summaryrefslogtreecommitdiff
path: root/drivers/mxc/security/rng
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mxc/security/rng')
-rw-r--r--drivers/mxc/security/rng/Makefile35
-rw-r--r--drivers/mxc/security/rng/des_key.c385
-rw-r--r--drivers/mxc/security/rng/fsl_shw_hash.c84
-rw-r--r--drivers/mxc/security/rng/fsl_shw_hmac.c83
-rw-r--r--drivers/mxc/security/rng/fsl_shw_rand.c122
-rw-r--r--drivers/mxc/security/rng/fsl_shw_sym.c317
-rw-r--r--drivers/mxc/security/rng/fsl_shw_wrap.c1301
-rw-r--r--drivers/mxc/security/rng/include/rng_driver.h134
-rw-r--r--drivers/mxc/security/rng/include/rng_internals.h680
-rw-r--r--drivers/mxc/security/rng/include/rng_rnga.h181
-rw-r--r--drivers/mxc/security/rng/include/rng_rngc.h235
-rw-r--r--drivers/mxc/security/rng/include/shw_driver.h2971
-rw-r--r--drivers/mxc/security/rng/include/shw_hash.h96
-rw-r--r--drivers/mxc/security/rng/include/shw_hmac.h82
-rw-r--r--drivers/mxc/security/rng/include/shw_internals.h162
-rw-r--r--drivers/mxc/security/rng/rng_driver.c1150
-rw-r--r--drivers/mxc/security/rng/shw_driver.c2335
-rw-r--r--drivers/mxc/security/rng/shw_dryice.c204
-rw-r--r--drivers/mxc/security/rng/shw_hash.c328
-rw-r--r--drivers/mxc/security/rng/shw_hmac.c145
-rw-r--r--drivers/mxc/security/rng/shw_memory_mapper.c213
21 files changed, 11243 insertions, 0 deletions
diff --git a/drivers/mxc/security/rng/Makefile b/drivers/mxc/security/rng/Makefile
new file mode 100644
index 000000000000..7d3332e2e675
--- /dev/null
+++ b/drivers/mxc/security/rng/Makefile
@@ -0,0 +1,35 @@
+# Makefile for the Linux RNG Driver
+#
+# This makefile works within a kernel driver tree
+
+ # Makefile for rng_driver
+
+
+# Possible configurable paramters
+CFG_RNG += -DRNGA_MAX_REQUEST_SIZE=32
+
+#DBG_RNGA = -DRNGA_DEBUG
+#DBG_RNGA += -DRNGA_REGISTER_DEBUG
+#DBG_RNGA += -DRNGA_ENTROPY_DEBUG
+
+EXTRA_CFLAGS = -DLINUX_KERNEL $(CFG_RNG) $(DBG_RNG)
+
+
+ifeq ($(CONFIG_MXC_RNG_TEST_DRIVER),y)
+EXTRA_CFLAGS += -DRNG_REGISTER_PEEK_POKE
+endif
+ifeq ($(CONFIG_RNG_DEBUG),y)
+EXTRA_CFLAGS += -DDEBUG
+endif
+
+
+EXTRA_CFLAGS += -Idrivers/mxc/security/rng/include -Idrivers/mxc/security/sahara2/include
+
+obj-$(CONFIG_MXC_SECURITY_RNG) += shw.o
+#shw-objs := shw_driver.o shw_memory_mapper.o ../sahara2/fsl_shw_keystore.o
+shw-objs := shw_driver.o shw_memory_mapper.o ../sahara2/fsl_shw_keystore.o \
+ fsl_shw_sym.o fsl_shw_wrap.o shw_dryice.o des_key.o \
+ shw_hash.o shw_hmac.o
+
+obj-$(CONFIG_MXC_SECURITY_RNG) += rng.o
+rng-objs := rng_driver.o
diff --git a/drivers/mxc/security/rng/des_key.c b/drivers/mxc/security/rng/des_key.c
new file mode 100644
index 000000000000..14ac2b3cdd5e
--- /dev/null
+++ b/drivers/mxc/security/rng/des_key.c
@@ -0,0 +1,385 @@
+/*
+ * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+
+/*!
+ * @file des_key.c
+ *
+ * This file implements the function #fsl_shw_permute1_bytes().
+ *
+ * The code was lifted from crypto++ v5.5.2, which is public domain code. The
+ * code to handle words instead of bytes was extensively modified from the byte
+ * version and then converted to handle one to three keys at once.
+ *
+ */
+
+#include "shw_driver.h"
+#ifdef DIAG_SECURITY_FUNC
+#include "apihelp.h"
+#endif
+
+#ifndef __KERNEL__
+#include <asm/types.h>
+#include <linux/byteorder/little_endian.h> /* or whichever is proper for target arch */
+#endif
+
+#ifdef DEBUG
+#undef DEBUG /* TEMPORARY */
+#endif
+
+#if defined(DEBUG) || defined(SELF_TEST)
+static void DUMP_BYTES(const char *label, const uint8_t * data, int len)
+{
+ int i;
+
+ printf("%s: ", label);
+ for (i = 0; i < len; i++) {
+ printf("%02X", data[i]);
+ if ((i % 8 == 0) && (i != 0)) {
+ printf("_"); /* key separator */
+ }
+ }
+ printf("\n");
+}
+
+static void DUMP_WORDS(const char *label, const uint32_t * data, int len)
+{
+ int i, j;
+
+ printf("%s: ", label);
+ /* Dump the words in reverse order, so that they are intelligible */
+ for (i = len - 1; i >= 0; i--) {
+ for (j = 3; j >= 0; j--) {
+ uint32_t word = data[i];
+ printf("%02X", (word >> ((j * 8)) & 0xff));
+ if ((i != 0) && ((((i) * 4 + 5 + j) % 7) == 5))
+ printf("_"); /* key separator */
+ }
+ printf("|"); /* word separator */
+ }
+ printf("\n");
+}
+#else
+#define DUMP_BYTES(label, data,len)
+#define DUMP_WORDS(label, data,len)
+#endif
+
+/*!
+ * permuted choice table (key)
+ *
+ * Note that this table has had one subtracted from each element so that the
+ * code doesn't have to do it.
+ */
+static const uint8_t pc1[] = {
+ 56, 48, 40, 32, 24, 16, 8,
+ 0, 57, 49, 41, 33, 25, 17,
+ 9, 1, 58, 50, 42, 34, 26,
+ 18, 10, 2, 59, 51, 43, 35,
+ 62, 54, 46, 38, 30, 22, 14,
+ 6, 61, 53, 45, 37, 29, 21,
+ 13, 5, 60, 52, 44, 36, 28,
+ 20, 12, 4, 27, 19, 11, 3,
+};
+
+/*! bit 0 is left-most in byte */
+static const int bytebit[] = {
+ 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
+};
+
+/*!
+ * Convert a 3-key 3DES key into the first-permutation 168-bit version.
+ *
+ * This is the format of the input key:
+ *
+ * @verbatim
+ BIT: |191 128|127 64|63 0|
+ BYTE: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
+ KEY: | 0 | 1 | 2 |
+ @endverbatim
+ *
+ * This is the format of the output key:
+ *
+ * @verbatim
+ BIT: |167 112|111 56|55 0|
+ BYTE: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
+ KEY: | 1 | 2 | 3 |
+ @endverbatim
+ *
+ * @param[in] key bytes of 3DES key
+ * @param[out] permuted_key 21 bytes of permuted key
+ * @param[in] key_count How many DES keys (2 or 3)
+ */
+void fsl_shw_permute1_bytes(const uint8_t * key, uint8_t * permuted_key,
+ int key_count)
+{
+ int i;
+ int j;
+ int l;
+ int m;
+
+ DUMP_BYTES("Input key", key, 8 * key_count);
+
+ /* For each individual sub-key */
+ for (i = 0; i < 3; i++) {
+ DUMP_BYTES("(key)", key, 8);
+ memset(permuted_key, 0, 7);
+ /* For each bit of key */
+ for (j = 0; j < 56; j++) { /* convert pc1 to bits of key */
+ l = pc1[j]; /* integer bit location */
+ m = l & 07; /* find bit */
+ permuted_key[j >> 3] |= (((key[l >> 3] & /* find which key byte l is in */
+ bytebit[m]) /* and which bit of that byte */
+ ? 0x80 : 0) >> (j % 8)); /* and store 1-bit result */
+ }
+ switch (i) {
+ case 0:
+ if (key_count != 1)
+ key += 8; /* move on to second key */
+ break;
+ case 1:
+ if (key_count == 2)
+ key -= 8; /* go back to first key */
+ else if (key_count == 3)
+ key += 8; /* move on to third key */
+ break;
+ default:
+ break;
+ }
+ permuted_key += 7;
+ }
+ DUMP_BYTES("Output key (bytes)", permuted_key - 21, 21);
+}
+
+#ifdef SELF_TEST
+const uint8_t key1_in[] = {
+ /* FE01FE01FE01FE01_01FE01FE01FE01FE_FEFE0101FEFE0101 */
+ 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01,
+ 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE,
+ 0xFE, 0xFE, 0x01, 0x01, 0xFE, 0xFE, 0x01, 0x01
+};
+
+const uint32_t key1_word_in[] = {
+ 0xFE01FE01, 0xFE01FE01,
+ 0x01FE01FE, 0x01FE01FE,
+ 0xFEFE0101, 0xFEFE0101
+};
+
+uint8_t exp_key1_out[] = {
+ 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
+ 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
+ 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33
+};
+
+uint32_t exp_word_key1_out[] = {
+ 0x33333333, 0xAA333333, 0xAAAAAAAA, 0x5555AAAA,
+ 0x55555555, 0x00000055,
+};
+
+const uint8_t key2_in[] = {
+ 0xEF, 0x10, 0xBB, 0xA4, 0x23, 0x49, 0x42, 0x58,
+ 0x01, 0x28, 0x01, 0x4A, 0x10, 0xE4, 0x03, 0x59,
+ 0xFE, 0x84, 0x30, 0x29, 0x8E, 0xF1, 0x10, 0x5A
+};
+
+const uint32_t key2_word_in[] = {
+ 0xEF10BBA4, 0x23494258,
+ 0x0128014A, 0x10E40359,
+ 0xFE843029, 0x8EF1105A
+};
+
+uint8_t exp_key2_out[] = {
+ 0x0D, 0xE1, 0x1D, 0x85, 0x50, 0x9A, 0x56, 0x20,
+ 0xA8, 0x22, 0x94, 0x82, 0x08, 0xA0, 0x33, 0xA1,
+ 0x2D, 0xE9, 0x11, 0x39, 0x95
+};
+
+uint32_t exp_word_key2_out[] = {
+ 0xE9113995, 0xA033A12D, 0x22948208, 0x9A5620A8,
+ 0xE11D8550, 0x0000000D
+};
+
+const uint8_t key3_in[] = {
+ 0x3F, 0xE9, 0x49, 0x4B, 0x67, 0x57, 0x07, 0x3C,
+ 0x89, 0x77, 0x73, 0x0C, 0xA0, 0x05, 0x41, 0x69,
+ 0xB3, 0x7C, 0x98, 0xD8, 0xC9, 0x35, 0x57, 0x19
+};
+
+const uint32_t key3_word_in[] = {
+ 0xEF10BBA4, 0x23494258,
+ 0x0128014A, 0x10E40359,
+ 0xFE843029, 0x8EF1105A
+};
+
+uint8_t exp_key3_out[] = {
+ 0x02, 0x3E, 0x93, 0xA7, 0x9F, 0x18, 0xF1, 0x11,
+ 0xC6, 0x96, 0x00, 0x62, 0xA8, 0x96, 0x02, 0x3E,
+ 0x93, 0xA7, 0x9F, 0x18, 0xF1
+};
+
+uint32_t exp_word_key3_out[] = {
+ 0xE9113995, 0xA033A12D, 0x22948208, 0x9A5620A8,
+ 0xE11D8550, 0x0000000D
+};
+
+const uint8_t key4_in[] = {
+ 0x3F, 0xE9, 0x49, 0x4B, 0x67, 0x57, 0x07, 0x3C,
+ 0x89, 0x77, 0x73, 0x0C, 0xA0, 0x05, 0x41, 0x69,
+};
+
+const uint32_t key4_word_in[] = {
+ 0xEF10BBA4, 0x23494258,
+ 0x0128014A, 0x10E40359,
+ 0xFE843029, 0x8EF1105A
+};
+
+const uint8_t key5_in[] = {
+ 0x3F, 0xE9, 0x49, 0x4B, 0x67, 0x57, 0x07, 0x3C,
+ 0x89, 0x77, 0x73, 0x0C, 0xA0, 0x05, 0x41, 0x69,
+ 0x3F, 0xE9, 0x49, 0x4B, 0x67, 0x57, 0x07, 0x3C,
+};
+
+uint8_t exp_key4_out[] = {
+ 0x0D, 0xE1, 0x1D, 0x85, 0x50, 0x9A, 0x56, 0x20,
+ 0xA8, 0x22, 0x94, 0x82, 0x08, 0xA0, 0x33, 0xA1,
+ 0x2D, 0xE9, 0x11, 0x39, 0x95
+};
+
+uint32_t exp_word_key4_out[] = {
+ 0xE9113995, 0xA033A12D, 0x22948208, 0x9A5620A8,
+ 0xE11D8550, 0x0000000D
+};
+
+const uint8_t key6_in[] = {
+ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
+ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
+ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01
+};
+
+uint8_t exp_key6_out[] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00
+};
+
+uint32_t exp_word_key6_out[] = {
+ 0x00000000, 0x0000000, 0x0000000, 0x00000000,
+ 0x00000000, 0x0000000
+};
+
+const uint8_t key7_in[] = {
+ /* 01FE01FE01FE01FE_FE01FE01FE01FE01_0101FEFE0101FEFE */
+ /* 0101FEFE0101FEFE_FE01FE01FE01FE01_01FE01FE01FE01FE */
+ 0x01, 0x01, 0xFE, 0xFE, 0x01, 0x01, 0xFE, 0xFE,
+ 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01,
+ 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE,
+};
+
+uint8_t exp_key7_out[] = {
+ 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0x55,
+ 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa,
+ 0xaa, 0xaa, 0xaa, 0xaa, 0xaa
+};
+
+uint32_t exp_word_key7_out[] = {
+ 0xcccccccc, 0x55cccccc, 0x55555555, 0xaaaa5555,
+ 0xaaaaaaaa, 0x000000aa
+};
+
+int run_test(const uint8_t * key_in,
+ const int key_count,
+ const uint32_t * key_word_in,
+ const uint8_t * exp_bytes_key_out,
+ const uint32_t * exp_word_key_out)
+{
+ uint8_t key_out[22];
+ uint32_t word_key_out[6];
+ int failed = 0;
+
+ memset(key_out, 0x42, 22);
+ fsl_shw_permute1_bytes(key_in, key_out, key_count);
+ if (memcmp(key_out, exp_bytes_key_out, 21) != 0) {
+ printf("bytes_to_bytes: ERROR: \n");
+ DUMP_BYTES("key_in", key_in, 8 * key_count);
+ DUMP_BYTES("key_out", key_out, 21);
+ DUMP_BYTES("exp_out", exp_bytes_key_out, 21);
+ failed |= 1;
+ } else if (key_out[21] != 0x42) {
+ printf("bytes_to_bytes: ERROR: Buffer overflow 0x%02x\n",
+ (int)key_out[21]);
+ } else {
+ printf("bytes_to_bytes: OK\n");
+ }
+#if 0
+ memset(word_key_out, 0x42, 21);
+ fsl_shw_permute1_bytes_to_words(key_in, word_key_out, key_count);
+ if (memcmp(word_key_out, exp_word_key_out, 21) != 0) {
+ printf("bytes_to_words: ERROR: \n");
+ DUMP_BYTES("key_in", key_in, 8 * key_count);
+ DUMP_WORDS("key_out", word_key_out, 6);
+ DUMP_WORDS("exp_out", exp_word_key_out, 6);
+ failed |= 1;
+ } else {
+ printf("bytes_to_words: OK\n");
+ }
+
+ if (key_word_in != NULL) {
+ memset(word_key_out, 0x42, 21);
+ fsl_shw_permute1_words_to_words(key_word_in, word_key_out);
+ if (memcmp(word_key_out, exp_word_key_out, 21) != 0) {
+ printf("words_to_words: ERROR: \n");
+ DUMP_BYTES("key_in", key_in, 24);
+ DUMP_WORDS("key_out", word_key_out, 6);
+ DUMP_WORDS("exp_out", exp_word_key_out, 6);
+ failed |= 1;
+ } else {
+ printf("words_to_words: OK\n");
+ }
+ }
+#endif
+
+ return failed;
+} /* end fn run_test */
+
+int main()
+{
+ int failed = 0;
+
+ printf("key1\n");
+ failed |=
+ run_test(key1_in, 3, key1_word_in, exp_key1_out, exp_word_key1_out);
+ printf("\nkey2\n");
+ failed |=
+ run_test(key2_in, 3, key2_word_in, exp_key2_out, exp_word_key2_out);
+ printf("\nkey3\n");
+ failed |= run_test(key3_in, 3, NULL, exp_key3_out, exp_word_key3_out);
+ printf("\nkey4\n");
+ failed |= run_test(key4_in, 2, NULL, exp_key4_out, exp_word_key4_out);
+ printf("\nkey5\n");
+ failed |= run_test(key5_in, 3, NULL, exp_key4_out, exp_word_key4_out);
+ printf("\nkey6 - 3\n");
+ failed |= run_test(key6_in, 3, NULL, exp_key6_out, exp_word_key6_out);
+ printf("\nkey6 - 2\n");
+ failed |= run_test(key6_in, 2, NULL, exp_key6_out, exp_word_key6_out);
+ printf("\nkey6 - 1\n");
+ failed |= run_test(key6_in, 1, NULL, exp_key6_out, exp_word_key6_out);
+ printf("\nkey7\n");
+ failed |= run_test(key7_in, 3, NULL, exp_key7_out, exp_word_key7_out);
+ printf("\n");
+
+ if (failed != 0) {
+ printf("TEST FAILED\n");
+ }
+ return failed;
+}
+
+#endif /* SELF_TEST */
diff --git a/drivers/mxc/security/rng/fsl_shw_hash.c b/drivers/mxc/security/rng/fsl_shw_hash.c
new file mode 100644
index 000000000000..56b2dcc34035
--- /dev/null
+++ b/drivers/mxc/security/rng/fsl_shw_hash.c
@@ -0,0 +1,84 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+
+/*!
+ * @file fsl_shw_hash.c
+ *
+ * This file implements Cryptographic Hashing functions of the FSL SHW API
+ * for Sahara. This does not include HMAC.
+ */
+
+#include "shw_driver.h"
+
+/* REQ-S2LRD-PINTFC-API-BASIC-HASH-005 */
+/*!
+ * Hash a stream of data with a cryptographic hash algorithm.
+ *
+ * The flags in the @a hash_ctx control the operation of this function.
+ *
+ * Hashing functions work on 64 octets of message at a time. Therefore, when
+ * any partial hashing of a long message is performed, the message @a length of
+ * each segment must be a multiple of 64. When ready to
+ * #FSL_HASH_FLAGS_FINALIZE the hash, the @a length may be any value.
+ *
+ * With the #FSL_HASH_FLAGS_INIT and #FSL_HASH_FLAGS_FINALIZE flags on, a
+ * one-shot complete hash, including padding, will be performed. The @a length
+ * may be any value.
+ *
+ * The first octets of a data stream can be hashed by setting the
+ * #FSL_HASH_FLAGS_INIT and #FSL_HASH_FLAGS_SAVE flags. The @a length must be
+ * a multiple of 64.
+ *
+ * The flag #FSL_HASH_FLAGS_LOAD is used to load a context previously saved by
+ * #FSL_HASH_FLAGS_SAVE. The two in combination will allow a (multiple-of-64
+ * octets) 'middle sequence' of the data stream to be hashed with the
+ * beginning. The @a length must again be a multiple of 64.
+ *
+ * Since the flag #FSL_HASH_FLAGS_LOAD is used to load a context previously
+ * saved by #FSL_HASH_FLAGS_SAVE, the #FSL_HASH_FLAGS_LOAD and
+ * #FSL_HASH_FLAGS_FINALIZE flags, used together, can be used to finish the
+ * stream. The @a length may be any value.
+ *
+ * If the user program wants to do the padding for the hash, it can leave off
+ * the #FSL_HASH_FLAGS_FINALIZE flag. The @a length must then be a multiple of
+ * 64 octets.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param[in,out] hash_ctx Hashing algorithm and state of the cipher.
+ * @param msg Pointer to the data to be hashed.
+ * @param length Length, in octets, of the @a msg.
+ * @param[out] result If not null, pointer to where to store the hash
+ * digest.
+ * @param result_len Number of octets to store in @a result.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_hash(fsl_shw_uco_t * user_ctx,
+ fsl_shw_hco_t * hash_ctx,
+ const uint8_t * msg,
+ uint32_t length,
+ uint8_t * result, uint32_t result_len)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+
+ /* Unused */
+ (void)user_ctx;
+ (void)hash_ctx;
+ (void)msg;
+ (void)length;
+ (void)result;
+ (void)result_len;
+
+ return ret;
+}
diff --git a/drivers/mxc/security/rng/fsl_shw_hmac.c b/drivers/mxc/security/rng/fsl_shw_hmac.c
new file mode 100644
index 000000000000..23a2fb3d3292
--- /dev/null
+++ b/drivers/mxc/security/rng/fsl_shw_hmac.c
@@ -0,0 +1,83 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+
+/*!
+ * @file fsl_shw_hmac.c
+ *
+ * This file implements Hashed Message Authentication Code functions of the FSL
+ * SHW API.
+ */
+
+#include "shw_driver.h"
+
+/* REQ-S2LRD-PINTFC-API-BASIC-HMAC-001 */
+/*!
+ * Get the precompute information
+ *
+ *
+ * @param user_ctx
+ * @param key_info
+ * @param hmac_ctx
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_hmac_precompute(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_hmco_t * hmac_ctx)
+{
+ fsl_shw_return_t status = FSL_RETURN_ERROR_S;
+
+ /* Unused */
+ (void)user_ctx;
+ (void)key_info;
+ (void)hmac_ctx;
+
+ return status;
+}
+
+/* REQ-S2LRD-PINTFC-API-BASIC-HMAC-002 */
+/*!
+ * Get the hmac
+ *
+ *
+ * @param user_ctx Info for acquiring memory
+ * @param key_info
+ * @param hmac_ctx
+ * @param msg
+ * @param length
+ * @param result
+ * @param result_len
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_hmac(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_hmco_t * hmac_ctx,
+ const uint8_t * msg,
+ uint32_t length,
+ uint8_t * result, uint32_t result_len)
+{
+ fsl_shw_return_t status = FSL_RETURN_ERROR_S;
+
+ /* Unused */
+ (void)user_ctx;
+ (void)key_info;
+ (void)hmac_ctx;
+ (void)msg;
+ (void)length;
+ (void)result;
+ (void)result_len;
+
+ return status;
+}
diff --git a/drivers/mxc/security/rng/fsl_shw_rand.c b/drivers/mxc/security/rng/fsl_shw_rand.c
new file mode 100644
index 000000000000..7ba49d8d470f
--- /dev/null
+++ b/drivers/mxc/security/rng/fsl_shw_rand.c
@@ -0,0 +1,122 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+
+/*!
+ * @file fsl_shw_rand.c
+ *
+ * This file implements Random Number Generation functions of the FSL SHW API
+ * in USER MODE for talking to a standalone RNGA/RNGC device driver.
+ *
+ * It contains the fsl_shw_get_random() and fsl_shw_add_entropy() functions.
+ *
+ * These routines will build a request block and pass it to the SHW driver.
+ */
+
+#include <unistd.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/fcntl.h>
+#include <sys/ioctl.h>
+#include <signal.h>
+
+#ifdef FSL_DEBUG
+#include <stdio.h>
+#include <errno.h>
+#include <string.h>
+#endif /* FSL_DEBUG */
+
+#include "shw_driver.h"
+
+extern fsl_shw_return_t validate_uco(fsl_shw_uco_t * uco);
+
+#if defined(FSL_HAVE_RNGA) || defined(FSL_HAVE_RNGB) || defined(FSL_HAVE_RNGC)
+
+/* REQ-S2LRD-PINTFC-API-BASIC-RNG-002 */
+fsl_shw_return_t fsl_shw_get_random(fsl_shw_uco_t * user_ctx,
+ uint32_t length, uint8_t * data)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+
+ /* perform a sanity check / update uco */
+ ret = validate_uco(user_ctx);
+ if (ret == FSL_RETURN_OK_S) {
+ struct get_random_req *req = malloc(sizeof(*req));
+
+ if (req == NULL) {
+ ret = FSL_RETURN_NO_RESOURCE_S;
+ } else {
+
+ init_req(&req->hdr, user_ctx);
+ req->size = length;
+ req->random = data;
+
+ ret =
+ send_req(SHW_USER_REQ_GET_RANDOM, &req->hdr,
+ user_ctx);
+ }
+ }
+
+ return ret;
+}
+
+fsl_shw_return_t fsl_shw_add_entropy(fsl_shw_uco_t * user_ctx,
+ uint32_t length, uint8_t * data)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+
+ /* perform a sanity check on the uco */
+ ret = validate_uco(user_ctx);
+ if (ret == FSL_RETURN_OK_S) {
+ struct add_entropy_req *req = malloc(sizeof(*req));
+
+ if (req == NULL) {
+ ret = FSL_RETURN_NO_RESOURCE_S;
+ } else {
+ init_req(&req->hdr, user_ctx);
+ req->size = length;
+ req->entropy = data;
+
+ ret =
+ send_req(SHW_USER_REQ_ADD_ENTROPY, &req->hdr,
+ user_ctx);
+ }
+ }
+
+ return ret;
+}
+
+#else /* no H/W RNG block */
+
+fsl_shw_return_t fsl_shw_get_random(fsl_shw_uco_t * user_ctx,
+ uint32_t length, uint8_t * data)
+{
+
+ (void)user_ctx;
+ (void)length;
+ (void)data;
+
+ return FSL_RETURN_ERROR_S;
+}
+
+fsl_shw_return_t fsl_shw_add_entropy(fsl_shw_uco_t * user_ctx,
+ uint32_t length, uint8_t * data)
+{
+
+ (void)user_ctx;
+ (void)length;
+ (void)data;
+
+ return FSL_RETURN_ERROR_S;
+}
+#endif
diff --git a/drivers/mxc/security/rng/fsl_shw_sym.c b/drivers/mxc/security/rng/fsl_shw_sym.c
new file mode 100644
index 000000000000..bcd8a0efcced
--- /dev/null
+++ b/drivers/mxc/security/rng/fsl_shw_sym.c
@@ -0,0 +1,317 @@
+/*
+ * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+
+/*!
