
+ if (ret != FSL_RETURN_OK_S) {
+ if (slot_allocated) {
+ (void)dealloc_slot(user_ctx, key_info);
+ }
+ key_info->flags &= ~FSL_SKO_KEY_ESTABLISHED;
+ } else {
+ key_info->flags |= FSL_SKO_KEY_ESTABLISHED;
+ }
+
+ return ret;
+} /* end fn fsl_shw_establish_key */
+
+/*!
+ * Wrap a key and retrieve the wrapped value.
+ *
+ * A wrapped key is a key that has been cryptographically obscured. It is
+ * only able to be used with #fsl_shw_establish_key().
+ *
+ * This function will also release a software key (see #fsl_shw_release_key())
+ * so it must be re-established before reuse. This is not true of PGM keys.
+ *
+ * This feature is not available for all platforms, nor for all algorithms and
+ * modes.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param key_info The information about the key to be deleted.
+ * @param[out] covered_key The location to store the 48-octet wrapped key.
+ * (This size is based upon the maximum key size
+ * of 32 octets).
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_extract_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ uint8_t * covered_key)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+
+ /* For now, only blocking mode calls are supported */
+ if (!(user_ctx->flags & FSL_UCO_BLOCKING_MODE)) {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Wrapping a key\n");
+#endif
+
+ if (!(key_info->flags & FSL_SKO_KEY_ESTABLISHED)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("%s: Key not established\n", __FUNCTION__);
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+ /* Verify that a SW key info really belongs to a SW key */
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ /* ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;*/
+ }
+
+ ret = wrap(user_ctx, key_info, covered_key);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ /* Need to deallocate on successful extraction */
+ (void)dealloc_slot(user_ctx, key_info);
+ /* Mark key not available in the flags */
+ key_info->flags &=
+ ~(FSL_SKO_KEY_ESTABLISHED | FSL_SKO_KEY_PRESENT);
+ memset(key_info->key, 0, sizeof(key_info->key));
+ }
+
+ out:
+ return ret;
+} /* end fn fsl_shw_extract_key */
+
+/*!
+ * De-establish a key so that it can no longer be accessed.
+ *
+ * The key will need to be re-established before it can again be used.
+ *
+ * This feature is not available for all platforms, nor for all algorithms and
+ * modes.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param key_info The information about the key to be deleted.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_release_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+
+ /* For now, only blocking mode calls are supported */
+ if (!(user_ctx->flags & FSL_UCO_BLOCKING_MODE)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Not in blocking mode\n");
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Releasing a key\n");
+#endif
+
+ if (!(key_info->flags & FSL_SKO_KEY_ESTABLISHED)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Key not established\n");
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ (void)dealloc_slot(user_ctx, key_info);
+ /* Turn off 'established' flag */
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("dealloc_slot() called\n");
+#endif
+ key_info->flags &= ~FSL_SKO_KEY_ESTABLISHED;
+ ret = FSL_RETURN_OK_S;
+ goto out;
+ }
+
+ if ((key_info->pf_key == FSL_SHW_PF_KEY_PRG)
+ || (key_info->pf_key == FSL_SHW_PF_KEY_IIM_PRG)) {
+ di_return_t di_ret;
+
+ di_ret = dryice_release_programmed_key();
+ if (di_ret != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS
+ ("dryice_release_programmed_key() failed: %d\n",
+ di_ret);
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ } else {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Neither SW nor HW key\n");
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ ret = FSL_RETURN_OK_S;
+
+ out:
+ return ret;
+} /* end fn fsl_shw_release_key */
+
+fsl_shw_return_t fsl_shw_read_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info, uint8_t * key)
+{
+ fsl_shw_return_t ret = FSL_RETURN_INTERNAL_ERROR_S;
+
+ /* Only blocking mode calls are supported */
+ if (!(user_ctx->flags & FSL_UCO_BLOCKING_MODE)) {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+ printk("Reading a key\n");
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Reading a key");
+#endif
+ if (key_info->flags & FSL_SKO_KEY_PRESENT) {
+ memcpy(key_info->key, key, key_info->key_length);
+ ret = FSL_RETURN_OK_S;
+ } else if (key_info->flags & FSL_SKO_KEY_ESTABLISHED) {
+ printk("key established\n");
+ if (key_info->keystore == NULL) {
+ printk("keystore is null\n");
+ /* First verify that the key access is valid */
+ ret =
+ system_keystore.slot_verify_access(system_keystore.
+ user_data,
+ key_info->userid,
+ key_info->
+ handle);
+
+ printk("key in system keystore\n");
+
+ /* Key is in system keystore */
+ ret = keystore_slot_read(&system_keystore,
+ key_info->userid,
+ key_info->handle,
+ key_info->key_length, key);
+ } else {
+ printk("key goes in user keystore.\n");
+ /* Key goes in user keystore */
+ ret = keystore_slot_read(key_info->keystore,
+ key_info->userid,
+ key_info->handle,
+ key_info->key_length, key);
+ }
+ }
+
+ out:
+ return ret;
+} /* end fn fsl_shw_read_key */
+
+#else /* __KERNEL__ && DRYICE */
+
+/* User mode -- these functions are unsupported */
+
+fsl_shw_return_t fsl_shw_establish_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_key_wrap_t establish_type,
+ const uint8_t * key)
+{
+ (void)user_ctx;
+ (void)key_info;
+ (void)establish_type;
+ (void)key;
+
+ return FSL_RETURN_NO_RESOURCE_S;
+}
+
+fsl_shw_return_t fsl_shw_extract_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ uint8_t * covered_key)
+{
+ (void)user_ctx;
+ (void)key_info;
+ (void)covered_key;
+
+ return FSL_RETURN_NO_RESOURCE_S;
+}
+
+fsl_shw_return_t fsl_shw_release_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info)
+{
+ (void)user_ctx;
+ (void)key_info;
+
+ return FSL_RETURN_NO_RESOURCE_S;
+}
+
+fsl_shw_return_t fsl_shw_read_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info, uint8_t * key)
+{
+ (void)user_ctx;
+ (void)key_info;
+ (void)key;
+
+ return FSL_RETURN_NO_RESOURCE_S;
+}
+
+#endif /* __KERNEL__ && DRYICE */