+ * @file fsl_shw_sym.c
+ *
+ * This file implements the Symmetric Cipher functions of the FSL SHW API. Its
+ * features are limited to what can be done with the combination of SCC and
+ * DryIce.
+ */
+#include "fsl_platform.h"
+#include "shw_driver.h"
+
+#if defined(__KERNEL__) && defined(FSL_HAVE_DRYICE)
+
+#include "../dryice.h"
+#include <linux/mxc_scc_driver.h>
+#ifdef DIAG_SECURITY_FUNC
+#include "apihelp.h"
+#endif
+
+#include <diagnostic.h>
+
+#define SYM_DECRYPT 0
+#define SYM_ENCRYPT 1
+
+extern fsl_shw_return_t shw_convert_pf_key(fsl_shw_pf_key_t shw_pf_key,
+ di_key_t * di_keyp);
+
+/*! 'Initial' IV for presence of FSL_SYM_CTX_LOAD flag */
+static uint8_t zeros[8] = {
+ 0, 0, 0, 0, 0, 0, 0, 0
+};
+
+/*!
+ * Common function for encryption and decryption
+ *
+ * This is for a device with DryIce.
+ *
+ * A key must either refer to a 'pure' HW key, or, if PRG or PRG_IIM,
+ * established, then that key will be programmed. Then, the HW_key in the
+ * object will be selected. After this setup, the ciphering will be performed
+ * by calling the SCC driver..
+ *
+ * The function 'releases' the reservations before it completes.
+ */
+fsl_shw_return_t do_symmetric(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_scco_t * sym_ctx,
+ int encrypt,
+ uint32_t length,
+ const uint8_t * in, uint8_t * out)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+ int key_selected = 0;
+ uint8_t *iv = NULL;
+ unsigned long count_out = length;
+ di_key_t di_key = DI_KEY_PK; /* default for user key */
+ di_key_t di_key_orig; /* currently selected key */
+ di_key_t selected_key = -1;
+ di_return_t di_code;
+ scc_return_t scc_code;
+
+ /* For now, only blocking mode calls are supported */
+ if (!(user_ctx->flags & FSL_UCO_BLOCKING_MODE)) {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ /* No software keys allowed */
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ }
+
+ /* The only algorithm the SCC supports */
+ if (key_info->algorithm != FSL_KEY_ALG_TDES) {
+ ret = FSL_RETURN_BAD_ALGORITHM_S;
+ goto out;
+ }
+
+ /* Validate key length */
+ if ((key_info->key_length != 16)
+ && (key_info->key_length != 21)
+ && (key_info->key_length != 24)) {
+ ret = FSL_RETURN_BAD_KEY_LENGTH_S;
+ goto out;
+ }
+
+ /* Validate data is multiple of DES/TDES block */
+ if ((length & 7) != 0) {
+ ret = FSL_RETURN_BAD_DATA_LENGTH_S;
+ goto out;
+ }
+
+ /* Do some setup according to where the key lives */
+ if (key_info->flags & FSL_SKO_KEY_ESTABLISHED) {
+ if ((key_info->pf_key != FSL_SHW_PF_KEY_PRG)
+ && (key_info->pf_key != FSL_SHW_PF_KEY_IIM_PRG)) {
+ ret = FSL_RETURN_ERROR_S;
+ }
+ } else if (key_info->flags & FSL_SKO_KEY_PRESENT) {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ } else if (key_info->flags & FSL_SKO_KEY_SELECT_PF_KEY) {
+ /*
+ * No key present or established, just refer to HW
+ * as programmed.
+ */
+ } else {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ /* Now make proper selection */
+ ret = shw_convert_pf_key(key_info->pf_key, &di_key);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ /* Determine the current DI key selection */
+ di_code = dryice_check_key(&di_key_orig);
+ if (di_code != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Could not save current DI key state: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+
+ /* If the requested DI key is already selected, don't re-select it. */
+ if (di_key != di_key_orig) {
+ di_code = dryice_select_key(di_key, 0);
+ if (di_code != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Error from select_key: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_INTERNAL_ERROR_S;
+ goto out;
+ }
+ }
+ key_selected = 1;
+
+ /* Verify that we are using the key we want */
+ di_code = dryice_check_key(&selected_key);
+ if (di_code != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Error from check_key: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_INTERNAL_ERROR_S;
+ goto out;
+ }
+
+ if (di_key != selected_key) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Wrong key in use: %d instead of %d\n\n",
+ selected_key, di_key);
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+
+ if (sym_ctx->mode == FSL_SYM_MODE_CBC) {
+ if ((sym_ctx->flags & FSL_SYM_CTX_LOAD)
+ && !(sym_ctx->flags & FSL_SYM_CTX_INIT)) {
+ iv = sym_ctx->context;
+ } else if ((sym_ctx->flags & FSL_SYM_CTX_INIT)
+ && !(sym_ctx->flags & FSL_SYM_CTX_LOAD)) {
+ iv = zeros;
+ } else {
+ /* Exactly one must be set! */
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+ }
+
+ /* Now run the data through the SCC */
+ scc_code = scc_crypt(length, in, iv,
+ encrypt ? SCC_ENCRYPT : SCC_DECRYPT,
+ (sym_ctx->mode == FSL_SYM_MODE_ECB)
+ ? SCC_ECB_MODE : SCC_CBC_MODE,
+ SCC_VERIFY_MODE_NONE, out, &count_out);
+ if (scc_code != SCC_RET_OK) {
+ ret = FSL_RETURN_INTERNAL_ERROR_S;
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("scc_code from scc_crypt() is %d\n", scc_code);
+#endif
+ goto out;
+ }
+
+ if ((sym_ctx->mode == FSL_SYM_MODE_CBC)
+ && (sym_ctx->flags & FSL_SYM_CTX_SAVE)) {
+ /* Save the context for the caller */
+ if (encrypt) {
+ /* Last ciphertext block ... */
+ memcpy(sym_ctx->context, out + length - 8, 8);
+ } else {
+ /* Last ciphertext block ... */
+ memcpy(sym_ctx->context, in + length - 8, 8);
+ }
+ }
+
+ ret = FSL_RETURN_OK_S;
+
+ out:
+ if (key_selected) {
+ (void)dryice_release_key_selection();
+ }
+
+ return ret;
+}
+
+EXPORT_SYMBOL(fsl_shw_symmetric_encrypt);
+/*!
+ * Compute symmetric encryption
+ *
+ *
+ * @param user_ctx
+ * @param key_info
+ * @param sym_ctx
+ * @param length
+ * @param pt
+ * @param ct
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_symmetric_encrypt(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_scco_t * sym_ctx,
+ uint32_t length,
+ const uint8_t * pt, uint8_t * ct)
+{
+ fsl_shw_return_t ret;
+
+ ret = do_symmetric(user_ctx, key_info, sym_ctx, SYM_ENCRYPT,
+ length, pt, ct);
+
+ return ret;
+}
+
+EXPORT_SYMBOL(fsl_shw_symmetric_decrypt);
+/*!
+ * Compute symmetric decryption
+ *
+ *
+ * @param user_ctx
+ * @param key_info
+ * @param sym_ctx
+ * @param length
+ * @param pt
+ * @param ct
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_symmetric_decrypt(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_scco_t * sym_ctx,
+ uint32_t length,
+ const uint8_t * ct, uint8_t * pt)
+{
+ fsl_shw_return_t ret;
+
+ ret = do_symmetric(user_ctx, key_info, sym_ctx, SYM_DECRYPT,
+ length, ct, pt);
+
+ return ret;
+}
+
+#else /* __KERNEL__ && DRYICE */
+
+fsl_shw_return_t fsl_shw_symmetric_encrypt(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_scco_t * sym_ctx,
+ uint32_t length,
+ const uint8_t * pt, uint8_t * ct)
+{
+ /* Unused */
+ (void)user_ctx;
+ (void)key_info;
+ (void)sym_ctx;
+ (void)length;
+ (void)pt;
+ (void)ct;
+
+ return FSL_RETURN_ERROR_S;
+}
+
+fsl_shw_return_t fsl_shw_symmetric_decrypt(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_scco_t * sym_ctx,
+ uint32_t length,
+ const uint8_t * ct, uint8_t * pt)
+{
+ /* Unused */
+ (void)user_ctx;
+ (void)key_info;
+ (void)sym_ctx;
+ (void)length;
+ (void)ct;
+ (void)pt;
+
+ return FSL_RETURN_ERROR_S;
+}
+
+#endif /* __KERNEL__ and DRYICE */
diff --git a/drivers/mxc/security/rng/fsl_shw_wrap.c b/drivers/mxc/security/rng/fsl_shw_wrap.c
new file mode 100644
index 000000000000..c7d6947296af
--- /dev/null
+++ b/drivers/mxc/security/rng/fsl_shw_wrap.c
@@ -0,0 +1,1301 @@
+/*
+ * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+/*!
+ * @file fsl_shw_wrap.c
+ *
+ * This file implements Key-Wrap (Black Key) and Key Establishment functions of
+ * the FSL SHW API for the SHW (non-SAHARA) driver.
+ *
+ * This is the Black Key information:
+ *
+ * <ul>
+ * <li> Ownerid is an 8-byte, user-supplied, value to keep KEY
+ * confidential.</li>
+ * <li> KEY is a 1-32 byte value which starts in SCC RED RAM before
+ * wrapping, and ends up there on unwrap. Length is limited because of
+ * size of SCC1 RAM.</li>
+ * <li> KEY' is the encrypted KEY</li>
+ * <li> LEN is a 1-byte (for now) byte-length of KEY</li>
+ * <li> ALG is a 1-byte value for the algorithm which which the key is
+ * associated. Values are defined by the FSL SHW API</li>
+ * <li> FLAGS is a 1-byte value contain information like "this key is for
+ * software" (TBD)</li>
+ * <li> Ownerid, LEN, and ALG come from the user's "key_info" object, as does
+ * the slot number where KEY already is/will be.</li>
+ * <li> T is a Nonce</li>
+ * <li> T' is the encrypted T</li>
+ * <li> KEK is a Key-Encryption Key for the user's Key</li>
+ * <li> ICV is the "Integrity Check Value" for the wrapped key</li>
+ * <li> Black Key is the string of bytes returned as the wrapped key</li>
+ * <li> Wrap Key is the user's choice for encrypting the nonce. One of
+ * the Fused Key, the Random Key, or the XOR of the two.
+ * </ul>
+<table border="0">
+<tr><TD align="right">BLACK_KEY <TD width="3">=<TD>ICV | T' | LEN | ALG |
+ FLAGS | KEY'</td></tr>
+<tr><td>&nbsp;</td></tr>
+
+<tr><th>To Wrap</th></tr>
+<tr><TD align="right">T</td> <TD width="3">=</td> <TD>RND()<sub>16</sub>
+ </td></tr>
+<tr><TD align="right">KEK</td><TD width="3">=</td><TD>HASH<sub>sha256</sub>(T |
+ Ownerid)<sub>16</sub></td></tr>
+<tr><TD align="right">KEY'<TD width="3">=</td><TD>
+ TDES<sub>cbc-enc</sub>(Key=KEK, Data=KEY, IV=Ownerid)</td></tr>
+<tr><TD align="right">ICV</td><TD width="3">=</td><td>HMAC<sub>sha256</sub>
+ (Key=T, Data=Ownerid | LEN | ALG | FLAGS | KEY')<sub>16</sub></td></tr>
+<tr><TD align="right">T'</td><TD width="3">=</td><TD>TDES<sub>ecb-enc</sub>
+ (Key=Wrap_Key, IV=Ownerid, Data=T)</td></tr>
+
+<tr><td>&nbsp;</td></tr>
+
+<tr><th>To Unwrap</th></tr>
+<tr><TD align="right">T</td><TD width="3">=</td><TD>TDES<sub>ecb-dec</sub>
+ (Key=Wrap_Key, IV=Ownerid, Data=T')</td></tr>
+<tr><TD align="right">ICV</td><TD width="3">=</td><td>HMAC<sub>sha256</sub>
+ (Key=T, Data=Ownerid | LEN | ALG | FLAGS | KEY')<sub>16</sub></td></tr>
+<tr><TD align="right">KEK</td><TD width="3">=</td><td>HASH<sub>sha256</sub>
+ (T | Ownerid)<sub>16</sub></td></tr>
+<tr><TD align="right">KEY<TD width="3">=</td><TD>TDES<sub>cbc-dec</sub>
+ (Key=KEK, Data=KEY', IV=Ownerid)</td></tr>
+</table>
+
+ * This code supports two types of keys: Software Keys and keys destined for
+ * (or residing in) the DryIce Programmed Key Register.
+ *
+ * Software Keys go to / from the keystore.
+ *
+ * PK keys go to / from the DryIce Programmed Key Register.
+ *
+ * This code only works on a platform with DryIce. "software" keys go into
+ * the keystore. "Program" keys go to the DryIce Programmed Key Register.
+ * As far as this code is concerned, the size of that register is 21 bytes,
+ * the size of a 3DES key with parity stripped.
+ *
+ * The maximum key size supported for wrapped/unwrapped keys depends upon
+ * LENGTH_LENGTH. Currently, it is one byte, so the maximum key size is
+ * 255 bytes. However, key objects cannot currently hold a key of this
+ * length, so a smaller key size is the max.
+ */
+
+#include "fsl_platform.h"
+
+/* This code only works in kernel mode */
+
+#include "shw_driver.h"
+#ifdef DIAG_SECURITY_FUNC
+#include "apihelp.h"
+#endif
+
+#if defined(__KERNEL__) && defined(FSL_HAVE_DRYICE)
+
+#include "../dryice.h"
+#include <linux/mxc_scc_driver.h>
+
+#include "portable_os.h"
+#include "fsl_shw_keystore.h"
+
+#include <diagnostic.h>
+
+#include "shw_hmac.h"
+#include "shw_hash.h"
+
+#define ICV_LENGTH 16
+#define T_LENGTH 16
+#define KEK_LENGTH 21
+#define LENGTH_LENGTH 1
+#define ALGORITHM_LENGTH 1
+#define FLAGS_LENGTH 1
+
+/* ICV | T' | LEN | ALG | FLAGS | KEY' */
+#define ICV_OFFSET 0
+#define T_PRIME_OFFSET (ICV_OFFSET + ICV_LENGTH)
+#define LENGTH_OFFSET (T_PRIME_OFFSET + T_LENGTH)
+#define ALGORITHM_OFFSET (LENGTH_OFFSET + LENGTH_LENGTH)
+#define FLAGS_OFFSET (ALGORITHM_OFFSET + ALGORITHM_LENGTH)
+#define KEY_PRIME_OFFSET (FLAGS_OFFSET + FLAGS_LENGTH)
+
+#define FLAGS_SW_KEY 0x01
+
+#define LENGTH_PATCH 8
+#define LENGTH_PATCH_MASK (LENGTH_PATCH - 1)
+
+/*! rounded up from 168 bits to the next word size */
+#define HW_KEY_LEN_WORDS_BITS 192
+
+/*!
+ * Round a key length up to the TDES block size
+ *
+ * @param len Length of key, in bytes
+ *
+ * @return Length rounded up, if necessary
+ */
+#define ROUND_LENGTH(len) \
+({ \
+ uint32_t orig_len = len; \
+ uint32_t new_len; \
+ \
+ if ((orig_len & LENGTH_PATCH_MASK) != 0) { \
+ new_len = (orig_len + LENGTH_PATCH \
+ - (orig_len & LENGTH_PATCH_MASK)); \
+ } \
+ else { \
+ new_len = orig_len; \
+ } \
+ \
+ new_len; \
+})
+
+/* This is the system keystore object */
+extern fsl_shw_kso_t system_keystore;
+
+#ifdef DIAG_SECURITY_FUNC
+static void dump(const char *name, const uint8_t * data, unsigned int len)
+{
+ os_printk("%s: ", name);
+ while (len > 0) {
+ os_printk("%02x ", (unsigned)*data++);
+ len--;
+ }
+ os_printk("\n");
+}
+#endif
+
+/*
+ * For testing of the algorithm implementation,, the DO_REPEATABLE_WRAP flag
+ * causes the T_block to go into the T field during a wrap operation. This
+ * will make the black key value repeatable (for a given SCC secret key, or
+ * always if the default key is in use).
+ *
+ * Normally, a random sequence is used.
+ */
+#ifdef DO_REPEATABLE_WRAP
+/*!
+ * Block of zeroes which is maximum Symmetric block size, used for
+ * initializing context register, etc.
+ */
+static uint8_t T_block[16] = {
+ 0x42, 0, 0, 0x42, 0x42, 0, 0, 0x42,
+ 0x42, 0, 0, 0x42, 0x42, 0, 0, 0x42
+};
+#endif
+
+EXPORT_SYMBOL(fsl_shw_establish_key);
+EXPORT_SYMBOL(fsl_shw_read_key);
+EXPORT_SYMBOL(fsl_shw_extract_key);
+EXPORT_SYMBOL(fsl_shw_release_key);
+
+extern fsl_shw_return_t alloc_slot(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info);
+
+extern fsl_shw_return_t load_slot(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ const uint8_t * key);
+
+extern fsl_shw_return_t dealloc_slot(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info);
+
+/*!
+ * Initalialize SKO and SCCO used for T <==> T' cipher operation
+ *
+ * @param wrap_key Which wrapping key user wants
+ * @param key_info Key object for selecting wrap key
+ * @param wrap_ctx Sym Context object for doing the cipher op
+ */
+static inline void init_wrap_key(fsl_shw_pf_key_t wrap_key,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_scco_t * wrap_ctx)
+{
+ fsl_shw_sko_init_pf_key(key_info, FSL_KEY_ALG_TDES, wrap_key);
+ fsl_shw_scco_init(wrap_ctx, FSL_KEY_ALG_TDES, FSL_SYM_MODE_ECB);
+}
+
+/*!
+ * Insert descriptors to calculate ICV = HMAC(key=T, data=LEN|ALG|KEY')
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param T Location of nonce (length is T_LENGTH bytes)
+ * @param userid Location of userid/ownerid
+ * @param userid_len Length, in bytes of @c userid
+ * @param black_key Beginning of Black Key region
+ * @param key_length Number of bytes of key' there are in @c black_key
+ * @param[out] hmac Location to store ICV. Will be tagged "USES" so
+ * sf routines will not try to free it.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+static fsl_shw_return_t calc_icv(const uint8_t * T,
+ const uint8_t * userid,
+ unsigned int userid_len,
+ const uint8_t * black_key,
+ uint32_t key_length, uint8_t * hmac)
+{
+ fsl_shw_return_t code;
+ shw_hmac_state_t hmac_state;
+
+ /* Load up T as key for the HMAC */
+ code = shw_hmac_init(&hmac_state, T, T_LENGTH);
+ if (code != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ /* Previous step loaded key; Now set up to hash the data */
+
+ /* Input - start with ownerid */
+ code = shw_hmac_update(&hmac_state, userid, userid_len);
+ if (code != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ /* Still input - Append black-key fields len, alg, key' */
+ code = shw_hmac_update(&hmac_state,
+ (void *)black_key + LENGTH_OFFSET,
+ (LENGTH_LENGTH
+ + ALGORITHM_LENGTH
+ + FLAGS_LENGTH + key_length));
+ if (code != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ /* Output - computed ICV/HMAC */
+ code = shw_hmac_final(&hmac_state, hmac, ICV_LENGTH);
+ if (code != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ out:
+
+ return code;
+} /* calc_icv */
+
+/*!
+ * Compute and return the KEK (Key Encryption Key) from the inputs
+ *
+ * @param userid The user's 'secret' for the key
+ * @param userid_len Length, in bytes of @c userid
+ * @param T The nonce
+ * @param[out] kek Location to store the computed KEK. It will
+ * be 21 bytes long.
+ *
+ * @return the usual error code
+ */
+static fsl_shw_return_t calc_kek(const uint8_t * userid,
+ unsigned int userid_len,
+ const uint8_t * T, uint8_t * kek)
+{
+ fsl_shw_return_t code = FSL_RETURN_INTERNAL_ERROR_S;
+ shw_hash_state_t hash_state;
+
+ code = shw_hash_init(&hash_state, FSL_HASH_ALG_SHA256);
+ if (code != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Hash init failed: %s\n", fsl_error_string(code));
+#endif
+ goto out;
+ }
+
+ code = shw_hash_update(&hash_state, T, T_LENGTH);
+ if (code != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Hash for T failed: %s\n",
+ fsl_error_string(code));
+#endif
+ goto out;
+ }
+
+ code = shw_hash_update(&hash_state, userid, userid_len);
+ if (code != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Hash for userid failed: %s\n",
+ fsl_error_string(code));
+#endif
+ goto out;
+ }
+
+ code = shw_hash_final(&hash_state, kek, KEK_LENGTH);
+ if (code != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Could not extract kek: %s\n",
+ fsl_error_string(code));
+#endif
+ goto out;
+ }
+
+#if KEK_LENGTH != 21
+ {
+ uint8_t permuted_kek[21];
+
+ fsl_shw_permute1_bytes(kek, permuted_kek, KEK_LENGTH / 8);
+ memcpy(kek, permuted_kek, 21);
+ memset(permuted_kek, 0, sizeof(permuted_kek));
+ }
+#endif
+
+#ifdef DIAG_SECURITY_FUNC
+ dump("kek", kek, 21);
+#endif
+
+ out:
+
+ return code;
+} /* end fn calc_kek */
+
+/*!
+ * Validate user's wrap key selection
+ *
+ * @param wrap_key The user's desired wrapping key
+ */
+static fsl_shw_return_t check_wrap_key(fsl_shw_pf_key_t wrap_key)
+{
+ /* unable to use desired key */
+ fsl_shw_return_t ret = FSL_RETURN_NO_RESOURCE_S;
+
+ if ((wrap_key != FSL_SHW_PF_KEY_IIM) &&
+ (wrap_key != FSL_SHW_PF_KEY_RND) &&
+ (wrap_key != FSL_SHW_PF_KEY_IIM_RND)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Invalid wrap_key in key wrap/unwrap attempt");
+#endif
+ goto out;
+ }
+ ret = FSL_RETURN_OK_S;
+
+ out:
+ return ret;
+} /* end fn check_wrap_key */
+
+/*!
+ * Perform unwrapping of a black key into a RED slot
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param[in,out] key_info The information about the key to be which will
+ * be unwrapped... key length, slot info, etc.
+ * @param black_key Encrypted key
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+static fsl_shw_return_t unwrap(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ const uint8_t * black_key)
+{
+ fsl_shw_return_t ret;
+ uint8_t hmac[ICV_LENGTH];
+ uint8_t T[T_LENGTH];
+ uint8_t kek[KEK_LENGTH + 20];
+ int key_length = black_key[LENGTH_OFFSET];
+ int rounded_key_length = ROUND_LENGTH(key_length);
+ uint8_t key[rounded_key_length];
+ fsl_shw_sko_t t_key_info;
+ fsl_shw_scco_t t_key_ctx;
+ fsl_shw_sko_t kek_key_info;
+ fsl_shw_scco_t kek_ctx;
+ int unwrapping_sw_key = key_info->flags & FSL_SKO_KEY_SW_KEY;
+ int pk_needs_restoration = 0; /* bool */
+ unsigned original_key_length = key_info->key_length;
+ int pk_was_held = 0;
+ uint8_t current_pk[21];
+ di_return_t di_code;
+
+ ret = check_wrap_key(user_ctx->wrap_key);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ if (black_key == NULL) {
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ dump("black", black_key, KEY_PRIME_OFFSET + key_length);
+#endif
+ /* Validate SW flags to prevent misuse */
+ if ((key_info->flags & FSL_SKO_KEY_SW_KEY)
+ && !(black_key[FLAGS_OFFSET] & FLAGS_SW_KEY)) {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ /* Compute T = 3des-dec-ecb(wrap_key, T') */
+ init_wrap_key(user_ctx->wrap_key, &t_key_info, &t_key_ctx);
+ ret = fsl_shw_symmetric_decrypt(user_ctx, &t_key_info, &t_key_ctx,
+ T_LENGTH,
+ black_key + T_PRIME_OFFSET, T);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Recovery of nonce (T) failed");
+#endif /*DIAG_SECURITY_FUNC */
+ goto out;
+ }
+
+ /* Compute ICV = HMAC(T, ownerid | len | alg | flags | key' */
+ ret = calc_icv(T, (uint8_t *) & key_info->userid,
+ sizeof(key_info->userid),
+ black_key, original_key_length, hmac);
+
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Calculation of ICV failed");
+#endif /*DIAG_SECURITY_FUNC */
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Validating MAC of wrapped key");
+#endif
+
+ /* Check computed ICV against value in Black Key */
+ if (memcmp(black_key + ICV_OFFSET, hmac, ICV_LENGTH) != 0) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Computed ICV fails validation\n");
+#endif
+ ret = FSL_RETURN_AUTH_FAILED_S;
+ goto out;
+ }
+
+ /* Compute KEK = SHA256(T | ownerid). */
+ ret = calc_kek((uint8_t *) & key_info->userid, sizeof(key_info->userid),
+ T, kek);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ if (unwrapping_sw_key) {
+ di_code = dryice_get_programmed_key(current_pk, 8 * 21);
+ if (di_code != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Could not save current PK: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ }
+
+ /*
+ * "Establish" the KEK in the PK. If the PK was held and unwrapping a
+ * software key, then release it and try again, but remember that we need
+ * to leave it 'held' if we are unwrapping a software key.
+ *
+ * If the PK is held while we are unwrapping a key for the PK, then
+ * the user didn't call release, so gets an error.
+ */
+ di_code = dryice_set_programmed_key(kek, 8 * 21, 0);
+ if ((di_code == DI_ERR_INUSE) && unwrapping_sw_key) {
+ /* Temporarily reprogram the PK out from under the user */
+ pk_was_held = 1;
+ dryice_release_programmed_key();
+ di_code = dryice_set_programmed_key(kek, 8 * 21, 0);
+ }
+ if (di_code != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Could not program KEK: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+
+ if (unwrapping_sw_key) {
+ pk_needs_restoration = 1;
+ }
+ dryice_release_programmed_key(); /* Because of previous 'set' */
+
+ /* Compute KEY = TDES-decrypt(KEK, KEY') */
+ fsl_shw_sko_init_pf_key(&kek_key_info, FSL_KEY_ALG_TDES,
+ FSL_SHW_PF_KEY_PRG);
+ fsl_shw_sko_set_key_length(&kek_key_info, KEK_LENGTH);
+
+ fsl_shw_scco_init(&kek_ctx, FSL_KEY_ALG_TDES, FSL_SYM_MODE_CBC);
+ fsl_shw_scco_set_flags(&kek_ctx, FSL_SYM_CTX_LOAD);
+ fsl_shw_scco_set_context(&kek_ctx, (uint8_t *) & key_info->userid);
+#ifdef DIAG_SECURITY_FUNC
+ dump("KEY'", black_key + KEY_PRIME_OFFSET, rounded_key_length);
+#endif
+ ret = fsl_shw_symmetric_decrypt(user_ctx, &kek_key_info, &kek_ctx,
+ rounded_key_length,
+ black_key + KEY_PRIME_OFFSET, key);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ dump("KEY", key, original_key_length);
+#endif
+ /* Now either put key into PK or into a slot */
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ ret = load_slot(user_ctx, key_info, key);
+ } else {
+ /*
+ * Since we have just unwrapped a program key, it had
+ * to have been wrapped as a program key, so it must
+ * be 168 bytes long and permuted ...
+ */
+ ret = dryice_set_programmed_key(key, 8 * key_length, 0);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+ }
+
+ out:
+ key_info->key_length = original_key_length;
+
+ if (pk_needs_restoration) {
+ di_code = dryice_set_programmed_key(current_pk, 8 * 21, 0);
+ }
+
+ if (!pk_was_held) {
+ dryice_release_programmed_key();
+ }
+
+ /* Erase tracks of confidential data */
+ memset(T, 0, T_LENGTH);
+ memset(key, 0, rounded_key_length);
+ memset(current_pk, 0, sizeof(current_pk));
+ memset(&t_key_info, 0, sizeof(t_key_info));
+ memset(&t_key_ctx, 0, sizeof(t_key_ctx));
+ memset(&kek_key_info, 0, sizeof(kek_key_info));
+ memset(&kek_ctx, 0, sizeof(kek_ctx));
+ memset(kek, 0, KEK_LENGTH);
+
+ return ret;
+} /* unwrap */
+
+/*!
+ * Perform wrapping of a black key from a RED slot (or the PK register)
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param[in,out] key_info The information about the key to be which will
+ * be wrapped... key length, slot info, etc.
+ * @param black_key Place to store encrypted key
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+static fsl_shw_return_t wrap(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info, uint8_t * black_key)
+{
+ fsl_shw_return_t ret = FSL_RETURN_OK_S;
+ fsl_shw_sko_t t_key_info; /* for holding T */
+ fsl_shw_scco_t t_key_ctx;
+ fsl_shw_sko_t kek_key_info;
+ fsl_shw_scco_t kek_ctx;
+ unsigned original_key_length = key_info->key_length;
+ unsigned rounded_key_length;
+ uint8_t T[T_LENGTH];
+ uint8_t kek[KEK_LENGTH + 20];
+ uint8_t *red_key = 0;
+ int red_key_malloced = 0; /* bool */
+ int pk_was_held = 0; /* bool */
+ uint8_t saved_pk[21];
+ uint8_t pk_needs_restoration; /* bool */
+ di_return_t di_code;
+
+ ret = check_wrap_key(user_ctx->wrap_key);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ if (black_key == NULL) {
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+
+ if (key_info->flags & FSL_SKO_KEY_SELECT_PF_KEY) {
+ if ((key_info->pf_key != FSL_SHW_PF_KEY_PRG)
+ && (key_info->pf_key != FSL_SHW_PF_KEY_IIM_PRG)) {
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ } else {
+ if (!(key_info->flags & FSL_SKO_KEY_ESTABLISHED)) {
+ ret = FSL_RETURN_BAD_FLAG_S; /* not established! */
+ goto out;
+ }
+ }
+
+ black_key[ALGORITHM_OFFSET] = key_info->algorithm;
+
+#ifndef DO_REPEATABLE_WRAP
+ /* Compute T = RND() */
+ ret = fsl_shw_get_random(user_ctx, T_LENGTH, T);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+#else
+ memcpy(T, T_block, T_LENGTH);
+#endif
+
+ /* Compute KEK = SHA256(T | ownerid). */
+ ret = calc_kek((uint8_t *) & key_info->userid, sizeof(key_info->userid),
+ T, kek);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Calculation of KEK failed\n");
+#endif /*DIAG_SECURITY_FUNC */
+ goto out;
+ }
+
+ rounded_key_length = ROUND_LENGTH(original_key_length);
+
+ di_code = dryice_get_programmed_key(saved_pk, 8 * 21);
+ if (di_code != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Could not save current PK: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+
+ /*
+ * Load KEK into DI PKR. Note that we are NOT permuting it before loading,
+ * so we are using it as though it is a 168-bit key ready for the SCC.
+ */
+ di_code = dryice_set_programmed_key(kek, 8 * 21, 0);
+ if (di_code == DI_ERR_INUSE) {
+ /* Temporarily reprogram the PK out from under the user */
+ pk_was_held = 1;
+ dryice_release_programmed_key();
+ di_code = dryice_set_programmed_key(kek, 8 * 21, 0);
+ }
+ if (di_code != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("Could not program KEK: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ pk_needs_restoration = 1;
+ dryice_release_programmed_key();
+
+ /* Find red key */
+ if (key_info->flags & FSL_SKO_KEY_SELECT_PF_KEY) {
+ black_key[LENGTH_OFFSET] = 21;
+ rounded_key_length = 24;
+
+ red_key = saved_pk;
+ } else {
+ black_key[LENGTH_OFFSET] = key_info->key_length;
+
+ red_key = os_alloc_memory(key_info->key_length, 0);
+ if (red_key == NULL) {
+ ret = FSL_RETURN_NO_RESOURCE_S;
+ goto out;
+ }
+ red_key_malloced = 1;
+
+ ret = fsl_shw_read_key(user_ctx, key_info, red_key);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+ }
+
+#ifdef DIAG_SECURITY_FUNC
+ dump("KEY", red_key, black_key[LENGTH_OFFSET]);
+#endif
+ /* Compute KEY' = TDES-encrypt(KEK, KEY) */
+ fsl_shw_sko_init_pf_key(&kek_key_info, FSL_KEY_ALG_TDES,
+ FSL_SHW_PF_KEY_PRG);
+ fsl_shw_sko_set_key_length(&kek_key_info, KEK_LENGTH);
+
+ fsl_shw_scco_init(&kek_ctx, FSL_KEY_ALG_TDES, FSL_SYM_MODE_CBC);
+ fsl_shw_scco_set_flags(&kek_ctx, FSL_SYM_CTX_LOAD);
+ fsl_shw_scco_set_context(&kek_ctx, (uint8_t *) & key_info->userid);
+ ret = fsl_shw_symmetric_encrypt(user_ctx, &kek_key_info, &kek_ctx,
+ rounded_key_length,
+ red_key, black_key + KEY_PRIME_OFFSET);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Encryption of KEY failed\n");
+#endif /*DIAG_SECURITY_FUNC */
+ goto out;
+ }
+
+ /* Set up flags info */
+ black_key[FLAGS_OFFSET] = 0;
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ black_key[FLAGS_OFFSET] |= FLAGS_SW_KEY;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ dump("KEY'", black_key + KEY_PRIME_OFFSET, rounded_key_length);
+#endif
+ /* Compute and store ICV into Black Key */
+ ret = calc_icv(T,
+ (uint8_t *) & key_info->userid,
+ sizeof(key_info->userid),
+ black_key, original_key_length, black_key + ICV_OFFSET);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Calculation of ICV failed\n");
+#endif /*DIAG_SECURITY_FUNC */
+ goto out;
+ }
+
+ /* Compute T' = 3des-enc-ecb(wrap_key, T); Result goes to Black Key */
+ init_wrap_key(user_ctx->wrap_key, &t_key_info, &t_key_ctx);
+ ret = fsl_shw_symmetric_encrypt(user_ctx, &t_key_info, &t_key_ctx,
+ T_LENGTH,
+ T, black_key + T_PRIME_OFFSET);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Encryption of nonce failed");
+#endif
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ dump("black", black_key, KEY_PRIME_OFFSET + black_key[LENGTH_OFFSET]);
+#endif
+
+ out:
+ if (pk_needs_restoration) {
+ dryice_set_programmed_key(saved_pk, 8 * 21, 0);
+ }
+
+ if (!pk_was_held) {
+ dryice_release_programmed_key();
+ }
+
+ if (red_key_malloced) {
+ memset(red_key, 0, key_info->key_length);
+ os_free_memory(red_key);
+ }
+
+ key_info->key_length = original_key_length;
+
+ /* Erase tracks of confidential data */
+ memset(T, 0, T_LENGTH);
+ memset(&t_key_info, 0, sizeof(t_key_info));
+ memset(&t_key_ctx, 0, sizeof(t_key_ctx));
+ memset(&kek_key_info, 0, sizeof(kek_key_info));
+ memset(&kek_ctx, 0, sizeof(kek_ctx));
+ memset(kek, 0, sizeof(kek));
+ memset(saved_pk, 0, sizeof(saved_pk));
+
+ return ret;
+} /* wrap */
+
+static fsl_shw_return_t create(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+ unsigned key_length = key_info->key_length;
+ di_return_t di_code;
+
+ if (!(key_info->flags & FSL_SKO_KEY_SW_KEY)) {
+ /* Must be creating key for PK */
+ if ((key_info->algorithm != FSL_KEY_ALG_TDES) ||
+ ((key_info->key_length != 16)
+ && (key_info->key_length != 21) /* permuted 168-bit key */
+ &&(key_info->key_length != 24))) {
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+
+ key_length = 21; /* 168-bit PK */
+ }
+
+ /* operational block */
+ {
+ uint8_t key_value[key_length];
+
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Creating random key\n");
+#endif
+ ret = fsl_shw_get_random(user_ctx, key_length, key_value);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("get_random for CREATE KEY failed\n");
+#endif
+ goto out;
+ }
+
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ ret = load_slot(user_ctx, key_info, key_value);
+ } else {
+ di_code =
+ dryice_set_programmed_key(key_value, 8 * key_length,
+ 0);
+ if (di_code != 0) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("di set_pk failed: %s\n",
+ di_error_string(di_code));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ ret = FSL_RETURN_OK_S;
+ }
+ memset(key_value, 0, key_length);
+ } /* end operational block */
+
+#ifdef DIAG_SECURITY_FUNC
+ if (ret != FSL_RETURN_OK_S) {
+ LOG_DIAG("Loading random key failed");
+ }
+#endif
+
+ out:
+
+ return ret;
+} /* end fn create */
+
+static fsl_shw_return_t accept(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info, const uint8_t * key)
+{
+ uint8_t permuted_key[21];
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+
+ if (key == NULL) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("ACCEPT: Red Key is NULL");
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ dump("red", key, key_info->key_length);
+#endif
+ /* Only SW keys go into the keystore */
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+
+ /* Copy in safe number of bytes of Red key */
+ ret = load_slot(user_ctx, key_info, key);
+ } else { /* not SW key */
+ di_return_t di_ret;
+
+ /* Only 3DES PGM key types can be established */
+ if (((key_info->pf_key != FSL_SHW_PF_KEY_PRG)
+ && (key_info->pf_key != FSL_SHW_PF_KEY_IIM_PRG))
+ || (key_info->algorithm != FSL_KEY_ALG_TDES)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS
+ ("ACCEPT: Failed trying to establish non-PRG"
+ " or invalid 3DES Key: iim%d, iim_prg%d, alg%d\n",
+ (key_info->pf_key != FSL_SHW_PF_KEY_PRG),
+ (key_info->pf_key != FSL_SHW_PF_KEY_IIM_PRG),
+ (key_info->algorithm != FSL_KEY_ALG_TDES));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ if ((key_info->key_length != 16)
+ && (key_info->key_length != 21)
+ && (key_info->key_length != 24)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("ACCEPT: Failed trying to establish"
+ " invalid 3DES Key: len=%d (%d)\n",
+ key_info->key_length,
+ ((key_info->key_length != 16)
+ && (key_info->key_length != 21)
+ && (key_info->key_length != 24)));
+#endif
+ ret = FSL_RETURN_BAD_KEY_LENGTH_S;
+ goto out;
+ }
+
+ /* Convert key into 168-bit value and put it into PK */
+ if (key_info->key_length != 21) {
+ fsl_shw_permute1_bytes(key, permuted_key,
+ key_info->key_length / 8);
+ di_ret =
+ dryice_set_programmed_key(permuted_key, 168, 0);
+ } else {
+ /* Already permuted ! */
+ di_ret = dryice_set_programmed_key(key, 168, 0);
+ }
+ if (di_ret != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS
+ ("ACCEPT: DryIce error setting Program Key: %s",
+ di_error_string(di_ret));
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ }
+
+ ret = FSL_RETURN_OK_S;
+
+ out:
+ memset(permuted_key, 0, 21);
+
+ return ret;
+} /* end fn accept */
+
+/*!
+ * Place a key into a protected location for use only by cryptographic
+ * algorithms.
+ *
+ * This only needs to be used to a) unwrap a key, or b) set up a key which
+ * could be wrapped by calling #fsl_shw_extract_key() at some later time).
+ *
+ * The protected key will not be available for use until this operation
+ * successfully completes.
+ *
+ * @bug This whole discussion needs review.
+ *
+ * This feature is not available for all platforms, nor for all algorithms and
+ * modes.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param[in,out] key_info The information about the key to be which will
+ * be established. In the create case, the key
+ * length must be set.
+ * @param establish_type How @a key will be interpreted to establish a
+ * key for use.
+ * @param key If @a establish_type is #FSL_KEY_WRAP_UNWRAP,
+ * this is the location of a wrapped key. If
+ * @a establish_type is #FSL_KEY_WRAP_CREATE, this
+ * parameter can be @a NULL. If @a establish_type
+ * is #FSL_KEY_WRAP_ACCEPT, this is the location
+ * of a plaintext key.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_establish_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_key_wrap_t establish_type,
+ const uint8_t * key)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+ unsigned original_key_length = key_info->key_length;
+ unsigned rounded_key_length;
+ unsigned slot_allocated = 0;
+
+ /* For now, only blocking mode calls are supported */
+ if (!(user_ctx->flags & FSL_UCO_BLOCKING_MODE)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("%s: Non-blocking call not supported\n",
+ __FUNCTION__);
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ /*
+ HW keys are always 'established', but otherwise do not allow user
+ * to establish over the top of an established key.
+ */
+ if ((key_info->flags & FSL_SKO_KEY_ESTABLISHED)
+ && !(key_info->flags & FSL_SKO_KEY_SELECT_PF_KEY)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("%s: Key already established\n", __FUNCTION__);
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ /* @bug VALIDATE KEY flags here -- SW or PRG/IIM_PRG */
+
+ /* Write operations into SCC memory require word-multiple number of
+ * bytes. For ACCEPT and CREATE functions, the key length may need
+ * to be rounded up. Calculate. */
+ if (LENGTH_PATCH && (original_key_length & LENGTH_PATCH_MASK) != 0) {
+ rounded_key_length = original_key_length + LENGTH_PATCH
+ - (original_key_length & LENGTH_PATCH_MASK);
+ } else {
+ rounded_key_length = original_key_length;
+ }
+
+ /* SW keys need a place to live */
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ ret = alloc_slot(user_ctx, key_info);
+ if (ret != FSL_RETURN_OK_S) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Slot allocation failed\n");
+#endif
+ goto out;
+ }
+ slot_allocated = 1;
+ }
+
+ switch (establish_type) {
+ case FSL_KEY_WRAP_CREATE:
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Creating random key\n");
+#endif
+ ret = create(user_ctx, key_info);
+ break;
+
+ case FSL_KEY_WRAP_ACCEPT:
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Accepting plaintext key\n");
+#endif
+ ret = accept(user_ctx, key_info, key);
+ break;
+
+ case FSL_KEY_WRAP_UNWRAP:
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Unwrapping wrapped key\n");
+#endif
+ ret = unwrap(user_ctx, key_info, key);
+ break;
+
+ default:
+ ret = FSL_RETURN_BAD_FLAG_S;
+ break;
+ } /* switch */
+
+ out:
+ if (ret != FSL_RETURN_OK_S) {
+ if (slot_allocated) {
+ (void)dealloc_slot(user_ctx, key_info);
+ }
+ key_info->flags &= ~FSL_SKO_KEY_ESTABLISHED;
+ } else {
+ key_info->flags |= FSL_SKO_KEY_ESTABLISHED;
+ }
+
+ return ret;
+} /* end fn fsl_shw_establish_key */
+
+/*!
+ * Wrap a key and retrieve the wrapped value.
+ *
+ * A wrapped key is a key that has been cryptographically obscured. It is
+ * only able to be used with #fsl_shw_establish_key().
+ *
+ * This function will also release a software key (see #fsl_shw_release_key())
+ * so it must be re-established before reuse. This is not true of PGM keys.
+ *
+ * This feature is not available for all platforms, nor for all algorithms and
+ * modes.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param key_info The information about the key to be deleted.
+ * @param[out] covered_key The location to store the 48-octet wrapped key.
+ * (This size is based upon the maximum key size
+ * of 32 octets).
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_extract_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ uint8_t * covered_key)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+
+ /* For now, only blocking mode calls are supported */
+ if (!(user_ctx->flags & FSL_UCO_BLOCKING_MODE)) {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Wrapping a key\n");
+#endif
+
+ if (!(key_info->flags & FSL_SKO_KEY_ESTABLISHED)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("%s: Key not established\n", __FUNCTION__);
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+ /* Verify that a SW key info really belongs to a SW key */
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ /* ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;*/
+ }
+
+ ret = wrap(user_ctx, key_info, covered_key);
+ if (ret != FSL_RETURN_OK_S) {
+ goto out;
+ }
+
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ /* Need to deallocate on successful extraction */
+ (void)dealloc_slot(user_ctx, key_info);
+ /* Mark key not available in the flags */
+ key_info->flags &=
+ ~(FSL_SKO_KEY_ESTABLISHED | FSL_SKO_KEY_PRESENT);
+ memset(key_info->key, 0, sizeof(key_info->key));
+ }
+
+ out:
+ return ret;
+} /* end fn fsl_shw_extract_key */
+
+/*!
+ * De-establish a key so that it can no longer be accessed.
+ *
+ * The key will need to be re-established before it can again be used.
+ *
+ * This feature is not available for all platforms, nor for all algorithms and
+ * modes.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param key_info The information about the key to be deleted.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_release_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+
+ /* For now, only blocking mode calls are supported */
+ if (!(user_ctx->flags & FSL_UCO_BLOCKING_MODE)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Not in blocking mode\n");
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Releasing a key\n");
+#endif
+
+ if (!(key_info->flags & FSL_SKO_KEY_ESTABLISHED)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Key not established\n");
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ if (key_info->flags & FSL_SKO_KEY_SW_KEY) {
+ (void)dealloc_slot(user_ctx, key_info);
+ /* Turn off 'established' flag */
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("dealloc_slot() called\n");
+#endif
+ key_info->flags &= ~FSL_SKO_KEY_ESTABLISHED;
+ ret = FSL_RETURN_OK_S;
+ goto out;
+ }
+
+ if ((key_info->pf_key == FSL_SHW_PF_KEY_PRG)
+ || (key_info->pf_key == FSL_SHW_PF_KEY_IIM_PRG)) {
+ di_return_t di_ret;
+
+ di_ret = dryice_release_programmed_key();
+ if (di_ret != DI_SUCCESS) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS
+ ("dryice_release_programmed_key() failed: %d\n",
+ di_ret);
+#endif
+ ret = FSL_RETURN_ERROR_S;
+ goto out;
+ }
+ } else {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Neither SW nor HW key\n");
+#endif
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ ret = FSL_RETURN_OK_S;
+
+ out:
+ return ret;
+} /* end fn fsl_shw_release_key */
+
+fsl_shw_return_t fsl_shw_read_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info, uint8_t * key)
+{
+ fsl_shw_return_t ret = FSL_RETURN_INTERNAL_ERROR_S;
+
+ /* Only blocking mode calls are supported */
+ if (!(user_ctx->flags & FSL_UCO_BLOCKING_MODE)) {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+ printk("Reading a key\n");
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG("Reading a key");
+#endif
+ if (key_info->flags & FSL_SKO_KEY_PRESENT) {
+ memcpy(key_info->key, key, key_info->key_length);
+ ret = FSL_RETURN_OK_S;
+ } else if (key_info->flags & FSL_SKO_KEY_ESTABLISHED) {
+ printk("key established\n");
+ if (key_info->keystore == NULL) {
+ printk("keystore is null\n");
+ /* First verify that the key access is valid */
+ ret =
+ system_keystore.slot_verify_access(system_keystore.
+ user_data,
+ key_info->userid,
+ key_info->
+ handle);
+
+ printk("key in system keystore\n");
+
+ /* Key is in system keystore */
+ ret = keystore_slot_read(&system_keystore,
+ key_info->userid,
+ key_info->handle,
+ key_info->key_length, key);
+ } else {
+ printk("key goes in user keystore.\n");
+ /* Key goes in user keystore */
+ ret = keystore_slot_read(key_info->keystore,
+ key_info->userid,
+ key_info->handle,
+ key_info->key_length, key);
+ }
+ }
+
+ out:
+ return ret;
+} /* end fn fsl_shw_read_key */
+
+#else /* __KERNEL__ && DRYICE */
+
+/* User mode -- these functions are unsupported */
+
+fsl_shw_return_t fsl_shw_establish_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_key_wrap_t establish_type,
+ const uint8_t * key)
+{
+ (void)user_ctx;
+ (void)key_info;
+ (void)establish_type;
+ (void)key;
+
+ return FSL_RETURN_NO_RESOURCE_S;
+}
+
+fsl_shw_return_t fsl_shw_extract_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ uint8_t * covered_key)
+{
+ (void)user_ctx;
+ (void)key_info;
+ (void)covered_key;
+
+ return FSL_RETURN_NO_RESOURCE_S;
+}
+
+fsl_shw_return_t fsl_shw_release_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info)
+{
+ (void)user_ctx;
+ (void)key_info;
+
+ return FSL_RETURN_NO_RESOURCE_S;
+}
+
+fsl_shw_return_t fsl_shw_read_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info, uint8_t * key)
+{
+ (void)user_ctx;
+ (void)key_info;
+ (void)key;
+
+ return FSL_RETURN_NO_RESOURCE_S;
+}
+
+#endif /* __KERNEL__ && DRYICE */
diff --git a/drivers/mxc/security/rng/include/rng_driver.h b/drivers/mxc/security/rng/include/rng_driver.h
new file mode 100644
index 000000000000..e760a14f2ded
--- /dev/null
+++ b/drivers/mxc/security/rng/include/rng_driver.h
@@ -0,0 +1,134 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU Lesser General
+ * Public License. You may obtain a copy of the GNU Lesser General
+ * Public License Version 2.1 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/lgpl-license.html
+ * http://www.gnu.org/copyleft/lgpl.html
+ */
+
+#ifndef RNG_DRIVER_H
+#define RNG_DRIVER_H
+
+#include "shw_driver.h"
+
+/* This is a Linux flag meaning 'compiling kernel code'... */
+#ifndef __KERNEL__
+#include <inttypes.h>
+#include <stdlib.h>
+#include <memory.h>
+#else
+#include "../../sahara2/include/portable_os.h"
+#endif
+
+#include "../../sahara2/include/fsl_platform.h"
+
+/*! @file rng_driver.h
+ *
+ * @brief Header file to use the RNG driver.
+ *
+ * @ingroup RNG
+ */
+
+#if defined(FSL_HAVE_RNGA)
+
+#include "rng_rnga.h"
+
+#elif defined(FSL_HAVE_RNGB) || defined(FSL_HAVE_RNGC)
+
+#include "rng_rngc.h"
+
+#else /* neither RNGA, RNGB, nor RNGC */
+
+#error NO_RNG_TYPE_IDENTIFIED
+
+#endif
+
+/*****************************************************************************
+ * Enumerations
+ *****************************************************************************/
+
+/*! Values from Version ID register */
+enum rng_type {
+ /*! Type RNGA. */
+ RNG_TYPE_RNGA = 0,
+ /*! Type RNGB. */
+ RNG_TYPE_RNGB = 1,
+ /*! Type RNGC */
+ RNG_TYPE_RNGC = 2
+};
+
+/*!
+ * Return values (error codes) for kernel register interface functions
+ */
+typedef enum rng_return {
+ RNG_RET_OK = 0, /*!< Function succeeded */
+ RNG_RET_FAIL /*!< Non-specific failure */
+} rng_return_t;
+
+/*****************************************************************************
+ * Data Structures
+ *****************************************************************************/
+/*!
+ * An entry in the RNG Work Queue. Based upon standard SHW queue entry.
+ *
+ * This entry also gets saved (for non-blocking requests) in the user's result
+ * pool. When the user picks up the request, the final processing (copy from
+ * data_local to data_user) will get made if status was good.
+ */
+typedef struct rng_work_entry {
+ struct shw_queue_entry_t hdr; /*!< Standards SHW queue info. */
+ uint32_t length; /*!< Number of bytes still needed to satisfy request. */
+ uint32_t *data_local; /*!< Where data from RNG FIFO gets placed. */
+ uint8_t *data_user; /*!< Ultimate target of data. */
+ unsigned completed; /*!< Non-zero if job is done. */
+} rng_work_entry_t;
+
+/*****************************************************************************
+ * Function Prototypes
+ *****************************************************************************/
+
+#ifdef RNG_REGISTER_PEEK_POKE
+/*!
+ * Read value from an RNG register.
+ * The offset will be checked for validity as well as whether it is
+ * accessible at the time of the call.
+ *
+ * This routine cannot be used to read the RNG's Output FIFO if the RNG is in
+ * High Assurance mode.
+ *
+ * @param[in] register_offset The (byte) offset within the RNG block
+ * of the register to be queried. See
+ * RNG(A, C) registers for meanings.
+ * @param[out] value Pointer to where value from the register
+ * should be placed.
+ *
+ * @return See #rng_return_t.
+ */
+/* REQ-FSLSHW-PINTFC-API-LLF-001 */
+extern rng_return_t rng_read_register(uint32_t register_offset,
+ uint32_t * value);
+
+/*!
+ * Write a new value into an RNG register.
+ *
+ * The offset will be checked for validity as well as whether it is
+ * accessible at the time of the call.
+ *
+ * @param[in] register_offset The (byte) offset within the RNG block
+ * of the register to be modified. See
+ * RNG(A, C) registers for meanings.
+ * @param[in] value The value to store into the register.
+ *
+ * @return See #rng_return_t.
+ */
+/* REQ-FSLSHW-PINTFC-API-LLF-002 */
+extern rng_return_t rng_write_register(uint32_t register_offset,
+ uint32_t value);
+#endif /* RNG_REGISTER_PEEK_POKE */
+
+#endif /* RNG_DRIVER_H */
diff --git a/drivers/mxc/security/rng/include/rng_internals.h b/drivers/mxc/security/rng/include/rng_internals.h
new file mode 100644
index 000000000000..9f754a77e766
--- /dev/null
+++ b/drivers/mxc/security/rng/include/rng_internals.h
@@ -0,0 +1,680 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+#ifndef RNG_INTERNALS_H
+#define RNG_INTERNALS_H
+
+/*! @file rng_internals.h
+ *
+ * This file contains definitions which are internal to the RNG driver.
+ *
+ * This header file should only ever be needed by rng_driver.c
+ *
+ * Compile-time flags minimally needed:
+ *
+ * @li Some sort of platform flag. (FSL_HAVE_RNGA or FSL_HAVE_RNGC)
+ *
+ * @ingroup RNG
+ */
+
+#include "portable_os.h"
+#include "shw_driver.h"
+#include "rng_driver.h"
+
+/*! @defgroup rngcompileflags RNG Compile Flags
+ *
+ * These are flags which are used to configure the RNG driver at compilation
+ * time.
+ *
+ * Most of them default to good values for normal operation, but some
+ * (#INT_RNG and #RNG_BASE_ADDR) need to be provided.
+ *
+ * The terms 'defined' and 'undefined' refer to whether a @c \#define (or -D on
+ * a compile command) has defined a given preprocessor symbol. If a given
+ * symbol is defined, then @c \#ifdef \<symbol\> will succeed. Some symbols
+ * described below default to not having a definition, i.e. they are undefined.
+ *
+ */
+
+/*! @addtogroup rngcompileflags */
+/*! @{ */
+
+/*!
+ * This is the maximum number of times the driver will loop waiting for the
+ * RNG hardware to say that it has generated random data. It prevents the
+ * driver from stalling forever should there be a hardware problem.
+ *
+ * Default value is 100. It should be revisited as CPU clocks speed up.
+ */
+#ifndef RNG_MAX_TRIES
+#define RNG_MAX_TRIES 100
+#endif
+
+/* Temporarily define compile-time flags to make Doxygen happy and allow them
+ to get into the documentation. */
+#ifdef DOXYGEN_HACK
+
+/*!
+ * This symbol is the base address of the RNG in the CPU memory map. It may
+ * come from some included header file, or it may come from the compile command
+ * line. This symbol has no default, and the driver will not compile without
+ * it.
+ */
+#define RNG_BASE_ADDR
+#undef RNG_BASE_ADDR
+
+/*!
+ * This symbol is the Interrupt Number of the RNG in the CPU. It may come
+ * from some included header file, or it may come from the compile command
+ * line. This symbol has no default, and the driver will not compile without
+ * it.
+ */
+#define INT_RNG
+#undef INT_RNG
+
+/*!
+ * Defining this symbol will allow other kernel programs to call the
+ * #rng_read_register() and #rng_write_register() functions. If this symbol is
+ * not defined, those functions will not be present in the driver.
+ */
+#define RNG_REGISTER_PEEK_POKE
+#undef RNG_REGISTER_PEEK_POKE
+
+/*!
+ * Turn on compilation of run-time operational, debug, and error messages.
+ *
+ * This flag is undefined by default.
+ */
+/* REQ-FSLSHW-DEBUG-001 */
+
+/*!
+ * Turn on compilation of run-time logging of access to the RNG registers,
+ * except for the RNG's Output FIFO register. See #RNG_ENTROPY_DEBUG.
+ *
+ * This flag is undefined by default
+ */
+#define RNG_REGISTER_DEBUG
+#undef RNG_REGISTER_DEBUG
+
+/*!
+ * Turn on compilation of run-time logging of reading of the RNG's Output FIFO
+ * register. This flag does nothing if #RNG_REGISTER_DEBUG is not defined.
+ *
+ * This flag is undefined by default
+ */
+#define RNG_ENTROPY_DEBUG
+#undef RNG_ENTROPY_DEBUG
+
+/*!
+ * If this flag is defined, the driver will not attempt to put the RNG into
+ * High Assurance mode.
+
+ * If it is undefined, the driver will attempt to put the RNG into High
+ * Assurance mode. If RNG fails to go into High Assurance mode, the driver
+ * will fail to initialize.
+
+ * In either case, if the RNG is already in this mode, the driver will operate
+ * normally.
+ *
+ * This flag is undefined by default.
+ */
+#define RNG_NO_FORCE_HIGH_ASSURANCE
+#undef RNG_NO_FORCE_HIGH_ASSURANCE
+
+/*!
+ * If this flag is defined, the driver will put the RNG into low power mode
+ * every opportunity.
+ *
+ * This flag is undefined by default.
+ */
+#define RNG_USE_LOW_POWER_MODE
+#undef RNG_USE_LOW_POWER_MODE
+
+/*! @} */
+#endif /* end DOXYGEN_HACK */
+
+/*!
+ * If this flag is defined, the driver will not attempt to put the RNG into
+ * High Assurance mode.
+
+ * If it is undefined, the driver will attempt to put the RNG into High
+ * Assurance mode. If RNG fails to go into High Assurance mode, the driver
+ * will fail to initialize.
+
+ * In either case, if the RNG is already in this mode, the driver will operate
+ * normally.
+ *
+ */
+#define RNG_NO_FORCE_HIGH_ASSURANCE
+
+/*!
+ * Read a 32-bit value from an RNG register. This macro depends upon
+ * #rng_base. The os_read32() macro operates on 32-bit quantities, as do
+ * all RNG register reads.
+ *
+ * @param offset Register byte offset within RNG.
+ *
+ * @return The value from the RNG's register.
+ */
+#ifndef RNG_REGISTER_DEBUG
+#define RNG_READ_REGISTER(offset) os_read32(rng_base+(offset))
+#else
+#define RNG_READ_REGISTER(offset) dbg_rng_read_register(offset)
+#endif
+
+/*!
+ * Write a 32-bit value to an RNG register. This macro depends upon
+ * #rng_base. The os_write32() macro operates on 32-bit quantities, as do
+ * all RNG register writes.
+ *
+ * @param offset Register byte offset within RNG.
+ * @param value 32-bit value to store into the register
+ *
+ * @return (void)
+ */
+#ifndef RNG_REGISTER_DEBUG
+#define RNG_WRITE_REGISTER(offset,value) \
+ (void)os_write32(rng_base+(offset), value)
+#else
+#define RNG_WRITE_REGISTER(offset,value) dbg_rng_write_register(offset,value)
+#endif
+
+#ifndef RNG_DRIVER_NAME
+/*! @addtogroup rngcompileflags */
+/*! @{ */
+/*! Name the driver will use to register itself to the kernel as the driver. */
+#define RNG_DRIVER_NAME "rng"
+/*! @} */
+#endif
+
+/*!
+ * Calculate number of words needed to hold the given number of bytes.
+ *
+ * @param byte_count Number of bytes
+ *
+ * @return Number of words
+ */
+#define BYTES_TO_WORDS(byte_count) \
+ (((byte_count)+sizeof(uint32_t)-1)/sizeof(uint32_t))
+
+/*! Gives high-level view of state of the RNG */
+typedef enum rng_status {
+ RNG_STATUS_INITIAL, /*!< Driver status before ever starting. */
+ RNG_STATUS_CHECKING, /*!< During driver initialization. */
+ RNG_STATUS_UNIMPLEMENTED, /*!< Hardware is non-existent / unreachable. */
+ RNG_STATUS_OK, /*!< Hardware is In Secure or Default state. */
+ RNG_STATUS_FAILED /*!< Hardware is In Failed state / other fatal
+ problem. Driver is still able to read/write
+ some registers, but cannot get Random
+ data. */
+} rng_status_t;
+
+static shw_queue_t rng_work_queue;
+
+/*****************************************************************************
+ *
+ * Function Declarations
+ *
+ *****************************************************************************/
+
+/* kernel interface functions */
+OS_DEV_INIT_DCL(rng_init);
+OS_DEV_TASK_DCL(rng_entropy_task);
+OS_DEV_SHUTDOWN_DCL(rng_shutdown);
+OS_DEV_ISR_DCL(rng_irq);
+
+#define RNG_ADD_QUEUE_ENTRY(pool, entry) \
+ SHW_ADD_QUEUE_ENTRY(pool, (shw_queue_entry_t*)entry)
+
+#define RNG_REMOVE_QUEUE_ENTRY(pool, entry) \
+ SHW_REMOVE_QUEUE_ENTRY(pool, (shw_queue_entry_t*)entry)
+#define RNG_GET_WORK_ENTRY() \
+ (rng_work_entry_t*)SHW_POP_FIRST_ENTRY(&rng_work_queue)
+
+/*!
+ * Add an work item to a work list. Item will be marked incomplete.
+ *
+ * @param work Work entry to place at tail of list.
+ *
+ * @return none
+ */
+inline static void RNG_ADD_WORK_ENTRY(rng_work_entry_t * work)
+{
+ work->completed = FALSE;
+
+ SHW_ADD_QUEUE_ENTRY(&rng_work_queue, (shw_queue_entry_t *) work);
+
+ os_dev_schedule_task(rng_entropy_task);
+}
+
+/*!
+ * For #rng_check_register_accessible(), check read permission on given
+ * register.
+ */
+#define RNG_CHECK_READ 0
+
+/*!
+ * For #rng_check_register_accessible(), check write permission on given
+ * register.
+ */
+#define RNG_CHECK_WRITE 1
+
+/* Define different helper symbols based on RNG type */
+#ifdef FSL_HAVE_RNGA
+
+/******************************************************************************
+ *
+ * RNGA support
+ *
+ *****************************************************************************/
+
+/*! Interrupt number for driver. */
+#if defined(MXC_INT_RNG)
+/* Most modern definition */
+#define INT_RNG MXC_INT_RNG
+#elif defined(MXC_INT_RNGA)
+#define INT_RNG MXC_INT_RNGA
+#else
+#define INT_RNG INT_RNGA
+#endif
+
+/*! Base (bus?) address of RNG component. */
+#define RNG_BASE_ADDR RNGA_BASE_ADDR
+
+/*! Read and return the status register. */
+#define RNG_GET_STATUS() \
+ RNG_READ_REGISTER(RNGA_STATUS)
+/*! Configure RNG for Auto seeding */
+#define RNG_AUTO_SEED()
+/* Put RNG for Seed Generation */
+#define RNG_SEED_GEN()
+/*!
+ * Return RNG Type value. Should be RNG_TYPE_RNGA, RNG_TYPE_RNGB,
+ * or RNG_TYPE_RNGC.
+ */
+#define RNG_GET_RNG_TYPE() \
+ ((RNG_READ_REGISTER(RNGA_CONTROL) & RNGA_CONTROL_RNG_TYPE_MASK) \
+ >> RNGA_CONTROL_RNG_TYPE_SHIFT)
+
+/*!
+ * Verify Type value of RNG.
+ *
+ * Returns true of OK, false if not.
+ */
+#define RNG_VERIFY_TYPE(type) \
+ ((type) == RNG_TYPE_RNGA)
+
+/*! Returns non-zero if RNG device is reporting an error. */
+#define RNG_HAS_ERROR() \
+ (RNG_READ_REGISTER(RNGA_STATUS) & RNGA_STATUS_ERROR_INTERRUPT)
+/*! Returns non-zero if Bad Key is selected */
+#define RNG_HAS_BAD_KEY() 0
+/*! Return non-zero if Self Test Done */
+#define RNG_SELF_TEST_DONE() 0
+/*! Returns non-zero if RNG ring oscillators have failed. */
+#define RNG_OSCILLATOR_FAILED() \
+ (RNG_READ_REGISTER(RNGA_STATUS) & RNGA_STATUS_OSCILLATOR_DEAD)
+
+/*! Returns maximum number of 32-bit words in the RNG's output fifo. */
+#define RNG_GET_FIFO_SIZE() \
+ ((RNG_READ_REGISTER(RNGA_STATUS) & RNGA_STATUS_OUTPUT_FIFO_SIZE_MASK) \
+ >> RNGA_STATUS_OUTPUT_FIFO_SIZE_SHIFT)
+
+/*! Returns number of 32-bit words currently in the RNG's output fifo. */
+#define RNG_GET_WORDS_IN_FIFO() \
+ ((RNG_READ_REGISTER(RNGA_STATUS) & RNGA_STATUS_OUTPUT_FIFO_LEVEL_MASK) \
+ >> RNGA_STATUS_OUTPUT_FIFO_LEVEL_SHIFT)
+/* Configuring RNG for Self Test */
+#define RNG_SELF_TEST()
+/*! Get a random value from the RNG's output FIFO. */
+#define RNG_READ_FIFO() \
+ RNG_READ_REGISTER(RNGA_OUTPUT_FIFO)
+
+/*! Put entropy into the RNG's algorithm.
+ * @param value 32-bit value to add to RNG's entropy.
+ **/
+#define RNG_ADD_ENTROPY(value) \
+ RNG_WRITE_REGISTER(RNGA_ENTROPY, (value))
+/*! Return non-zero in case of Error during Self Test */
+#define RNG_CHECK_SELF_ERR() 0
+/*! Return non-zero in case of Error during Seed Generation */
+#define RNG_CHECK_SEED_ERR() 0
+/*! Get the RNG started at generating output. */
+#define RNG_GO() \
+{ \
+ register uint32_t control = RNG_READ_REGISTER(RNGA_CONTROL); \
+ RNG_WRITE_REGISTER(RNGA_CONTROL, control | RNGA_CONTROL_GO); \
+}
+/*! To clear all Error Bits in Error Status Register */
+#define RNG_CLEAR_ERR()
+/*! Put RNG into High Assurance mode */
+#define RNG_SET_HIGH_ASSURANCE() \
+{ \
+ register uint32_t control = RNG_READ_REGISTER(RNGA_CONTROL); \
+ RNG_WRITE_REGISTER(RNGA_CONTROL, control | RNGA_CONTROL_HIGH_ASSURANCE); \
+}
+
+/*! Return non-zero if the RNG is in High Assurance mode. */
+#define RNG_GET_HIGH_ASSURANCE() \
+ (RNG_READ_REGISTER(RNGA_CONTROL) & RNGA_CONTROL_HIGH_ASSURANCE)
+
+/*! Clear all status, error and otherwise. */
+#define RNG_CLEAR_ALL_STATUS() \
+{ \
+ register uint32_t control = RNG_READ_REGISTER(RNGA_CONTROL); \
+ RNG_WRITE_REGISTER(RNGA_CONTROL, control | RNGA_CONTROL_CLEAR_INTERRUPT); \
+}
+/* Return non-zero if RESEED Required */
+#define RNG_RESEED() 1
+
+/*! Return non-zero if Seeding is done */
+#define RNG_SEED_DONE() 1
+
+/*! Return non-zero if everything seems OK with the RNG. */
+#define RNG_WORKING() \
+ ((RNG_READ_REGISTER(RNGA_STATUS) \
+ & (RNGA_STATUS_SLEEP | RNGA_STATUS_SECURITY_VIOLATION \
+ | RNGA_STATUS_ERROR_INTERRUPT | RNGA_STATUS_FIFO_UNDERFLOW \
+ | RNGA_STATUS_LAST_READ_STATUS )) == 0)
+
+/*! Put the RNG into sleep (low-power) mode. */
+#define RNG_SLEEP() \
+{ \
+ register uint32_t control = RNG_READ_REGISTER(RNGA_CONTROL); \
+ RNG_WRITE_REGISTER(RNGA_CONTROL, control | RNGA_CONTROL_SLEEP); \
+}
+
+/*! Wake the RNG from sleep (low-power) mode. */
+#define RNG_WAKE() \
+{ \
+ uint32_t control = RNG_READ_REGISTER(RNGA_CONTROL); \
+ RNG_WRITE_REGISTER(RNGA_CONTROL, control & ~RNGA_CONTROL_SLEEP); \
+}
+
+/*! Mask interrupts so that the driver/OS will not see them. */
+#define RNG_MASK_ALL_INTERRUPTS() \
+{ \
+ register uint32_t control = RNG_READ_REGISTER(RNGA_CONTROL); \
+ RNG_WRITE_REGISTER(RNGA_CONTROL, control | RNGA_CONTROL_MASK_INTERRUPTS); \
+}
+
+/*! Unmask interrupts so that the driver/OS will see them. */
+#define RNG_UNMASK_ALL_INTERRUPTS() \
+{ \
+ register uint32_t control = RNG_READ_REGISTER(RNGA_CONTROL); \
+ RNG_WRITE_REGISTER(RNGA_CONTROL, control & ~RNGA_CONTROL_MASK_INTERRUPTS);\
+}
+
+/*!
+ * @def RNG_PUT_RNG_TO_SLEEP()
+ *
+ * If compiled with #RNG_USE_LOW_POWER_MODE, this routine will put the RNG
+ * to sleep (low power mode).
+ *
+ * @return none
+ */
+/*!
+ * @def RNG_WAKE_RNG_FROM_SLEEP()
+ *
+ * If compiled with #RNG_USE_LOW_POWER_MODE, this routine will wake the RNG
+ * from sleep (low power mode).
+ *
+ * @return none
+ */
+#ifdef RNG_USE_LOW_POWER_MODE
+
+#define RNG_PUT_RNG_TO_SLEEP() \
+ RNG_SLEEP()
+
+#define RNG_WAKE_FROM_SLEEP() \
+ RNG_WAKE() 1
+
+#else /* not low power mode */
+
+#define RNG_PUT_RNG_TO_SLEEP()
+
+#define RNG_WAKE_FROM_SLEEP()
+
+#endif /* Use low-power mode */
+
+#else /* FSL_HAVE_RNGB or FSL_HAVE_RNGC */
+
+/******************************************************************************
+ *
+ * RNGB and RNGC support
+ *
+ *****************************************************************************/
+/*
+ * The operational interfaces for RNGB and RNGC are almost identical, so
+ * the defines for RNGC work fine for both. There are minor differences
+ * which will be treated within this conditional block.
+ */
+
+/*! Interrupt number for driver. */
+#if defined(MXC_INT_RNG)
+/* Most modern definition */
+#define INT_RNG MXC_INT_RNG
+#elif defined(MXC_INT_RNGC)
+#define INT_RNG MXC_INT_RNGC
+#elif defined(MXC_INT_RNGB)
+#define INT_RNG MXC_INT_RNGB
+#elif defined(INT_RNGC)
+#define INT_RNG INT_RNGC
+#else
+#error NO_INTERRUPT_DEFINED
+#endif
+
+/*! Base address of RNG component. */
+#ifdef FSL_HAVE_RNGB
+#define RNG_BASE_ADDR RNGB_BASE_ADDR
+#else
+#define RNG_BASE_ADDR RNGC_BASE_ADDR
+#endif
+
+/*! Read and return the status register. */
+#define RNG_GET_STATUS() \
+ RNG_READ_REGISTER(RNGC_ERROR)
+
+/*!
+ * Return RNG Type value. Should be RNG_TYPE_RNGA or RNG_TYPE_RNGC.
+ */
+#define RNG_GET_RNG_TYPE() \
+ ((RNG_READ_REGISTER(RNGC_VERSION_ID) & RNGC_VERID_RNG_TYPE_MASK) \
+ >> RNGC_VERID_RNG_TYPE_SHIFT)
+
+/*!
+ * Verify Type value of RNG.
+ *
+ * Returns true of OK, false if not.
+ */
+#ifdef FSL_HAVE_RNGB
+#define RNG_VERIFY_TYPE(type) \
+ ((type) == RNG_TYPE_RNGB)
+#else /* RNGC */
+#define RNG_VERIFY_TYPE(type) \
+ ((type) == RNG_TYPE_RNGC)
+#endif
+
+/*! Returns non-zero if RNG device is reporting an error. */
+#define RNG_HAS_ERROR() \
+ (RNG_READ_REGISTER(RNGC_STATUS) & RNGC_STATUS_ERROR)
+/*! Returns non-zero if Bad Key is selected */
+#define RNG_HAS_BAD_KEY() \
+ (RNG_READ_REGISTER(RNGC_ERROR) & RNGC_ERROR_STATUS_BAD_KEY)
+/*! Returns non-zero if RNG ring oscillators have failed. */
+#define RNG_OSCILLATOR_FAILED() \
+ (RNG_READ_REGISTER(RNGC_ERROR) & RNGC_ERROR_STATUS_OSC_ERR)
+
+/*! Returns maximum number of 32-bit words in the RNG's output fifo. */
+#define RNG_GET_FIFO_SIZE() \
+ ((RNG_READ_REGISTER(RNGC_STATUS) & RNGC_STATUS_FIFO_SIZE_MASK) \
+ >> RNGC_STATUS_FIFO_SIZE_SHIFT)
+
+/*! Returns number of 32-bit words currently in the RNG's output fifo. */
+#define RNG_GET_WORDS_IN_FIFO() \
+ ((RNG_READ_REGISTER(RNGC_STATUS) & RNGC_STATUS_FIFO_LEVEL_MASK) \
+ >> RNGC_STATUS_FIFO_LEVEL_SHIFT)
+
+/*! Get a random value from the RNG's output FIFO. */
+#define RNG_READ_FIFO() \
+ RNG_READ_REGISTER(RNGC_FIFO)
+
+/*! Put entropy into the RNG's algorithm.
+ * @param value 32-bit value to add to RNG's entropy.
+ **/
+#ifdef FSL_HAVE_RNGB
+#define RNG_ADD_ENTROPY(value) \
+ RNG_WRITE_REGISTER(RNGB_ENTROPY, value)
+#else /* RNGC does not have Entropy register */
+#define RNG_ADD_ENTROPY(value)
+#endif
+/*! Wake the RNG from sleep (low-power) mode. */
+#define RNG_WAKE() 1
+/*! Get the RNG started at generating output. */
+#define RNG_GO()
+/*! Put RNG into High Assurance mode. */
+#define RNG_SET_HIGH_ASSURANCE()
+/*! Returns non-zero in case of Error during Self Test */
+#define RNG_CHECK_SELF_ERR() \
+ (RNG_READ_REGISTER(RNGC_ERROR) & RNGC_ERROR_STATUS_ST_ERR)
+/*! Return non-zero in case of Error during Seed Generation */
+#define RNG_CHECK_SEED_ERR() \
+ (RNG_READ_REGISTER(RNGC_ERROR) & RNGC_ERROR_STATUS_STAT_ERR)
+
+/*! Configure RNG for Self Test */
+#define RNG_SELF_TEST() \
+{ \
+ register uint32_t command = RNG_READ_REGISTER(RNGC_COMMAND); \
+ RNG_WRITE_REGISTER(RNGC_COMMAND, command \
+ | RNGC_COMMAND_SELF_TEST); \
+}
+/*! Clearing the Error bits in Error Status Register */
+#define RNG_CLEAR_ERR() \
+{ \
+ register uint32_t command = RNG_READ_REGISTER(RNGC_COMMAND); \
+ RNG_WRITE_REGISTER(RNGC_COMMAND, command \
+ | RNGC_COMMAND_CLEAR_ERROR); \
+}
+
+/*! Return non-zero if Self Test Done */
+#define RNG_SELF_TEST_DONE() \
+ (RNG_READ_REGISTER(RNGC_STATUS) & RNGC_STATUS_ST_DONE)
+/* Put RNG for SEED Generation */
+#define RNG_SEED_GEN() \
+{ \
+ register uint32_t command = RNG_READ_REGISTER(RNGC_COMMAND); \
+ RNG_WRITE_REGISTER(RNGC_COMMAND, command \
+ | RNGC_COMMAND_SEED); \
+}
+/* Return non-zero if RESEED Required */
+#define RNG_RESEED() \
+ (RNG_READ_REGISTER(RNGC_STATUS) & RNGC_STATUS_RESEED)
+
+/*! Return non-zero if the RNG is in High Assurance mode. */
+#define RNG_GET_HIGH_ASSURANCE() (RNG_READ_REGISTER(RNGC_STATUS) & \
+ RNGC_STATUS_SEC_STATE)
+
+/*! Clear all status, error and otherwise. */
+#define RNG_CLEAR_ALL_STATUS() \
+ RNG_WRITE_REGISTER(RNGC_COMMAND, \
+ RNGC_COMMAND_CLEAR_INTERRUPT \
+ | RNGC_COMMAND_CLEAR_ERROR)
+
+/*! Return non-zero if everything seems OK with the RNG. */
+#define RNG_WORKING() \
+ ((RNG_READ_REGISTER(RNGC_ERROR) \
+ & (RNGC_ERROR_STATUS_STAT_ERR | RNGC_ERROR_STATUS_RAND_ERR \
+ | RNGC_ERROR_STATUS_FIFO_ERR | RNGC_ERROR_STATUS_ST_ERR | \
+ RNGC_ERROR_STATUS_OSC_ERR | RNGC_ERROR_STATUS_LFSR_ERR )) == 0)
+/*! Return Non zero if SEEDING is DONE */
+#define RNG_SEED_DONE() \
+ ((RNG_READ_REGISTER(RNGC_STATUS) & RNGC_STATUS_SEED_DONE) != 0)
+
+/*! Put the RNG into sleep (low-power) mode. */
+#define RNG_SLEEP()
+
+/*! Wake the RNG from sleep (low-power) mode. */
+
+/*! Mask interrupts so that the driver/OS will not see them. */
+#define RNG_MASK_ALL_INTERRUPTS() \
+{ \
+ register uint32_t control = RNG_READ_REGISTER(RNGC_CONTROL); \
+ RNG_WRITE_REGISTER(RNGC_CONTROL, control \
+ | RNGC_CONTROL_MASK_DONE \
+ | RNGC_CONTROL_MASK_ERROR); \
+}
+/*! Configuring RNGC for self Test. */
+
+#define RNG_AUTO_SEED() \
+{ \
+ register uint32_t control = RNG_READ_REGISTER(RNGC_CONTROL); \
+ RNG_WRITE_REGISTER(RNGC_CONTROL, control \
+ | RNGC_CONTROL_AUTO_SEED); \
+}
+
+/*! Unmask interrupts so that the driver/OS will see them. */
+#define RNG_UNMASK_ALL_INTERRUPTS() \
+{ \
+ register uint32_t control = RNG_READ_REGISTER(RNGC_CONTROL); \
+ RNG_WRITE_REGISTER(RNGC_CONTROL, \
+ control & ~(RNGC_CONTROL_MASK_DONE|RNGC_CONTROL_MASK_ERROR)); \
+}
+
+/*! Put RNG to sleep if appropriate. */
+#define RNG_PUT_RNG_TO_SLEEP()
+
+/*! Wake RNG from sleep if necessary. */
+#define RNG_WAKE_FROM_SLEEP()
+
+#endif /* RNG TYPE */
+
+/* internal functions */
+static os_error_code rng_map_RNG_memory(void);
+static os_error_code rng_setup_interrupt_handling(void);
+#ifdef RNG_REGISTER_PEEK_POKE
+inline static int rng_check_register_offset(uint32_t offset);
+inline static int rng_check_register_accessible(uint32_t offset,
+ int access_write);
+#endif /* DEBUG_RNG_REGISTERS */
+static fsl_shw_return_t rng_drain_fifo(uint32_t * random_p, int count_words);
+static os_error_code rng_grab_config_values(void);
+static void rng_cleanup(void);
+
+#ifdef FSL_HAVE_RNGA
+static void rng_sec_failure(void);
+#endif
+
+#ifdef RNG_REGISTER_DEBUG
+static uint32_t dbg_rng_read_register(uint32_t offset);
+static void dbg_rng_write_register(uint32_t offset, uint32_t value);
+#endif
+
+#if defined(LINUX_VERSION_CODE)
+
+EXPORT_SYMBOL(fsl_shw_add_entropy);
+EXPORT_SYMBOL(fsl_shw_get_random);
+
+#ifdef RNG_REGISTER_PEEK_POKE
+/* For Linux kernel, export the API functions to other kernel modules */
+EXPORT_SYMBOL(rng_read_register);
+EXPORT_SYMBOL(rng_write_register);
+#endif /* DEBUG_RNG_REGISTERS */
+
+
+
+MODULE_AUTHOR("Freescale Semiconductor");
+MODULE_DESCRIPTION("Device Driver for RNG");
+
+#endif /* LINUX_VERSION_CODE */
+
+#endif /* RNG_INTERNALS_H */
diff --git a/drivers/mxc/security/rng/include/rng_rnga.h b/drivers/mxc/security/rng/include/rng_rnga.h
new file mode 100644
index 000000000000..a3a86b961506
--- /dev/null
+++ b/drivers/mxc/security/rng/include/rng_rnga.h
@@ -0,0 +1,181 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+#ifndef RNG_RNGA_H
+#define RNG_RNGA_H
+
+/*! @defgroup rngaregs RNGA Registers
+ * @ingroup RNG
+ * These are the definitions for the RNG registers and their offsets
+ * within the RNG. They are used in the @c register_offset parameter of
+ * #rng_read_register() and #rng_write_register().
+ */
+/*! @addtogroup rngaregs */
+/*! @{ */
+
+/*! Control Register. See @ref rngacontrolreg. */
+#define RNGA_CONTROL 0x00
+/*! Status Register. See @ref rngastatusreg. */
+#define RNGA_STATUS 0x04
+/*! Register for adding to the Entropy of the RNG */
+#define RNGA_ENTROPY 0x08
+/*! Register containing latest 32 bits of random value */
+#define RNGA_OUTPUT_FIFO 0x0c
+/*! Mode Register. Non-secure mode access only. See @ref rngmodereg. */
+#define RNGA_MODE 0x10
+/*! Verification Control Register. Non-secure mode access only. See
+ * @ref rngvfctlreg. */
+#define RNGA_VERIFICATION_CONTROL 0x14
+/*! Oscillator Control Counter Register. Non-secure mode access only.
+ * See @ref rngosccntctlreg. */
+#define RNGA_OSCILLATOR_CONTROL_COUNTER 0x18
+/*! Oscillator 1 Counter Register. Non-secure mode access only. See
+ * @ref rngosccntreg. */
+#define RNGA_OSCILLATOR1_COUNTER 0x1c
+/*! Oscillator 2 Counter Register. Non-secure mode access only. See
+ * @ref rngosccntreg. */
+#define RNGA_OSCILLATOR2_COUNTER 0x20
+/*! Oscillator Counter Status Register. Non-secure mode access only. See
+ * @ref rngosccntstatreg. */
+#define RNGA_OSCILLATOR_COUNTER_STATUS 0x24
+/*! @} */
+
+/*! Total address space of the RNGA, in bytes */
+#define RNG_ADDRESS_RANGE 0x28
+
+/*! @defgroup rngacontrolreg RNGA Control Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngacontrolreg */
+/*! @{ */
+/*! These bits are unimplemented or reserved */
+#define RNGA_CONTROL_ZEROS_MASK 0x0fffffe0
+/*! 'RNG type' - should be 0 for RNGA */
+#define RNGA_CONTROL_RNG_TYPE_MASK 0xf0000000
+/*! Number of bits to shift the type to get it to LSB */
+#define RNGA_CONTROL_RNG_TYPE_SHIFT 28
+/*! Put RNG to sleep */
+#define RNGA_CONTROL_SLEEP 0x00000010
+/*! Clear interrupt & status */
+#define RNGA_CONTROL_CLEAR_INTERRUPT 0x00000008
+/*! Mask interrupt generation */
+#define RNGA_CONTROL_MASK_INTERRUPTS 0x00000004
+/*! Enter into Secure Mode. Notify SCC of security violation should FIFO
+ * underflow occur. */
+#define RNGA_CONTROL_HIGH_ASSURANCE 0x00000002
+/*! Load data into FIFO */
+#define RNGA_CONTROL_GO 0x00000001
+/*! @} */
+
+/*! @defgroup rngastatusreg RNGA Status Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngastatusreg */
+/*! @{ */
+/*! RNG Oscillator not working */
+#define RNGA_STATUS_OSCILLATOR_DEAD 0x80000000
+/*! These bits are undefined or reserved */
+#define RNGA_STATUS_ZEROS1_MASK 0x7f000000
+/*! How big FIFO is, in bytes */
+#define RNGA_STATUS_OUTPUT_FIFO_SIZE_MASK 0x00ff0000
+/*! How many bits right to shift fifo size to make it LSB */
+#define RNGA_STATUS_OUTPUT_FIFO_SIZE_SHIFT 16
+/*! How many bytes are currently in the FIFO */
+#define RNGA_STATUS_OUTPUT_FIFO_LEVEL_MASK 0x0000ff00
+/*! How many bits right to shift fifo level to make it LSB */
+#define RNGA_STATUS_OUTPUT_FIFO_LEVEL_SHIFT 8
+/*! These bits are undefined or reserved. */
+#define RNGA_STATUS_ZEROS2_MASK 0x000000e0
+/*! RNG is sleeping. */
+#define RNGA_STATUS_SLEEP 0x00000010
+/*! Error detected. */
+#define RNGA_STATUS_ERROR_INTERRUPT 0x00000008
+/*! FIFO was empty on some read since last status read. */
+#define RNGA_STATUS_FIFO_UNDERFLOW 0x00000004
+/*! FIFO was empty on most recent read. */
+#define RNGA_STATUS_LAST_READ_STATUS 0x00000002
+/*! Security violation occurred. Will only happen in High Assurance mode. */
+#define RNGA_STATUS_SECURITY_VIOLATION 0x00000001
+/*! @} */
+
+/*! @defgroup rngmodereg RNG Mode Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngmodereg */
+/*! @{ */
+/*! These bits are undefined or reserved */
+#define RNGA_MODE_ZEROS_MASK 0xfffffffc
+/*! RNG is in / put RNG in Oscillator Frequency Test Mode. */
+#define RNGA_MODE_OSCILLATOR_FREQ_TEST 0x00000002
+/*! Put RNG in verification mode / RNG is in verification mode. */
+#define RNGA_MODE_VERIFICATION 0x00000001
+/*! @} */
+
+/*! @defgroup rngvfctlreg RNG Verification Control Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngvfctlreg */
+/*! @{ */
+/*! These bits are undefined or reserved. */
+#define RNGA_VFCTL_ZEROS_MASK 0xfffffff8
+/*! Reset the shift registers. */
+#define RNGA_VFCTL_RESET_SHIFT_REGISTERS 0x00000004
+/*! Drive shift registers from system clock. */
+#define RNGA_VFCTL_FORCE_SYSTEM_CLOCK 0x00000002
+/*! Turn off shift register clocks. */
+#define RNGA_VFCTL_SHIFT_CLOCK_OFF 0x00000001
+/*! @} */
+
+/*!
+ * @defgroup rngosccntctlreg RNG Oscillator Counter Control Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngosccntctlreg */
+/*! @{ */
+/*! These bits are undefined or reserved. */
+#define RNGA_OSCCR_ZEROS_MASK 0xfffc0000
+/*! Bits containing clock cycle counter */
+#define RNGA_OSCCR_CLOCK_CYCLES_MASK 0x0003ffff
+/*! Bits to shift right RNG_OSCCR_CLOCK_CYCLES_MASK */
+#define RNGA_OSCCR_CLOCK_CYCLES_SHIFT 0
+/*! @} */
+
+/*!
+ * @defgroup rngosccntreg RNG Oscillator (1 and 2) Counter Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngosccntreg */
+/*! @{ */
+/*! These bits are undefined or reserved. */
+#define RNGA_COUNTER_ZEROS_MASK 0xfff00000
+/*! Bits containing number of clock pulses received from the oscillator. */
+#define RNGA_COUNTER_PULSES_MASK 0x000fffff
+/*! Bits right to shift RNG_COUNTER_PULSES_MASK to make it LSB. */
+#define RNGA_COUNTER_PULSES_SHIFT 0
+/*! @} */
+
+/*!
+ * @defgroup rngosccntstatreg RNG Oscillator Counter Status Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngosccntstatreg */
+/*! @{ */
+/*! These bits are undefined or reserved. */
+#define RNGA_COUNTER_STATUS_ZEROS_MASK 0xfffffffc
+/*! Oscillator 2 has toggled 0x400 times */
+#define RNGA_COUNTER_STATUS_OSCILLATOR2 0x00000002
+/*! Oscillator 1 has toggled 0x400 times */
+#define RNGA_COUNTER_STATUS_OSCILLATOR1 0x00000001
+/*! @} */
+
+#endif /* RNG_RNGA_H */
diff --git a/drivers/mxc/security/rng/include/rng_rngc.h b/drivers/mxc/security/rng/include/rng_rngc.h
new file mode 100644
index 000000000000..d7b7f127f74c
--- /dev/null
+++ b/drivers/mxc/security/rng/include/rng_rngc.h
@@ -0,0 +1,235 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+/*!
+ * @file rng_rngc.h
+ *
+ * Definition of the registers for the RNGB and RNGC. The names start with
+ * RNGC where they are in common or relate only to the RNGC; the RNGB-only
+ * definitions begin with RNGB.
+ *
+ */
+
+#ifndef RNG_RNGC_H
+#define RNG_RNGC_H
+
+#define RNGC_VERSION_MAJOR3 3
+
+/*! @defgroup rngcregs RNGB/RNGC Registers
+ * These are the definitions for the RNG registers and their offsets
+ * within the RNG. They are used in the @c register_offset parameter of
+ * #rng_read_register() and #rng_write_register().
+ *
+ * @ingroup RNG
+ */
+/*! @addtogroup rngcregs */
+/*! @{ */
+
+/*! RNGC Version ID Register R/W */
+#define RNGC_VERSION_ID 0x0000
+/*! RNGC Command Register R/W */
+#define RNGC_COMMAND 0x0004
+/*! RNGC Control Register R/W */
+#define RNGC_CONTROL 0x0008
+/*! RNGC Status Register R */
+#define RNGC_STATUS 0x000C
+/*! RNGC Error Status Register R */
+#define RNGC_ERROR 0x0010
+/*! RNGC FIFO Register W */
+#define RNGC_FIFO 0x0014
+/*! Undefined */
+#define RNGC_UNDEF_18 0x0018
+/*! RNGB Entropy Register W */
+#define RNGB_ENTROPY 0x0018
+/*! Undefined */
+#define RNGC_UNDEF_1C 0x001C
+/*! RNGC Verification Control Register1 R/W */
+#define RNGC_VERIFICATION_CONTROL 0x0020
+/*! Undefined */
+#define RNGC_UNDEF_24 0x0024
+/*! RNGB XKEY Data Register R */
+#define RNGB_XKEY 0x0024
+/*! RNGC Oscillator Counter Control Register1 R/W */
+#define RNGC_OSC_COUNTER_CONTROL 0x0028
+/*! RNGC Oscillator Counter Register1 R */
+#define RNGC_OSC_COUNTER 0x002C
+/*! RNGC Oscillator Counter Status Register1 R */
+#define RNGC_OSC_COUNTER_STATUS 0x0030
+/*! @} */
+
+/*! @defgroup rngcveridreg RNGB/RNGC Version ID Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngcveridreg */
+/*! @{ */
+/*! These bits are unimplemented or reserved */
+#define RNGC_VERID_ZEROS_MASK 0x0f000000
+/*! Mask for RNG TYPE */
+#define RNGC_VERID_RNG_TYPE_MASK 0xf0000000
+/*! Shift to make RNG TYPE be LSB */
+#define RNGC_VERID_RNG_TYPE_SHIFT 28
+/*! Mask for RNG Chip Version */
+#define RNGC_VERID_CHIP_VERSION_MASK 0x00ff0000
+/*! Shift to make RNG Chip version be LSB */
+#define RNGC_VERID_CHIP_VERSION_SHIFT 16
+/*! Mask for RNG Major Version */
+#define RNGC_VERID_VERSION_MAJOR_MASK 0x0000ff00
+/*! Shift to make RNG Major version be LSB */
+#define RNGC_VERID_VERSION_MAJOR_SHIFT 8
+/*! Mask for RNG Minor Version */
+#define RNGC_VERID_VERSION_MINOR_MASK 0x000000ff
+/*! Shift to make RNG Minor version be LSB */
+#define RNGC_VERID_VERSION_MINOR_SHIFT 0
+/*! @} */
+
+/*! @defgroup rngccommandreg RNGB/RNGC Command Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngccommandreg */
+/*! @{ */
+/*! These bits are unimplemented or reserved. */
+#define RNGC_COMMAND_ZEROS_MASK 0xffffff8c
+/*! Perform a software reset of the RNGC. */
+#define RNGC_COMMAND_SOFTWARE_RESET 0x00000040
+/*! Clear error from Error Status register (and interrupt). */
+#define RNGC_COMMAND_CLEAR_ERROR 0x00000020
+/*! Clear interrupt & status. */
+#define RNGC_COMMAND_CLEAR_INTERRUPT 0x00000010
+/*! Start RNGC seed generation. */
+#define RNGC_COMMAND_SEED 0x00000002
+/*! Perform a self test of (and reset) the RNGC. */
+#define RNGC_COMMAND_SELF_TEST 0x00000001
+/*! @} */
+
+/*! @defgroup rngccontrolreg RNGB/RNGC Control Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngccontrolreg */
+/*! @{ */
+/*! These bits are unimplemented or reserved */
+#define RNGC_CONTROL_ZEROS_MASK 0xfffffc8c
+/*! Allow access to verification registers. */
+#define RNGC_CONTROL_CTL_ACC 0x00000200
+/*! Put RNGC into deterministic verifcation mode. */
+#define RNGC_CONTROL_VERIF_MODE 0x00000100
+/*! Prevent RNGC from generating interrupts caused by errors. */
+#define RNGC_CONTROL_MASK_ERROR 0x00000040
+
+/*!
+ * Prevent RNGB/RNGC from generating interrupts after Seed Done or Self Test
+ * Mode completion.
+ */
+#define RNGC_CONTROL_MASK_DONE 0x00000020
+/*! Allow RNGC to generate a new seed whenever it is needed. */
+#define RNGC_CONTROL_AUTO_SEED 0x00000010
+/*! Set FIFO Underflow Response.*/
+#define RNGC_CONTROL_FIFO_UFLOW_MASK 0x00000003
+/*! Shift value to make FIFO Underflow Response be LSB. */
+#define RNGC_CONTROL_FIFO_UFLOW_SHIFT 0
+
+/*! @} */
+
+/*! @{ */
+/*! FIFO Underflow should cause ... */
+#define RNGC_CONTROL_FIFO_UFLOW_ZEROS_ERROR 0
+/*! FIFO Underflow should cause ... */
+#define RNGC_CONTROL_FIFO_UFLOW_ZEROS_ERROR2 1
+/*! FIFO Underflow should cause ... */
+#define RNGC_CONTROL_FIFO_UFLOW_BUS_XFR 2
+/*! FIFO Underflow should cause ... */
+#define RNGC_CONTROL_FIFO_UFLOW_ZEROS_INTR 3
+/*! @} */
+
+/*! @defgroup rngcstatusreg RNGB/RNGC Status Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngcstatusreg */
+/*! @{ */
+/*! Unused or MBZ. */
+#define RNGC_STATUS_ZEROS_MASK 0x003e0080
+/*!
+ * Statistical tests pass-fail. Individual bits on indicate failure of a
+ * particular test.
+ */
+#define RNGC_STATUS_STAT_TEST_PF_MASK 0xff000000
+/*! Mask to get Statistical PF to be LSB. */
+#define RNGC_STATUS_STAT_TEST_PF_SHIFT 24
+/*!
+ * Self tests pass-fail. Individual bits on indicate failure of a
+ * particular test.
+ */
+#define RNGC_STATUS_ST_PF_MASK 0x00c00000
+/*! Shift value to get Self Test PF field to be LSB. */
+#define RNGC_STATUS_ST_PF_SHIFT 22
+/* TRNG Self test pass-fail */
+#define RNGC_STATUS_ST_PF_TRNG 0x00800000
+/* PRNG Self test pass-fail */
+#define RNGC_STATUS_ST_PF_PRNG 0x00400000
+/*! Error detected in RNGC. See Error Status register. */
+#define RNGC_STATUS_ERROR 0x00010000
+/*! Size of the internal FIFO in 32-bit words. */
+#define RNGC_STATUS_FIFO_SIZE_MASK 0x0000f000
+/*! Shift value to get FIFO Size to be LSB. */
+#define RNGC_STATUS_FIFO_SIZE_SHIFT 12
+/*! The level (available data) of the internal FIFO in 32-bit words. */
+#define RNGC_STATUS_FIFO_LEVEL_MASK 0x00000f00
+/*! Shift value to get FIFO Level to be LSB. */
+#define RNGC_STATUS_FIFO_LEVEL_SHIFT 8
+/*! A new seed is ready for use. */
+#define RNGC_STATUS_NEXT_SEED_DONE 0x00000040
+/*! The first seed has been generated. */
+#define RNGC_STATUS_SEED_DONE 0x00000020
+/*! Self Test has been completed. */
+#define RNGC_STATUS_ST_DONE 0x00000010
+/*! Reseed is necessary. */
+#define RNGC_STATUS_RESEED 0x00000008
+/*! RNGC is sleeping. */
+#define RNGC_STATUS_SLEEP 0x00000004
+/*! RNGC is currently generating numbers, seeding, generating next seed, or
+ performing a self test. */
+#define RNGC_STATUS_BUSY 0x00000002
+/*! RNGC is in secure state. */
+#define RNGC_STATUS_SEC_STATE 0x00000001
+
+/*! @} */
+
+/*! @defgroup rngcerrstatusreg RNGB/RNGC Error Status Register Definitions
+ * @ingroup RNG
+ */
+/*! @addtogroup rngcerrstatusreg */
+/*! @{ */
+/*! Unused or MBZ. */
+#define RNGC_ERROR_STATUS_ZEROS_MASK 0xffffff80
+/*! Bad Key Error Status */
+#define RNGC_ERROR_STATUS_BAD_KEY 0x00000040
+/*! Random Compare Error. Previous number matched the current number. */
+#define RNGC_ERROR_STATUS_RAND_ERR 0x00000020
+/*! FIFO Underflow. FIFO was read while empty. */
+#define RNGC_ERROR_STATUS_FIFO_ERR 0x00000010
+/*! Statistic Error Statistic Test failed for the last seed. */
+#define RNGC_ERROR_STATUS_STAT_ERR 0x00000008
+/*! Self-test error. Some self test has failed. */
+#define RNGC_ERROR_STATUS_ST_ERR 0x00000004
+/*!
+ * Oscillator Error. The oscillator may be broken. Clear by hard or soft
+ * reset.
+ */
+#define RNGC_ERROR_STATUS_OSC_ERR 0x00000002
+/*! LFSR Error. Clear by hard or soft reset. */
+#define RNGC_ERROR_STATUS_LFSR_ERR 0x00000001
+
+/*! @} */
+
+/*! Total address space of the RNGB/RNGC registers, in bytes */
+#define RNG_ADDRESS_RANGE 0x34
+
+#endif /* RNG_RNGC_H */
diff --git a/drivers/mxc/security/rng/include/shw_driver.h b/drivers/mxc/security/rng/include/shw_driver.h
new file mode 100644
index 000000000000..d529b4fe6e6b
--- /dev/null
+++ b/drivers/mxc/security/rng/include/shw_driver.h
@@ -0,0 +1,2971 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU Lesser General
+ * Public License. You may obtain a copy of the GNU Lesser General
+ * Public License Version 2.1 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/lgpl-license.html
+ * http://www.gnu.org/copyleft/lgpl.html
+ */
+
+#ifndef SHW_DRIVER_H
+#define SHW_DRIVER_H
+
+/* This is a Linux flag meaning 'compiling kernel code'... */
+#ifndef __KERNEL__
+#include <inttypes.h>
+#include <stdlib.h>
+#include <sys/ioctl.h>
+#include <memory.h>
+#include <stdio.h>
+#else
+#include "../../sahara2/include/portable_os.h"
+#endif /* __KERNEL__ */
+
+#include "../../sahara2/include/fsl_platform.h"
+
+/*! @file shw_driver.h
+ *
+ * @brief Header file to use the SHW driver.
+ *
+ * The SHW driver is used in two modes: By a user, from the FSL SHW API in user
+ * space, which goes through /dev/fsl_shw to make open(), ioctl(), and close()
+ * calls; and by other kernel modules/drivers, which use the FSL SHW API, parts
+ * of which are supported directly by the SHW driver.
+ *
+ * Testing is performed by using the apitest and kernel api test routines
+ * developed for the Sahara2 driver.
+ */
+/*#define DIAG_SECURITY_FUNC*/
+/*! Perform a security function. */
+#define SHW_IOCTL_REQUEST 21
+
+/* This definition may need a new name, and needs to go somewhere which
+ * can determine platform, kernel vs. user, os, etc.
+ */
+#define copy_bytes(out, in, len) memcpy(out, in, len)
+
+
+/*!
+ * This is part of the IOCTL request type passed between kernel and user space.
+ * It is added to #SHW_IOCTL_REQUEST to generate the actual value.
+ */
+typedef enum shw_user_request_t {
+ SHW_USER_REQ_REGISTER_USER, /*!< Initialize user-kernel discussion. */
+ SHW_USER_REQ_DEREGISTER_USER, /*!< Terminate user-kernel discussion. */
+ SHW_USER_REQ_GET_RESULTS, /*!< Get information on outstanding
+ results. */
+ SHW_USER_REQ_GET_CAPABILITIES, /*!< Get information on hardware support. */
+ SHW_USER_REQ_GET_RANDOM, /*!< Get random data from RNG. */
+ SHW_USER_REQ_ADD_ENTROPY, /*!< Add entropy to hardware RNG. */
+ SHW_USER_REQ_DROP_PERMS, /*!< Diminish the permissions of a block of
+ secure memory */
+ SHW_USER_REQ_SSTATUS, /*!< Check the status of a block of secure
+ memory */
+ SHW_USER_REQ_SFREE, /*!< Free a block of secure memory */
+ SHW_USER_REQ_SCC_ENCRYPT, /*!< Encrypt a region of user-owned secure
+ memory */
+ SHW_USER_REQ_SCC_DECRYPT, /*!< Decrypt a region of user-owned secure
+ memory */
+} shw_user_request_t;
+
+
+/*!
+ * @typedef scc_partition_status_t
+ */
+/** Partition status information. */
+typedef enum fsl_shw_partition_status_t {
+ FSL_PART_S_UNUSABLE, /*!< Partition not implemented */
+ FSL_PART_S_UNAVAILABLE, /*!< Partition owned by other host */
+ FSL_PART_S_AVAILABLE, /*!< Partition available */
+ FSL_PART_S_ALLOCATED, /*!< Partition owned by host but not engaged
+ */
+ FSL_PART_S_ENGAGED, /*!< Partition owned by host and engaged */
+} fsl_shw_partition_status_t;
+
+
+/*
+ * Structure passed during user ioctl() calls to manage secure partitions.
+ */
+typedef struct scc_partition_info_t {
+ uint32_t user_base; /*!< Userspace pointer to base of partition */
+ uint32_t permissions; /*!< Permissions to give the partition (only
+ used in call to _DROP_PERMS) */
+ fsl_shw_partition_status_t status; /*!< Status of the partition */
+} scc_partition_info_t;
+
+
+/******************************************************************************
+ * Enumerations
+ *****************************************************************************/
+/*!
+ * Flags for the state of the User Context Object (#fsl_shw_uco_t).
+ */
+typedef enum fsl_shw_user_ctx_flags_t
+{
+ /*!
+ * API will block the caller until operation completes. The result will be
+ * available in the return code. If this is not set, user will have to get
+ * results using #fsl_shw_get_results().
+ */
+ FSL_UCO_BLOCKING_MODE = 0x01,
+ /*!
+ * User wants callback (at the function specified with
+ * #fsl_shw_uco_set_callback()) when the operation completes. This flag is
+ * valid only if #FSL_UCO_BLOCKING_MODE is not set.
+ */
+ FSL_UCO_CALLBACK_MODE = 0x02,
+ /*! Do not free descriptor chain after driver (adaptor) finishes */
+ FSL_UCO_SAVE_DESC_CHAIN = 0x04,
+ /*!
+ * User has made at least one request with callbacks requested, so API is
+ * ready to handle others.
+ */
+ FSL_UCO_CALLBACK_SETUP_COMPLETE = 0x08,
+ /*!
+ * (virtual) pointer to descriptor chain is completely linked with physical
+ * (DMA) addresses, ready for the hardware. This flag should not be used
+ * by FSL SHW API programs.
+ */
+ FSL_UCO_CHAIN_PREPHYSICALIZED = 0x10,
+ /*!
+ * The user has changed the context but the changes have not been copied to
+ * the kernel driver.
+ */
+ FSL_UCO_CONTEXT_CHANGED = 0x20,
+ /*! Internal Use. This context belongs to a user-mode API user. */
+ FSL_UCO_USERMODE_USER = 0x40,
+} fsl_shw_user_ctx_flags_t;
+
+
+/*!
+ * Return code for FSL_SHW library.
+ *
+ * These codes may be returned from a function call. In non-blocking mode,
+ * they will appear as the status in a Result Object.
+ */
+/* REQ-FSLSHW-ERR-001 */
+typedef enum fsl_shw_return_t
+{
+ /*!
+ * No error. As a function return code in Non-blocking mode, this may
+ * simply mean that the operation was accepted for eventual execution.
+ */
+ FSL_RETURN_OK_S = 0,
+ /*! Failure for non-specific reason. */
+ FSL_RETURN_ERROR_S,
+ /*!
+ * Operation failed because some resource was not able to be allocated.
+ */
+ FSL_RETURN_NO_RESOURCE_S,
+ /*! Crypto algorithm unrecognized or improper. */
+ FSL_RETURN_BAD_ALGORITHM_S,
+ /*! Crypto mode unrecognized or improper. */
+ FSL_RETURN_BAD_MODE_S,
+ /*! Flag setting unrecognized or inconsistent. */
+ FSL_RETURN_BAD_FLAG_S,
+ /*! Improper or unsupported key length for algorithm. */
+ FSL_RETURN_BAD_KEY_LENGTH_S,
+ /*! Improper parity in a (DES, TDES) key. */
+ FSL_RETURN_BAD_KEY_PARITY_S,
+ /*!
+ * Improper or unsupported data length for algorithm or internal buffer.
+ */
+ FSL_RETURN_BAD_DATA_LENGTH_S,
+ /*! Authentication / Integrity Check code check failed. */
+ FSL_RETURN_AUTH_FAILED_S,
+ /*! A memory error occurred. */
+ FSL_RETURN_MEMORY_ERROR_S,
+ /*! An error internal to the hardware occurred. */
+ FSL_RETURN_INTERNAL_ERROR_S,
+ /*! ECC detected Point at Infinity */
+ FSL_RETURN_POINT_AT_INFINITY_S,
+ /*! ECC detected No Point at Infinity */
+ FSL_RETURN_POINT_NOT_AT_INFINITY_S,
+ /*! GCD is One */
+ FSL_RETURN_GCD_IS_ONE_S,
+ /*! GCD is not One */
+ FSL_RETURN_GCD_IS_NOT_ONE_S,
+ /*! Candidate is Prime */
+ FSL_RETURN_PRIME_S,
+ /*! Candidate is not Prime */
+ FSL_RETURN_NOT_PRIME_S,
+ /*! N register loaded improperly with even value */
+ FSL_RETURN_EVEN_MODULUS_ERROR_S,
+ /*! Divisor is zero. */
+ FSL_RETURN_DIVIDE_BY_ZERO_ERROR_S,
+ /*! Bad Exponent or Scalar value for Point Multiply */
+ FSL_RETURN_BAD_EXPONENT_ERROR_S,
+ /*! RNG hardware problem. */
+ FSL_RETURN_OSCILLATOR_ERROR_S,
+ /*! RNG hardware problem. */
+ FSL_RETURN_STATISTICS_ERROR_S,
+} fsl_shw_return_t;
+
+
+/*!
+ * Algorithm Identifier.
+ *
+ * Selection of algorithm will determine how large the block size of the
+ * algorithm is. Context size is the same length unless otherwise specified.
+ * Selection of algorithm also affects the allowable key length.
+ */
+typedef enum fsl_shw_key_alg_t
+{
+ /*!
+ * Key will be used to perform an HMAC. Key size is 1 to 64 octets. Block
+ * size is 64 octets.
+ */
+ FSL_KEY_ALG_HMAC,
+ /*!
+ * Advanced Encryption Standard (Rijndael). Block size is 16 octets. Key
+ * size is 16 octets. (The single choice of key size is a Sahara platform
+ * limitation.)
+ */
+ FSL_KEY_ALG_AES,
+ /*!
+ * Data Encryption Standard. Block size is 8 octets. Key size is 8
+ * octets.
+ */
+ FSL_KEY_ALG_DES,
+ /*!
+ * 2- or 3-key Triple DES. Block size is 8 octets. Key size is 16 octets
+ * for 2-key Triple DES, and 24 octets for 3-key.
+ */
+ FSL_KEY_ALG_TDES,
+ /*!
+ * ARC4. No block size. Context size is 259 octets. Allowed key size is
+ * 1-16 octets. (The choices for key size are a Sahara platform
+ * limitation.)
+ */
+ FSL_KEY_ALG_ARC4,
+} fsl_shw_key_alg_t;
+
+
+/*!
+ * Mode selector for Symmetric Ciphers.
+ *
+ * The selection of mode determines how a cryptographic algorithm will be
+ * used to process the plaintext or ciphertext.
+ *
+ * For all modes which are run block-by-block (that is, all but
+ * #FSL_SYM_MODE_STREAM), any partial operations must be performed on a text
+ * length which is multiple of the block size. Except for #FSL_SYM_MODE_CTR,
+ * these block-by-block algorithms must also be passed a total number of octets
+ * which is a multiple of the block size.
+ *
+ * In modes which require that the total number of octets of data be a multiple
+ * of the block size (#FSL_SYM_MODE_ECB and #FSL_SYM_MODE_CBC), and the user
+ * has a total number of octets which are not a multiple of the block size, the
+ * user must perform any necessary padding to get to the correct data length.
+ */
+typedef enum fsl_shw_sym_mode_t
+{
+ /*!
+ * Stream. There is no associated block size. Any request to process data
+ * may be of any length. This mode is only for ARC4 operations, and is
+ * also the only mode used for ARC4.
+ */
+ FSL_SYM_MODE_STREAM,
+
+ /*!
+ * Electronic Codebook. Each block of data is encrypted/decrypted. The
+ * length of the data stream must be a multiple of the block size. This
+ * mode may be used for DES, 3DES, and AES. The block size is determined
+ * by the algorithm.
+ */
+ FSL_SYM_MODE_ECB,
+ /*!
+ * Cipher-Block Chaining. Each block of data is encrypted/decrypted and
+ * then "chained" with the previous block by an XOR function. Requires
+ * context to start the XOR (previous block). This mode may be used for
+ * DES, 3DES, and AES. The block size is determined by the algorithm.
+ */
+ FSL_SYM_MODE_CBC,
+ /*!
+ * Counter. The counter is encrypted, then XORed with a block of data.
+ * The counter is then incremented (using modulus arithmetic) for the next
+ * block. The final operation may be non-multiple of block size. This mode
+ * may be used for AES. The block size is determined by the algorithm.
+ */
+ FSL_SYM_MODE_CTR,
+} fsl_shw_sym_mode_t;
+
+
+/*!
+ * Algorithm selector for Cryptographic Hash functions.
+ *
+ * Selection of algorithm determines how large the context and digest will be.
+ * Context is the same size as the digest (resulting hash), unless otherwise
+ * specified.
+ */
+typedef enum fsl_shw_hash_alg_t
+{
+ FSL_HASH_ALG_MD5, /*!< MD5 algorithm. Digest is 16 octets. */
+ FSL_HASH_ALG_SHA1, /*!< SHA-1 (aka SHA or SHA-160) algorithm.
+ Digest is 20 octets. */
+ FSL_HASH_ALG_SHA224, /*!< SHA-224 algorithm. Digest is 28 octets,
+ though context is 32 octets. */
+ FSL_HASH_ALG_SHA256 /*!< SHA-256 algorithm. Digest is 32
+ octets. */
+} fsl_shw_hash_alg_t;
+
+
+/*!
+ * The type of Authentication-Cipher function which will be performed.
+ */
+typedef enum fsl_shw_acc_mode_t
+{
+ /*!
+ * CBC-MAC for Counter. Requires context and modulus. Final operation may
+ * be non-multiple of block size. This mode may be used for AES.
+ */
+ FSL_ACC_MODE_CCM,
+ /*!
+ * SSL mode. Not supported. Combines HMAC and encrypt (or decrypt).
+ * Needs one key object for encryption, another for the HMAC. The usual
+ * hashing and symmetric encryption algorithms are supported.
+ */
+ FSL_ACC_MODE_SSL
+} fsl_shw_acc_mode_t;
+
+
+/* REQ-FSLSHW-PINTFC-COA-HCO-001 */
+/*!
+ * Flags which control a Hash operation.
+ */
+typedef enum fsl_shw_hash_ctx_flags_t
+{
+ FSL_HASH_FLAGS_INIT = 0x01, /*!< Context is empty. Hash is started
+ from scratch, with a message-processed
+ count of zero. */
+ FSL_HASH_FLAGS_SAVE = 0x02, /*!< Retrieve context from hardware after
+ hashing. If used with the
+ #FSL_HASH_FLAGS_FINALIZE flag, the final
+ digest value will be saved in the
+ object. */
+ FSL_HASH_FLAGS_LOAD = 0x04, /*!< Place context into hardware before
+ hashing. */
+ FSL_HASH_FLAGS_FINALIZE = 0x08, /*!< PAD message and perform final digest
+ operation. If user message is
+ pre-padded, this flag should not be
+ used. */
+} fsl_shw_hash_ctx_flags_t;
+
+
+/*!
+ * Flags which control an HMAC operation.
+ *
+ * These may be combined by ORing them together. See #fsl_shw_hmco_set_flags()
+ * and #fsl_shw_hmco_clear_flags().
+ */
+typedef enum fsl_shw_hmac_ctx_flags_t
+{
+ FSL_HMAC_FLAGS_INIT = 1, /**< Message context is empty. HMAC is
+ started from scratch (with key) or from
+ precompute of inner hash, depending on
+ whether
+ #FSL_HMAC_FLAGS_PRECOMPUTES_PRESENT is
+ set. */
+ FSL_HMAC_FLAGS_SAVE = 2, /**< Retrieve ongoing context from hardware
+ after hashing. If used with the
+ #FSL_HMAC_FLAGS_FINALIZE flag, the final
+ digest value (HMAC) will be saved in the
+ object. */
+ FSL_HMAC_FLAGS_LOAD = 4, /**< Place ongoing context into hardware
+ before hashing. */
+ FSL_HMAC_FLAGS_FINALIZE = 8, /**< PAD message and perform final HMAC
+ operations of inner and outer hashes. */
+ FSL_HMAC_FLAGS_PRECOMPUTES_PRESENT = 16 /**< This means that the context
+ contains precomputed inner and outer
+ hash values. */
+} fsl_shw_hmac_ctx_flags_t;
+
+
+/**
+ * Flags to control use of the #fsl_shw_scco_t.
+ *
+ * These may be ORed together to get the desired effect.
+ * See #fsl_shw_scco_set_flags() and #fsl_shw_scco_clear_flags()
+ */
+typedef enum fsl_shw_sym_ctx_flags_t
+{
+ /**
+ * Context is empty. In ARC4, this means that the S-Box needs to be
+ * generated from the key. In #FSL_SYM_MODE_CBC mode, this allows an IV of
+ * zero to be specified. In #FSL_SYM_MODE_CTR mode, it means that an
+ * initial CTR value of zero is desired.
+ */
+ FSL_SYM_CTX_INIT = 1,
+ /**
+ * Load context from object into hardware before running cipher. In
+ * #FSL_SYM_MODE_CTR mode, this would refer to the Counter Value.
+ */
+ FSL_SYM_CTX_LOAD = 2,
+ /**
+ * Save context from hardware into object after running cipher. In
+ * #FSL_SYM_MODE_CTR mode, this would refer to the Counter Value.
+ */
+ FSL_SYM_CTX_SAVE = 4,
+ /**
+ * Context (SBox) is to be unwrapped and wrapped on each use.
+ * This flag is unsupported.
+ * */
+ FSL_SYM_CTX_PROTECT = 8,
+} fsl_shw_sym_ctx_flags_t;
+
+
+/**
+ * Flags which describe the state of the #fsl_shw_sko_t.
+ *
+ * These may be ORed together to get the desired effect.
+ * See #fsl_shw_sko_set_flags() and #fsl_shw_sko_clear_flags()
+ */
+typedef enum fsl_shw_key_flags_t
+{
+ FSL_SKO_KEY_IGNORE_PARITY = 1, /*!< If algorithm is DES or 3DES, do not
+ validate the key parity bits. */
+ FSL_SKO_KEY_PRESENT = 2, /*!< Clear key is present in the object. */
+ FSL_SKO_KEY_ESTABLISHED = 4, /*!< Key has been established for use. This
+ feature is not available for all
+ platforms, nor for all algorithms and
+ modes.*/
+ FSL_SKO_USE_SECRET_KEY = 8, /*!< Use device-unique key. Not always
+ available. */
+ FSL_SKO_KEY_SW_KEY = 16, /*!< Clear key can be provided to the user */
+ FSL_SKO_KEY_SELECT_PF_KEY = 32, /*!< Internal flag to show that this key
+ references one of the hardware keys, and
+ its value is in pf_key. */
+} fsl_shw_key_flags_t;
+
+
+/**
+ * Type of value which is associated with an established key.
+ */
+typedef uint64_t key_userid_t;
+
+
+/**
+ * Flags which describe the state of the #fsl_shw_acco_t.
+ *
+ * The @a FSL_ACCO_CTX_INIT and @a FSL_ACCO_CTX_FINALIZE flags, when used
+ * together, provide for a one-shot operation.
+ */
+typedef enum fsl_shw_auth_ctx_flags_t
+{
+ FSL_ACCO_CTX_INIT = 1, /**< Initialize Context(s) */
+ FSL_ACCO_CTX_LOAD = 2, /**< Load intermediate context(s).
+ This flag is unsupported. */
+ FSL_ACCO_CTX_SAVE = 4, /**< Save intermediate context(s).
+ This flag is unsupported. */
+ FSL_ACCO_CTX_FINALIZE = 8, /**< Create MAC during this operation. */
+ FSL_ACCO_NIST_CCM = 0x10, /**< Formatting of CCM input data is
+ performed by calls to
+ #fsl_shw_ccm_nist_format_ctr_and_iv() and
+ #fsl_shw_ccm_nist_update_ctr_and_iv(). */
+} fsl_shw_auth_ctx_flags_t;
+
+
+/**
+ * The operation which controls the behavior of #fsl_shw_establish_key().
+ *
+ * These values are passed to #fsl_shw_establish_key().
+ */
+typedef enum fsl_shw_key_wrap_t
+{
+ FSL_KEY_WRAP_CREATE, /**< Generate a key from random values. */
+ FSL_KEY_WRAP_ACCEPT, /**< Use the provided clear key. */
+ FSL_KEY_WRAP_UNWRAP /**< Unwrap a previously wrapped key. */
+} fsl_shw_key_wrap_t;
+
+
+/**
+ * Modulus Selector for CTR modes.
+ *
+ * The incrementing of the Counter value may be modified by a modulus. If no
+ * modulus is needed or desired for AES, use #FSL_CTR_MOD_128.
+ */
+typedef enum fsl_shw_ctr_mod_t
+{
+ FSL_CTR_MOD_8, /**< Run counter with modulus of 2^8. */
+ FSL_CTR_MOD_16, /**< Run counter with modulus of 2^16. */
+ FSL_CTR_MOD_24, /**< Run counter with modulus of 2^24. */
+ FSL_CTR_MOD_32, /**< Run counter with modulus of 2^32. */
+ FSL_CTR_MOD_40, /**< Run counter with modulus of 2^40. */
+ FSL_CTR_MOD_48, /**< Run counter with modulus of 2^48. */
+ FSL_CTR_MOD_56, /**< Run counter with modulus of 2^56. */
+ FSL_CTR_MOD_64, /**< Run counter with modulus of 2^64. */
+ FSL_CTR_MOD_72, /**< Run counter with modulus of 2^72. */
+ FSL_CTR_MOD_80, /**< Run counter with modulus of 2^80. */
+ FSL_CTR_MOD_88, /**< Run counter with modulus of 2^88. */
+ FSL_CTR_MOD_96, /**< Run counter with modulus of 2^96. */
+ FSL_CTR_MOD_104, /**< Run counter with modulus of 2^104. */
+ FSL_CTR_MOD_112, /**< Run counter with modulus of 2^112. */
+ FSL_CTR_MOD_120, /**< Run counter with modulus of 2^120. */
+ FSL_CTR_MOD_128 /**< Run counter with modulus of 2^128. */
+} fsl_shw_ctr_mod_t;
+
+
+/**
+ * A work type associated with a work/result queue request.
+ */
+typedef enum shw_work_type_t
+{
+ SHW_WORK_GET_RANDOM = 1, /**< fsl_shw_get_random() request. */
+ SHW_WORK_ADD_RANDOM, /**< fsl_shw_add_entropy() request. */
+} shw_work_type_t;
+
+
+/**
+ * Permissions flags for Secure Partitions
+ */
+typedef enum fsl_shw_permission_t
+{
+/** SCM Access Permission: Do not zeroize/deallocate partition on SMN Fail state */
+ FSL_PERM_NO_ZEROIZE = 0x80000000,
+/** SCM Access Permission: Enforce trusted key read in */
+ FSL_PERM_TRUSTED_KEY_READ = 0x40000000,
+/** SCM Access Permission: Ignore Supervisor/User mode in permission determination */
+ FSL_PERM_HD_S = 0x00000800,
+/** SCM Access Permission: Allow Read Access to Host Domain */
+ FSL_PERM_HD_R = 0x00000400,
+/** SCM Access Permission: Allow Write Access to Host Domain */
+ FSL_PERM_HD_W = 0x00000200,
+/** SCM Access Permission: Allow Execute Access to Host Domain */
+ FSL_PERM_HD_X = 0x00000100,
+/** SCM Access Permission: Allow Read Access to Trusted Host Domain */
+ FSL_PERM_TH_R = 0x00000040,
+/** SCM Access Permission: Allow Write Access to Trusted Host Domain */
+ FSL_PERM_TH_W = 0x00000020,
+/** SCM Access Permission: Allow Read Access to Other/World Domain */
+ FSL_PERM_OT_R = 0x00000004,
+/** SCM Access Permission: Allow Write Access to Other/World Domain */
+ FSL_PERM_OT_W = 0x00000002,
+/** SCM Access Permission: Allow Execute Access to Other/World Domain */
+ FSL_PERM_OT_X = 0x00000001,
+} fsl_shw_permission_t;
+
+/*!
+ * Select the cypher mode to use for partition cover/uncover operations.
+ *
+ * They currently map directly to the values used in the SCC2 driver, but this
+ * is not guarinteed behavior.
+ */
+typedef enum fsl_shw_cypher_mode_t
+{
+ FSL_SHW_CYPHER_MODE_ECB = 1, /*!< ECB mode */
+ FSL_SHW_CYPHER_MODE_CBC = 2, /*!< CBC mode */
+} fsl_shw_cypher_mode_t;
+
+/*!
+ * Which platform key should be presented for cryptographic use.
+ */
+typedef enum fsl_shw_pf_key_t {
+ FSL_SHW_PF_KEY_IIM, /*!< Present fused IIM key */
+ FSL_SHW_PF_KEY_PRG, /*!< Present Program key */
+ FSL_SHW_PF_KEY_IIM_PRG, /*!< Present IIM ^ Program key */
+ FSL_SHW_PF_KEY_IIM_RND, /*!< Present Random key */
+ FSL_SHW_PF_KEY_RND, /*!< Present IIM ^ Random key */
+} fsl_shw_pf_key_t;
+
+/*!
+ * The various security tamper events
+ */
+typedef enum fsl_shw_tamper_t {
+ FSL_SHW_TAMPER_NONE, /*!< No error detected */
+ FSL_SHW_TAMPER_WTD, /*!< wire-mesh tampering det */
+ FSL_SHW_TAMPER_ETBD, /*!< ext tampering det: input B */
+ FSL_SHW_TAMPER_ETAD, /*!< ext tampering det: input A */
+ FSL_SHW_TAMPER_EBD, /*!< external boot detected */
+ FSL_SHW_TAMPER_SAD, /*!< security alarm detected */
+ FSL_SHW_TAMPER_TTD, /*!< temperature tampering det */
+ FSL_SHW_TAMPER_CTD, /*!< clock tampering det */
+ FSL_SHW_TAMPER_VTD, /*!< voltage tampering det */
+ FSL_SHW_TAMPER_MCO, /*!< monotonic counter overflow */
+ FSL_SHW_TAMPER_TCO, /*!< time counter overflow */
+} fsl_shw_tamper_t;
+
+/*
+ * Structure passed during user ioctl() calls to manage data stored in secure
+ * partitions.
+ */
+
+typedef struct scc_region_t {
+ uint32_t partition_base; /*!< Base address of partition */
+ uint32_t offset; /*!< Byte offset into partition */
+ uint32_t length; /*!< Number of bytes in request */
+ uint8_t *black_data; /*!< Address of cipher text */
+ uint64_t owner_id; /*!< user's secret */
+ fsl_shw_cypher_mode_t cypher_mode; /*!< ECB or CBC */
+ uint32_t IV[4]; /*!< IV for CBC mode */
+} scc_region_t;
+
+/******************************************************************************
+ * Data Structures
+ *****************************************************************************/
+
+/**
+ * Initialization Object
+ */
+typedef struct fsl_sho_ibo
+{
+} fsl_sho_ibo_t;
+
+
+/**
+ * Common Entry structure for work queues, results queues.
+ */
+typedef struct shw_queue_entry_t {
+ struct shw_queue_entry_t* next; /**< Next entry in queue. */
+ struct fsl_shw_uco_t* user_ctx; /**< Associated user context. */
+ uint32_t flags; /**< User context flags at time of request. */
+ void (*callback)(struct fsl_shw_uco_t* uco); /**< Any callback request. */
+ uint32_t user_ref; /**< User's reference for this request. */
+ fsl_shw_return_t code; /**< FSL SHW result of this operation. */
+ uint32_t detail1; /**< Any extra error info. */
+ uint32_t detail2; /**< More any extra error info. */
+ void* user_mode_req; /**< Pointer into user space. */
+ uint32_t (*postprocess)(struct shw_queue_entry_t* q); /**< (internal)
+ function to call
+ when this operation
+ completes.
+ */
+} shw_queue_entry_t;
+
+
+/**
+ * A queue. Fields must be initialized to NULL before use.
+ */
+typedef struct shw_queue_t
+{
+ struct shw_queue_entry_t* head; /**< First entry in queue. */
+ struct shw_queue_entry_t* tail; /**< Last entry. */
+} shw_queue_t;
+
+
+/**
+ * Secure Partition information
+ */
+typedef struct fsl_shw_spo_t
+{
+ uint32_t user_base;
+ void* kernel_base;
+ struct fsl_shw_spo_t* next;
+} fsl_shw_spo_t;
+
+
+/* REQ-FSLSHW-PINTFC-COA-UCO-001 */
+/**
+ * User Context Object
+ */
+typedef struct fsl_shw_uco_t
+{
+ int openfd; /**< user-mode file descriptor */
+ uint32_t user_ref; /**< User's reference */
+ void (*callback)(struct fsl_shw_uco_t* uco); /**< User's callback fn */
+ uint32_t flags; /**< from fsl_shw_user_ctx_flags_t */
+ unsigned pool_size; /**< maximum size of user result pool */
+#ifdef __KERNEL__
+ shw_queue_t result_pool; /**< where non-blocking results go */
+ os_process_handle_t process; /**< remember for signalling User mode */
+ fsl_shw_spo_t* partition; /**< chain of secure partitions owned by
+ the user */
+#endif
+ struct fsl_shw_uco_t* next; /**< To allow user-mode chaining of contexts,
+ for signalling and in kernel, to link user
+ contexts. */
+ fsl_shw_pf_key_t wrap_key; /*!< What key for ciphering T */
+} fsl_shw_uco_t;
+
+
+/* REQ-FSLSHW-PINTFC-API-GEN-006 ?? */
+/**
+ * Result object
+ */
+typedef struct fsl_shw_result_t
+{
+ uint32_t user_ref; /**< User's reference at time of request. */
+ fsl_shw_return_t code; /**< Return code from request. */
+ uint32_t detail1; /**< Extra error info. Unused in SHW driver. */
+ uint32_t detail2; /**< Extra error info. Unused in SHW driver. */
+ void* user_req; /**< Pointer to original user request. */
+} fsl_shw_result_t;
+
+
+/**
+ * Keystore Object
+ */
+typedef struct fsl_shw_kso_t
+{
+#ifdef __KERNEL__
+ os_lock_t lock; /**< Pointer to lock that controls access to
+ the keystore. */
+#endif
+ void* user_data; /**< Pointer to user structure that handles
+ the internals of the keystore. */
+ fsl_shw_return_t (*data_init) (fsl_shw_uco_t* user_ctx,
+ void** user_data);
+ void (*data_cleanup) (fsl_shw_uco_t* user_ctx,
+ void** user_data);
+ fsl_shw_return_t (*slot_verify_access)(void* user_data, uint64_t owner_id,
+ uint32_t slot);
+ fsl_shw_return_t (*slot_alloc) (void* user_data, uint32_t size_bytes,
+ uint64_t owner_id, uint32_t* slot);
+ fsl_shw_return_t (*slot_dealloc) (void* user_data,
+ uint64_t owner_id, uint32_t slot);
+ void* (*slot_get_address) (void* user_data, uint32_t slot);
+ uint32_t (*slot_get_base) (void* user_data, uint32_t slot);
+ uint32_t (*slot_get_offset) (void* user_data, uint32_t slot);
+ uint32_t (*slot_get_slot_size) (void* user_data, uint32_t slot);
+} fsl_shw_kso_t;
+
+
+/* REQ-FSLSHW-PINTFC-COA-SKO-001 */
+/**
+ * Secret Key Context Object
+ */
+typedef struct fsl_shw_sko_t
+{
+ uint32_t flags; /**< Flags from #fsl_shw_sym_ctx_flags_t. */
+ fsl_shw_key_alg_t algorithm; /**< Algorithm for this key. */
+ key_userid_t userid; /**< User's identifying value for Black key. */
+ uint32_t handle; /**< Reference in SCC driver for Red key. */
+ uint16_t key_length; /**< Length of stored key, in bytes. */
+ uint8_t key[64]; /**< Bytes of stored key. */
+ struct fsl_shw_kso_t* keystore; /**< If present, key is in keystore */
+ fsl_shw_pf_key_t pf_key; /*!< What key to select for use when this key
+ is doing ciphering. If FSL_SHW_PF_KEY_PRG
+ or FSL_SHW_PF_KEY_PRG_IIM is the value, then
+ a 'present' or 'established' key will be
+ programed into the PK. */
+} fsl_shw_sko_t;
+
+
+/* REQ-FSLSHW-PINTFC-COA-CO-001 */
+/**
+ * Platform Capability Object
+ *
+ * Pointer to this structure is returned by fsl_shw_get_capabilities() and
+ * queried with the various fsl_shw_pco_() functions.
+ */
+typedef struct fsl_shw_pco_t
+{
+ int api_major; /**< Major version number for API. */
+ int api_minor; /**< Minor version number for API. */
+ int driver_major; /**< Major version of some driver. */
+ int driver_minor; /**< Minor version of some driver. */
+ unsigned sym_algorithm_count; /**< Number of sym_algorithms. */
+ fsl_shw_key_alg_t* sym_algorithms; /**< Pointer to array. */
+ unsigned sym_mode_count; /**< Number of sym_modes. */
+ fsl_shw_sym_mode_t* sym_modes; /**< Pointer to array. */
+ unsigned hash_algorithm_count; /**< Number of hash_algorithms. */
+ fsl_shw_hash_alg_t* hash_algorithms; /**< Pointer to array */
+ uint8_t sym_support[5][4]; /**< indexed by key alg then mode */
+
+ int scc_driver_major;
+ int scc_driver_minor;
+ int scm_version; /**< Version from SCM Configuration register */
+ int smn_version; /**< Version from SMN Status register */
+ int block_size_bytes; /**< Number of bytes per block of RAM; also
+ block size of the crypto algorithm. */
+ union {
+ struct scc_info {
+ int black_ram_size_blocks; /**< Number of blocks of Black RAM */
+ int red_ram_size_blocks; /**< Number of blocks of Red RAM */
+ } scc_info;
+ struct scc2_info {
+ int partition_size_bytes; /**< Number of bytes in each partition */
+ int partition_count; /**< Number of partitions on this platform */
+ } scc2_info;
+ } u;
+} fsl_shw_pco_t;
+
+
+/* REQ-FSLSHW-PINTFC-COA-HCO-001 */
+/**
+ * Hash Context Object
+ */
+typedef struct fsl_shw_hco_t /* fsl_shw_hash_context_object */
+{
+ fsl_shw_hash_alg_t algorithm; /**< Algorithm for this context. */
+ uint32_t flags; /**< Flags from
+ #fsl_shw_hash_ctx_flags_t. */
+ uint8_t digest_length; /**< hash result length in bytes */
+ uint8_t context_length; /**< Context length in bytes */
+ uint8_t context_register_length; /**< in bytes */
+ uint32_t context[9]; /**< largest digest + msg size */
+} fsl_shw_hco_t;
+
+
+/* REQ-FSLSHW-PINTFC-COA-HCO-001 */
+/**
+ * HMAC Context Object
+ */
+typedef struct fsl_shw_hmco_t /* fsl_shw_hmac_context_object */
+{
+ fsl_shw_hash_alg_t algorithm; /**< Hash algorithm for the HMAC. */
+ uint32_t flags; /**< Flags from
+ #fsl_shw_hmac_ctx_flags_t. */
+ uint8_t digest_length; /**< in bytes */
+ uint8_t context_length; /**< in bytes */
+ uint8_t context_register_length; /**< in bytes */
+ uint32_t ongoing_context[9]; /**< largest digest + msg
+ size */
+ uint32_t inner_precompute[9]; /**< largest digest + msg
+ size */
+ uint32_t outer_precompute[9]; /**< largest digest + msg
+ size */
+} fsl_shw_hmco_t;
+
+
+/* REQ-FSLSHW-PINTFC-COA-SCCO-001 */
+/**
+ * Symmetric Crypto Context Object Context Object
+ */
+typedef struct fsl_shw_scco_t
+{
+ uint32_t flags; /**< Flags from #fsl_shw_sym_ctx_flags_t. */
+ unsigned block_size_bytes; /**< Both block and ctx size */
+ fsl_shw_sym_mode_t mode; /**< Symmetric mode for this context. */
+ /* Could put modulus plus 16-octet context in union with arc4
+ sbox+ptrs... */
+ fsl_shw_ctr_mod_t modulus_exp; /**< Exponent value for CTR modulus */
+ uint8_t context[8]; /**< Stored context. Large enough
+ for 3DES. */
+} fsl_shw_scco_t;
+
+
+/**
+ * Authenticate-Cipher Context Object
+
+ * An object for controlling the function of, and holding information about,
+ * data for the authenticate-cipher functions, #fsl_shw_gen_encrypt() and
+ * #fsl_shw_auth_decrypt().
+ */
+typedef struct fsl_shw_acco_t
+{
+ uint32_t flags; /**< See #fsl_shw_auth_ctx_flags_t for
+ meanings */
+ fsl_shw_acc_mode_t mode; /**< CCM only */
+ uint8_t mac_length; /**< User's value for length */
+ unsigned q_length; /**< NIST parameter - */
+ fsl_shw_scco_t cipher_ctx_info; /**< For running
+ encrypt/decrypt. */
+ union {
+ fsl_shw_scco_t CCM_ctx_info; /**< For running the CBC in
+ AES-CCM. */
+ fsl_shw_hco_t hash_ctx_info; /**< For running the hash */
+ } auth_info; /**< "auth" info struct */
+ uint8_t unencrypted_mac[16]; /**< max block size... */
+} fsl_shw_acco_t;
+
+
+/**
+ * Common header in request structures between User-mode API and SHW driver.
+ */
+struct shw_req_header {
+ uint32_t flags; /**< Flags - from user-mode context. */
+ uint32_t user_ref; /**< Reference - from user-mode context. */
+ fsl_shw_return_t code; /**< Result code for operation. */
+};
+
+/**
+ * Used by user-mode API to retrieve completed non-blocking results in
+ * SHW_USER_REQ_GET_RESULTS ioctl().
+ */
+struct results_req {
+ struct shw_req_header hdr; /**< Boilerplate. */
+ unsigned requested; /**< number of results requested, */
+ unsigned actual; /**< number of results obtained. */
+ fsl_shw_result_t *results; /**< pointer to memory to hold results. */
+};
+
+
+/**
+ * Used by user-mode API to retrieve hardware capabilities in
+ * SHW_USER_REQ_GET_CAPABILITIES ioctl().
+ */
+struct capabilities_req {
+ struct shw_req_header hdr; /**< Boilerplate. */
+ unsigned size; /**< Size, in bytes, capabilities. */
+ fsl_shw_pco_t* capabilities; /**< Place to copy out the info. */
+};
+
+
+/**
+ * Used by user-mode API to get a random number
+ */
+struct get_random_req {
+ struct shw_req_header hdr; /**< Boilerplate. */
+ unsigned size; /**< Size, in bytes, of random. */
+ uint8_t* random; /**< Place to copy out the random number. */
+};
+
+
+/**
+ * Used by API to add entropy to a random number generator
+ */
+struct add_entropy_req {
+ struct shw_req_header hdr; /**< Boilerplate. */
+ unsigned size; /**< Size, in bytes, of entropy. */
+ uint8_t* entropy; /**< Location of the entropy to be added. */
+};
+
+
+/******************************************************************************
+ * External variables
+ *****************************************************************************/
+#ifdef __KERNEL__
+extern os_lock_t shw_queue_lock;
+
+extern fsl_shw_uco_t* user_list;
+#endif
+
+
+/******************************************************************************
+ * Access Macros for Objects
+ *****************************************************************************/
+/**
+ * Get FSL SHW API version
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @param[out] pcmajor A pointer to where the major version
+ * of the API is to be stored.
+ * @param[out] pcminor A pointer to where the minor version
+ * of the API is to be stored.
+ */
+#define fsl_shw_pco_get_version(pcobject, pcmajor, pcminor) \
+do { \
+ *(pcmajor) = (pcobject)->api_major; \
+ *(pcminor) = (pcobject)->api_minor; \
+} while (0)
+
+
+/**
+ * Get underlying driver version.
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @param[out] pcmajor A pointer to where the major version
+ * of the driver is to be stored.
+ * @param[out] pcminor A pointer to where the minor version
+ * of the driver is to be stored.
+ */
+#define fsl_shw_pco_get_driver_version(pcobject, pcmajor, pcminor) \
+do { \
+ *(pcmajor) = (pcobject)->driver_major; \
+ *(pcminor) = (pcobject)->driver_minor; \
+} while (0)
+
+
+/**
+ * Get list of symmetric algorithms supported.
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @param[out] pcalgorithms A pointer to where to store the location of
+ * the list of algorithms.
+ * @param[out] pcacount A pointer to where to store the number of
+ * algorithms in the list at @a algorithms.
+ */
+#define fsl_shw_pco_get_sym_algorithms(pcobject, pcalgorithms, pcacount) \
+do { \
+ *(pcalgorithms) = (pcobject)->sym_algorithms; \
+ *(pcacount) = (pcobject)->sym_algorithm_count; \
+} while (0)
+
+
+/**
+ * Get list of symmetric modes supported.
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @param[out] gsmodes A pointer to where to store the location of
+ * the list of modes.
+ * @param[out] gsacount A pointer to where to store the number of
+ * algorithms in the list at @a modes.
+ */
+#define fsl_shw_pco_get_sym_modes(pcobject, gsmodes, gsacount) \
+do { \
+ *(gsmodes) = (pcobject)->sym_modes; \
+ *(gsacount) = (pcobject)->sym_mode_count; \
+} while (0)
+
+
+/**
+ * Get list of hash algorithms supported.
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @param[out] gsalgorithms A pointer which will be set to the list of
+ * algorithms.
+ * @param[out] gsacount The number of algorithms in the list at @a
+ * algorithms.
+ */
+#define fsl_shw_pco_get_hash_algorithms(pcobject, gsalgorithms, gsacount) \
+do { \
+ *(gsalgorithms) = (pcobject)->hash_algorithms; \
+ *(gsacount) = (pcobject)->hash_algorithm_count; \
+} while (0)
+
+
+/**
+ * Determine whether the combination of a given symmetric algorithm and a given
+ * mode is supported.
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @param pcalg A Symmetric Cipher algorithm.
+ * @param pcmode A Symmetric Cipher mode.
+ *
+ * @return 0 if combination is not supported, non-zero if supported.
+ */
+#if defined(FSL_HAVE_DRYICE) && defined(__KERNEL__)
+#define fsl_shw_pco_check_sym_supported(pcobject, pcalg, pcmode) \
+ ((pcobject)->sym_support[pcalg][pcmode])
+#else
+#define fsl_shw_pco_check_sym_supported(pcobject, pcalg, pcmode) \
+ 0
+#endif
+
+/**
+ * Determine whether a given Encryption-Authentication mode is supported.
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @param pcmode The Authentication mode.
+ *
+ * @return 0 if mode is not supported, non-zero if supported.
+ */
+#define fsl_shw_pco_check_auth_supported(pcobject, pcmode) \
+ 0
+
+
+/**
+ * Determine whether Black Keys (key establishment / wrapping) is supported.
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ *
+ * @return 0 if wrapping is not supported, non-zero if supported.
+ */
+#if defined(FSL_HAVE_DRYICE) && defined(__KERNEL__)
+#define fsl_shw_pco_check_black_key_supported(pcobject) \
+ 1
+#else
+#define fsl_shw_pco_check_black_key_supported(pcobject) \
+ 0
+
+#endif
+
+/*!
+ * Determine whether Programmed Key features are available
+ *
+ * @param pcobject The Platform Capabilities Object to query.
+ *
+ * @return 1 if Programmed Key features are available, otherwise zero.
+ */
+#if defined(FSL_HAVE_DRYICE) && defined(__KERNEL__)
+#define fsl_shw_pco_check_pk_supported(pcobject) \
+ 1
+#else
+#define fsl_shw_pco_check_pk_supported(pcobject) \
+ 0
+#endif
+
+/*!
+ * Determine whether Software Key features are available
+ *
+ * @param pc_info The Platform Capabilities Object to query.
+ *
+ * @return 1 if Software key features are available, otherwise zero.
+ */
+#if defined(FSL_HAVE_DRYICE) && defined(__KERNEL__)
+#define fsl_shw_pco_check_sw_keys_supported(pcobject) \
+ 1
+#else
+#define fsl_shw_pco_check_sw_keys_supported(pcobject) \
+ 0
+#endif
+
+/*!
+ * Get FSL SHW SCC driver version
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @param[out] pcmajor A pointer to where the major version
+ * of the SCC driver is to be stored.
+ * @param[out] pcminor A pointer to where the minor version
+ * of the SCC driver is to be stored.
+ */
+#define fsl_shw_pco_get_scc_driver_version(pcobject, pcmajor, pcminor) \
+{ \
+ *(pcmajor) = (pcobject)->scc_driver_major; \
+ *(pcminor) = (pcobject)->scc_driver_minor; \
+}
+
+
+/**
+ * Get SCM hardware version
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @return The SCM hardware version
+ */
+#define fsl_shw_pco_get_scm_version(pcobject) \
+ ((pcobject)->scm_version)
+
+
+/**
+ * Get SMN hardware version
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @return The SMN hardware version
+ */
+#define fsl_shw_pco_get_smn_version(pcobject) \
+ ((pcobject)->smn_version)
+
+
+/**
+ * Get the size of an SCM block, in bytes
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @return The size of an SCM block, in bytes.
+ */
+#define fsl_shw_pco_get_scm_block_size(pcobject) \
+ ((pcobject)->block_size_bytes)
+
+
+/**
+ * Get size of Black and Red RAM memory
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ * @param[out] black_size A pointer to where the size of the Black RAM, in
+ * blocks, is to be placed.
+ * @param[out] red_size A pointer to where the size of the Red RAM, in
+ * blocks, is to be placed.
+ */
+#define fsl_shw_pco_get_smn_size(pcobject, black_size, red_size) \
+{ \
+ if ((pcobject)->scm_version == 1) { \
+ *(black_size) = (pcobject)->u.scc_info.black_ram_size_blocks; \
+ *(red_size) = (pcobject)->u.scc_info.red_ram_size_blocks; \
+ } else { \
+ *(black_size) = 0; \
+ *(red_size) = 0; \
+ } \
+}
+
+
+/**
+ * Determine whether Secure Partitions are supported
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ *
+ * @return 0 if secure partitions are not supported, non-zero if supported.
+ */
+#define fsl_shw_pco_check_spo_supported(pcobject) \
+ ((pcobject)->scm_version == 2)
+
+
+/**
+ * Get the size of a Secure Partitions
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ *
+ * @return Partition size, in bytes. 0 if Secure Partitions not supported.
+ */
+#define fsl_shw_pco_get_spo_size_bytes(pcobject) \
+ (((pcobject)->scm_version == 2) ? \
+ ((pcobject)->u.scc2_info.partition_size_bytes) : 0 ) \
+
+
+/**
+ * Get the number of Secure Partitions on this platform
+ *
+ * @param pcobject The Platform Capababilities Object to query.
+ *
+ * @return Number of partitions. 0 if Secure Paritions not supported. Note
+ * that this returns the total number of partitions, not all may be
+ * available to the user.
+ */
+#define fsl_shw_pco_get_spo_count(pcobject) \
+ (((pcobject)->scm_version == 2) ? \
+ ((pcobject)->u.scc2_info.partition_count) : 0 ) \
+
+
+/*!
+ * Initialize a Secret Key Object.
+ *
+ * This function must be called before performing any other operation with
+ * the Object.
+ *
+ * @param skobject The Secret Key Object to be initialized.
+ * @param skalgorithm DES, AES, etc.
+ *
+ */
+#define fsl_shw_sko_init(skobject,skalgorithm) \
+{ \
+ fsl_shw_sko_t* skop = skobject; \
+ \
+ skop->algorithm = skalgorithm; \
+ skop->flags = 0; \
+ skop->keystore = NULL; \
+ skop->pf_key = FSL_SHW_PF_KEY_PRG; \
+}
+
+/*!
+ * Initialize a Secret Key Object to use a Platform Key register.
+ *
+ * This function must be called before performing any other operation with
+ * the Object.
+ *
+ * @param skobject The Secret Key Object to be initialized.
+ * @param skalgorithm DES, AES, etc.
+ * @param skhwkey one of the fsl_shw_pf_key_t values.
+ *
+ */
+#define fsl_shw_sko_init_pf_key(skobject,skalgorithm,skhwkey) \
+{ \
+ fsl_shw_sko_t* skop = skobject; \
+ fsl_shw_key_alg_t alg = skalgorithm; \
+ fsl_shw_pf_key_t key = skhwkey; \
+ \
+ skop->algorithm = alg; \
+ if (alg == FSL_KEY_ALG_TDES) { \
+ skop->key_length = 21; \
+ } \
+ skop->keystore = NULL; \
+ skop->flags = FSL_SKO_KEY_SELECT_PF_KEY; \
+ skop->pf_key = key; \
+ if ((key == FSL_SHW_PF_KEY_IIM) || (key == FSL_SHW_PF_KEY_PRG) \
+ || (key == FSL_SHW_PF_KEY_IIM_PRG) \
+ || (key == FSL_SHW_PF_KEY_IIM_RND) \
+ || (key == FSL_SHW_PF_KEY_RND)) { \
+ skop->flags |= FSL_SKO_KEY_ESTABLISHED; \
+ } \
+}
+
+/*!
+ * Store a cleartext key in the key object.
+ *
+ * This has the side effect of setting the #FSL_SKO_KEY_PRESENT flag and
+ * resetting the #FSL_SKO_KEY_ESTABLISHED flag.
+ *
+ * @param skobject A variable of type #fsl_shw_sko_t.
+ * @param skkey A pointer to the beginning of the key.
+ * @param skkeylen The length, in octets, of the key. The value should be
+ * appropriate to the key size supported by the algorithm.
+ * 64 octets is the absolute maximum value allowed for this
+ * call.
+ */
+#define fsl_shw_sko_set_key(skobject, skkey, skkeylen) \
+{ \
+ (skobject)->key_length = skkeylen; \
+ copy_bytes((skobject)->key, skkey, skkeylen); \
+ (skobject)->flags |= FSL_SKO_KEY_PRESENT; \
+ (skobject)->flags &= ~FSL_SKO_KEY_ESTABLISHED; \
+}
+
+/**
+ * Set a size for the key.
+ *
+ * This function would normally be used when the user wants the key to be
+ * generated from a random source.
+ *
+ * @param skobject A variable of type #fsl_shw_sko_t.
+ * @param skkeylen The length, in octets, of the key. The value should be
+ * appropriate to the key size supported by the algorithm.
+ * 64 octets is the absolute maximum value allowed for this
+ * call.
+ */
+#define fsl_shw_sko_set_key_length(skobject, skkeylen) \
+ (skobject)->key_length = skkeylen;
+
+
+/**
+ * Set the User ID associated with the key.
+ *
+ * @param skobject A variable of type #fsl_shw_sko_t.
+ * @param skuserid The User ID to identify authorized users of the key.
+ */
+#define fsl_shw_sko_set_user_id(skobject, skuserid) \
+ (skobject)->userid = (skuserid)
+
+/**
+ * Establish a user Keystore to hold the key.
+ */
+#define fsl_shw_sko_set_keystore(skobject, user_keystore) \
+ (skobject)->keystore = (user_keystore)
+
+
+
+/**
+ * Set the establish key handle into a key object.
+ *
+ * The @a userid field will be used to validate the access to the unwrapped
+ * key. This feature is not available for all platforms, nor for all
+ * algorithms and modes.
+ *
+ * The #FSL_SKO_KEY_ESTABLISHED will be set (and the #FSL_SKO_KEY_PRESENT flag
+ * will be cleared).
+ *
+ * @param skobject A variable of type #fsl_shw_sko_t.
+ * @param skuserid The User ID to verify this user is an authorized user of
+ * the key.
+ * @param skhandle A @a handle from #fsl_shw_sko_get_established_info.
+ */
+#define fsl_shw_sko_set_established_info(skobject, skuserid, skhandle) \
+{ \
+ (skobject)->userid = (skuserid); \
+ (skobject)->handle = (skhandle); \
+ (skobject)->flags |= FSL_SKO_KEY_ESTABLISHED; \
+ (skobject)->flags &= \
+ ~(FSL_SKO_KEY_PRESENT); \
+}
+
+
+/**
+ * Retrieve the established-key handle from a key object.
+ *
+ * @param skobject A variable of type #fsl_shw_sko_t.
+ * @param skhandle The location to store the @a handle of the unwrapped
+ * key.
+ */
+#define fsl_shw_sko_get_established_info(skobject, skhandle) \
+ *(skhandle) = (skobject)->handle
+
+
+/**
+ * Extract the algorithm from a key object.
+ *
+ * @param skobject The Key Object to be queried.
+ * @param[out] skalgorithm A pointer to the location to store the algorithm.
+ */
+#define fsl_shw_sko_get_algorithm(skobject, skalgorithm) \
+ *(skalgorithm) = (skobject)->algorithm
+
+
+/**
+ * Retrieve the cleartext key from a key object that is stored in a user
+ * keystore.
+ *
+ * @param skobject The Key Object to be queried.
+ * @param[out] skkey A pointer to the location to store the key. NULL
+ * if the key is not stored in a user keystore.
+ */
+#define fsl_shw_sko_get_key(skobject, skkey) \
+{ \
+ fsl_shw_kso_t* keystore = (skobject)->keystore; \
+ if (keystore != NULL) { \
+ *(skkey) = keystore->slot_get_address(keystore->user_data, \
+ (skobject)->handle); \
+ } else { \
+ *(skkey) = NULL; \
+ } \
+}
+
+
+/*!
+ * Determine the size of a wrapped key based upon the cleartext key's length.
+ *
+ * This function can be used to calculate the number of octets that
+ * #fsl_shw_extract_key() will write into the location at @a covered_key.
+ *
+ * If zero is returned at @a length, this means that the key length in
+ * @a key_info is not supported.
+ *
+ * @param wkeyinfo Information about a key to be wrapped.
+ * @param wkeylen Location to store the length of a wrapped
+ * version of the key in @a key_info.
+ */
+#define fsl_shw_sko_calculate_wrapped_size(wkeyinfo, wkeylen) \
+{ \
+ register fsl_shw_sko_t* kp = wkeyinfo; \
+ register uint32_t kl = kp->key_length; \
+ int key_blocks; \
+ int base_size = 35; /* ICV + T' + ALG + LEN + FLAGS */ \
+ \
+ if (kp->flags & FSL_SKO_KEY_SELECT_PF_KEY) { \
+ kl = 21; /* 168-bit 3DES key */ \
+ } \
+ key_blocks = (kl + 7) / 8; \
+ /* Round length up to 3DES block size for CBC mode */ \
+ *(wkeylen) = base_size + 8 * key_blocks; \
+}
+
+/*!
+ * Set some flags in the key object.
+ *
+ * Turns on the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param skobject A variable of type #fsl_shw_sko_t.
+ * @param skflags (One or more) ORed members of #fsl_shw_key_flags_t which
+ * are to be set.
+ */
+#define fsl_shw_sko_set_flags(skobject, skflags) \
+ (skobject)->flags |= (skflags)
+
+
+/**
+ * Clear some flags in the key object.
+ *
+ * Turns off the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param skobject A variable of type #fsl_shw_sko_t.
+ * @param skflags (One or more) ORed members of #fsl_shw_key_flags_t
+ * which are to be reset.
+ */
+#define fsl_shw_sko_clear_flags(skobject, skflags) \
+ (skobject)->flags &= ~(skflags)
+
+/**
+ * Initialize a User Context Object.
+ *
+ * This function must be called before performing any other operation with the
+ * Object. It sets the User Context Object to initial values, and set the size
+ * of the results pool. The mode will be set to a default of
+ * #FSL_UCO_BLOCKING_MODE.
+ *
+ * When using non-blocking operations, this sets the maximum number of
+ * operations which can be outstanding. This number includes the counts of
+ * operations waiting to start, operation(s) being performed, and results which
+ * have not been retrieved.
+ *
+ * Changes to this value are ignored once user registration has completed. It
+ * should be set to 1 if only blocking operations will ever be performed.
+ *
+ * @param ucontext The User Context object to operate on.
+ * @param usize The maximum number of operations which can be
+ * outstanding.
+ */
+#ifdef __KERNEL__
+
+#define fsl_shw_uco_init(ucontext, usize) \
+do { \
+ fsl_shw_uco_t* uco = ucontext; \
+ \
+ (uco)->pool_size = usize; \
+ (uco)->flags = FSL_UCO_BLOCKING_MODE | FSL_UCO_CONTEXT_CHANGED; \
+ (uco)->openfd = -1; \
+ (uco)->callback = NULL; \
+ (uco)->partition = NULL; \
+ (uco)->wrap_key = FSL_SHW_PF_KEY_IIM; \
+} while (0)
+
+#else /* __KERNEL__ */
+
+#define fsl_shw_uco_init(ucontext, usize) \
+do { \
+ fsl_shw_uco_t* uco = ucontext; \
+ \
+ (uco)->pool_size = usize; \
+ (uco)->flags = FSL_UCO_BLOCKING_MODE | FSL_UCO_CONTEXT_CHANGED; \
+ (uco)->openfd = -1; \
+ (uco)->callback = NULL; \
+ (uco)->wrap_key = FSL_SHW_PF_KEY_IIM; \
+} while (0)
+
+#endif /* __KERNEL__ */
+
+
+/**
+ * Set the User Reference for the User Context.
+ *
+ * @param ucontext The User Context object to operate on.
+ * @param uref A value which will be passed back with a result.
+ */
+#define fsl_shw_uco_set_reference(ucontext, uref) \
+do { \
+ fsl_shw_uco_t* uco = ucontext; \
+ \
+ (uco)->user_ref = uref; \
+ (uco)->flags |= FSL_UCO_CONTEXT_CHANGED; \
+} while (0)
+
+
+/**
+ * Set the User Reference for the User Context.
+ *
+ * @param ucontext The User Context object to operate on.
+ * @param ucallback The function the API will invoke when an operation
+ * completes.
+ */
+#define fsl_shw_uco_set_callback(ucontext, ucallback) \
+do { \
+ fsl_shw_uco_t* uco = ucontext; \
+ \
+ (uco)->callback = ucallback; \
+ (uco)->flags |= FSL_UCO_CONTEXT_CHANGED; \
+} while (0)
+
+/**
+ * Set flags in the User Context.
+ *
+ * Turns on the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param ucontext The User Context object to operate on.
+ * @param uflags ORed values from #fsl_shw_user_ctx_flags_t.
+ */
+#define fsl_shw_uco_set_flags(ucontext, uflags) \
+ (ucontext)->flags |= (uflags) | FSL_UCO_CONTEXT_CHANGED
+
+
+/**
+ * Clear flags in the User Context.
+ *
+ * Turns off the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param ucontext The User Context object to operate on.
+ * @param uflags ORed values from #fsl_shw_user_ctx_flags_t.
+ */
+#define fsl_shw_uco_clear_flags(ucontext, uflags) \
+do { \
+ fsl_shw_uco_t* uco = ucontext; \
+ \
+ (uco)->flags &= ~(uflags); \
+ (uco)->flags |= FSL_UCO_CONTEXT_CHANGED; \
+} while (0)
+
+
+/**
+ * Retrieve the reference value from a Result Object.
+ *
+ * @param robject The result object to query.
+ *
+ * @return The reference associated with the request.
+ */
+#define fsl_shw_ro_get_reference(robject) \
+ (robject)->user_ref
+
+
+/**
+ * Retrieve the status code from a Result Object.
+ *
+ * @param robject The result object to query.
+ *
+ * @return The status of the request.
+ */
+#define fsl_shw_ro_get_status(robject) \
+ (robject)->code
+
+
+
+/* REQ-FSL-SHW-PINTFC-API-BASIC-HASH-004 */
+/**
+ * Initialize a Hash Context Object.
+ *
+ * This function must be called before performing any other operation with the
+ * Object. It sets the current message length and hash algorithm in the hash
+ * context object.
+ *
+ * @param hcobject The hash context to operate upon.
+ * @param hcalgorithm The hash algorithm to be used (#FSL_HASH_ALG_MD5,
+ * #FSL_HASH_ALG_SHA256, etc).
+ *
+ */
+#define fsl_shw_hco_init(hcobject, hcalgorithm) \
+do { \
+ (hcobject)->algorithm = hcalgorithm; \
+ (hcobject)->flags = 0; \
+ switch (hcalgorithm) { \
+ case FSL_HASH_ALG_MD5: \
+ (hcobject)->digest_length = 16; \
+ (hcobject)->context_length = 16; \
+ (hcobject)->context_register_length = 24; \
+ break; \
+ case FSL_HASH_ALG_SHA1: \
+ (hcobject)->digest_length = 20; \
+ (hcobject)->context_length = 20; \
+ (hcobject)->context_register_length = 24; \
+ break; \
+ case FSL_HASH_ALG_SHA224: \
+ (hcobject)->digest_length = 28; \
+ (hcobject)->context_length = 32; \
+ (hcobject)->context_register_length = 36; \
+ break; \
+ case FSL_HASH_ALG_SHA256: \
+ (hcobject)->digest_length = 32; \
+ (hcobject)->context_length = 32; \
+ (hcobject)->context_register_length = 36; \
+ break; \
+ default: \
+ /* error ! */ \
+ (hcobject)->digest_length = 1; \
+ (hcobject)->context_length = 1; \
+ (hcobject)->context_register_length = 1; \
+ break; \
+ } \
+} while (0)
+
+
+/* REQ-FSL-SHW-PINTFC-API-BASIC-HASH-001 */
+/**
+ * Get the current hash value and message length from the hash context object.
+ *
+ * The algorithm must have already been specified. See #fsl_shw_hco_init().
+ *
+ * @param hcobject The hash context to query.
+ * @param[out] hccontext Pointer to the location of @a length octets where to
+ * store a copy of the current value of the digest.
+ * @param hcclength Number of octets of hash value to copy.
+ * @param[out] hcmsglen Pointer to the location to store the number of octets
+ * already hashed.
+ */
+#define fsl_shw_hco_get_digest(hcobject, hccontext, hcclength, hcmsglen) \
+do { \
+ memcpy(hccontext, (hcobject)->context, hcclength); \
+ if ((hcobject)->algorithm == FSL_HASH_ALG_SHA224 \
+ || (hcobject)->algorithm == FSL_HASH_ALG_SHA256) { \
+ *(hcmsglen) = (hcobject)->context[8]; \
+ } else { \
+ *(hcmsglen) = (hcobject)->context[5]; \
+ } \
+} while (0)
+
+
+/* REQ-FSL-SHW-PINTFC-API-BASIC-HASH-002 */
+/**
+ * Get the hash algorithm from the hash context object.
+ *
+ * @param hcobject The hash context to query.
+ * @param[out] hcalgorithm Pointer to where the algorithm is to be stored.
+ */
+#define fsl_shw_hco_get_info(hcobject, hcalgorithm) \
+do { \
+ *(hcalgorithm) = (hcobject)->algorithm; \
+} while (0)
+
+
+/* REQ-FSL-SHW-PINTFC-API-BASIC-HASH-003 */
+/* REQ-FSL-SHW-PINTFC-API-BASIC-HASH-004 */
+/**
+ * Set the current hash value and message length in the hash context object.
+ *
+ * The algorithm must have already been specified. See #fsl_shw_hco_init().
+ *
+ * @param hcobject The hash context to operate upon.
+ * @param hccontext Pointer to buffer of appropriate length to copy into
+ * the hash context object.
+ * @param hcmsglen The number of octets of the message which have
+ * already been hashed.
+ *
+ */
+#define fsl_shw_hco_set_digest(hcobject, hccontext, hcmsglen) \
+do { \
+ memcpy((hcobject)->context, hccontext, (hcobject)->context_length); \
+ if (((hcobject)->algorithm == FSL_HASH_ALG_SHA224) \
+ || ((hcobject)->algorithm == FSL_HASH_ALG_SHA256)) { \
+ (hcobject)->context[8] = hcmsglen; \
+ } else { \
+ (hcobject)->context[5] = hcmsglen; \
+ } \
+} while (0)
+
+
+/**
+ * Set flags in a Hash Context Object.
+ *
+ * Turns on the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param hcobject The hash context to be operated on.
+ * @param hcflags The flags to be set in the context. These can be ORed
+ * members of #fsl_shw_hash_ctx_flags_t.
+ */
+#define fsl_shw_hco_set_flags(hcobject, hcflags) \
+ (hcobject)->flags |= (hcflags)
+
+
+/**
+ * Clear flags in a Hash Context Object.
+ *
+ * Turns off the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param hcobject The hash context to be operated on.
+ * @param hcflags The flags to be reset in the context. These can be ORed
+ * members of #fsl_shw_hash_ctx_flags_t.
+ */
+#define fsl_shw_hco_clear_flags(hcobject, hcflags) \
+ (hcobject)->flags &= ~(hcflags)
+
+
+/**
+ * Initialize an HMAC Context Object.
+ *
+ * This function must be called before performing any other operation with the
+ * Object. It sets the current message length and hash algorithm in the HMAC
+ * context object.
+ *
+ * @param hcobject The HMAC context to operate upon.
+ * @param hcalgorithm The hash algorithm to be used (#FSL_HASH_ALG_MD5,
+ * #FSL_HASH_ALG_SHA256, etc).
+ *
+ */
+#define fsl_shw_hmco_init(hcobject, hcalgorithm) \
+ fsl_shw_hco_init(hcobject, hcalgorithm)
+
+
+/**
+ * Set flags in an HMAC Context Object.
+ *
+ * Turns on the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param hcobject The HMAC context to be operated on.
+ * @param hcflags The flags to be set in the context. These can be ORed
+ * members of #fsl_shw_hmac_ctx_flags_t.
+ */
+#define fsl_shw_hmco_set_flags(hcobject, hcflags) \
+ (hcobject)->flags |= (hcflags)
+
+
+/**
+ * Clear flags in an HMAC Context Object.
+ *
+ * Turns off the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param hcobject The HMAC context to be operated on.
+ * @param hcflags The flags to be reset in the context. These can be ORed
+ * members of #fsl_shw_hmac_ctx_flags_t.
+ */
+#define fsl_shw_hmco_clear_flags(hcobject, hcflags) \
+ (hcobject)->flags &= ~(hcflags)
+
+
+/**
+ * Initialize a Symmetric Cipher Context Object.
+ *
+ * This function must be called before performing any other operation with the
+ * Object. This will set the @a mode and @a algorithm and initialize the
+ * Object.
+ *
+ * @param scobject The context object to operate on.
+ * @param scalg The cipher algorithm this context will be used with.
+ * @param scmode #FSL_SYM_MODE_CBC, #FSL_SYM_MODE_ECB, etc.
+ *
+ */
+#define fsl_shw_scco_init(scobject, scalg, scmode) \
+do { \
+ register uint32_t bsb; /* block-size bytes */ \
+ \
+ switch (scalg) { \
+ case FSL_KEY_ALG_AES: \
+ bsb = 16; \
+ break; \
+ case FSL_KEY_ALG_DES: \
+ /* fall through */ \
+ case FSL_KEY_ALG_TDES: \
+ bsb = 8; \
+ break; \
+ case FSL_KEY_ALG_ARC4: \
+ bsb = 259; \
+ break; \
+ case FSL_KEY_ALG_HMAC: \
+ bsb = 1; /* meaningless */ \
+ break; \
+ default: \
+ bsb = 00; \
+ } \
+ (scobject)->block_size_bytes = bsb; \
+ (scobject)->mode = scmode; \
+ (scobject)->flags = 0; \
+} while (0)
+
+
+/**
+ * Set the flags for a Symmetric Cipher Context.
+ *
+ * Turns on the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param scobject The context object to operate on.
+ * @param scflags The flags to reset (one or more values from
+ * #fsl_shw_sym_ctx_flags_t ORed together).
+ *
+ */
+#define fsl_shw_scco_set_flags(scobject, scflags) \
+ (scobject)->flags |= (scflags)
+
+
+/**
+ * Clear some flags in a Symmetric Cipher Context Object.
+ *
+ * Turns off the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param scobject The context object to operate on.
+ * @param scflags The flags to reset (one or more values from
+ * #fsl_shw_sym_ctx_flags_t ORed together).
+ *
+ */
+#define fsl_shw_scco_clear_flags(scobject, scflags) \
+ (scobject)->flags &= ~(scflags)
+
+
+/**
+ * Set the Context (IV) for a Symmetric Cipher Context.
+ *
+ * This is to set the context/IV for #FSL_SYM_MODE_CBC mode, or to set the
+ * context (the S-Box and pointers) for ARC4. The full context size will
+ * be copied.
+ *
+ * @param scobject The context object to operate on.
+ * @param sccontext A pointer to the buffer which contains the context.
+ *
+ */
+#define fsl_shw_scco_set_context(scobject, sccontext) \
+ memcpy((scobject)->context, sccontext, \
+ (scobject)->block_size_bytes)
+
+
+/**
+ * Get the Context for a Symmetric Cipher Context.
+ *
+ * This is to retrieve the context/IV for #FSL_SYM_MODE_CBC mode, or to
+ * retrieve context (the S-Box and pointers) for ARC4. The full context
+ * will be copied.
+ *
+ * @param scobject The context object to operate on.
+ * @param[out] sccontext Pointer to location where context will be stored.
+ */
+#define fsl_shw_scco_get_context(scobject, sccontext) \
+ memcpy(sccontext, (scobject)->context, (scobject)->block_size_bytes)
+
+
+/**
+ * Set the Counter Value for a Symmetric Cipher Context.
+ *
+ * This will set the Counter Value for CTR mode.
+ *
+ * @param scobject The context object to operate on.
+ * @param sccounter The starting counter value. The number of octets.
+ * copied will be the block size for the algorithm.
+ * @param scmodulus The modulus for controlling the incrementing of the
+ * counter.
+ *
+ */
+#define fsl_shw_scco_set_counter_info(scobject, sccounter, scmodulus) \
+do { \
+ if ((sccounter) != NULL) { \
+ memcpy((scobject)->context, sccounter, \
+ (scobject)->block_size_bytes); \
+ } \
+ (scobject)->modulus_exp = scmodulus; \
+} while (0)
+
+
+/**
+ * Get the Counter Value for a Symmetric Cipher Context.
+ *
+ * This will retrieve the Counter Value is for CTR mode.
+ *
+ * @param scobject The context object to query.
+ * @param[out] sccounter Pointer to location to store the current counter
+ * value. The number of octets copied will be the
+ * block size for the algorithm.
+ * @param[out] scmodulus Pointer to location to store the modulus.
+ *
+ */
+#define fsl_shw_scco_get_counter_info(scobject, sccounter, scmodulus) \
+do { \
+ if ((sccounter) != NULL) { \
+ memcpy(sccounter, (scobject)->context, \
+ (scobject)->block_size_bytes); \
+ } \
+ if ((scmodulus) != NULL) { \
+ *(scmodulus) = (scobject)->modulus_exp; \
+ } \
+} while (0)
+
+
+/**
+ * Initialize a Authentication-Cipher Context.
+ *
+ * @param acobject Pointer to object to operate on.
+ * @param acmode The mode for this object (only #FSL_ACC_MODE_CCM
+ * supported).
+ */
+#define fsl_shw_acco_init(acobject, acmode) \
+do { \
+ (acobject)->flags = 0; \
+ (acobject)->mode = (acmode); \
+} while (0)
+
+
+/**
+ * Set the flags for a Authentication-Cipher Context.
+ *
+ * Turns on the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param acobject Pointer to object to operate on.
+ * @param acflags The flags to set (one or more from
+ * #fsl_shw_auth_ctx_flags_t ORed together).
+ *
+ */
+#define fsl_shw_acco_set_flags(acobject, acflags) \
+ (acobject)->flags |= (acflags)
+
+
+/**
+ * Clear some flags in a Authentication-Cipher Context Object.
+ *
+ * Turns off the flags specified in @a flags. Other flags are untouched.
+ *
+ * @param acobject Pointer to object to operate on.
+ * @param acflags The flags to reset (one or more from
+ * #fsl_shw_auth_ctx_flags_t ORed together).
+ *
+ */
+#define fsl_shw_acco_clear_flags(acobject, acflags) \
+ (acobject)->flags &= ~(acflags)
+
+
+/**
+ * Set up the Authentication-Cipher Object for CCM mode.
+ *
+ * This will set the @a auth_object for CCM mode and save the @a ctr,
+ * and @a mac_length. This function can be called instead of
+ * #fsl_shw_acco_init().
+ *
+ * The paramater @a ctr is Counter Block 0, (counter value 0), which is for the
+ * MAC.
+ *
+ * @param acobject Pointer to object to operate on.
+ * @param acalg Cipher algorithm. Only AES is supported.
+ * @param accounter The initial counter value.
+ * @param acmaclen The number of octets used for the MAC. Valid values are
+ * 4, 6, 8, 10, 12, 14, and 16.
+ */
+/* Do we need to stash the +1 value of the CTR somewhere? */
+#define fsl_shw_acco_set_ccm(acobject, acalg, accounter, acmaclen) \
+ do { \
+ (acobject)->flags = 0; \
+ (acobject)->mode = FSL_ACC_MODE_CCM; \
+ (acobject)->auth_info.CCM_ctx_info.block_size_bytes = 16; \
+ (acobject)->cipher_ctx_info.block_size_bytes = 16; \
+ (acobject)->mac_length = acmaclen; \
+ fsl_shw_scco_set_counter_info(&(acobject)->cipher_ctx_info, accounter, \
+ FSL_CTR_MOD_128); \
+} while (0)
+
+
+/**
+ * Format the First Block (IV) & Initial Counter Value per NIST CCM.
+ *
+ * This function will also set the IV and CTR values per Appendix A of NIST
+ * Special Publication 800-38C (May 2004). It will also perform the
+ * #fsl_shw_acco_set_ccm() operation with information derived from this set of
+ * parameters.
+ *
+ * Note this function assumes the algorithm is AES. It initializes the
+ * @a auth_object by setting the mode to #FSL_ACC_MODE_CCM and setting the
+ * flags to be #FSL_ACCO_NIST_CCM.
+ *
+ * @param acobject Pointer to object to operate on.
+ * @param act The number of octets used for the MAC. Valid values are
+ * 4, 6, 8, 10, 12, 14, and 16.
+ * @param acad Number of octets of Associated Data (may be zero).
+ * @param acq A value for the size of the length of @a q field. Valid
+ * values are 1-8.
+ * @param acN The Nonce (packet number or other changing value). Must
+ * be (15 - @a q_length) octets long.
+ * @param acQ The value of Q (size of the payload in octets).
+ *
+ */
+#define fsl_shw_ccm_nist_format_ctr_and_iv(acobject, act, acad, acq, acN, acQ)\
+ do { \
+ uint64_t Q = acQ; \
+ uint8_t bflag = ((acad)?0x40:0) | ((((act)-2)/2)<<3) | ((acq)-1); \
+ unsigned i; \
+ uint8_t* qptr = (acobject)->auth_info.CCM_ctx_info.context + 15; \
+ (acobject)->auth_info.CCM_ctx_info.block_size_bytes = 16; \
+ (acobject)->cipher_ctx_info.block_size_bytes = 16; \
+ (acobject)->mode = FSL_ACC_MODE_CCM; \
+ (acobject)->flags = FSL_ACCO_NIST_CCM; \
+ \
+ /* Store away the MAC length (after calculating actual value */ \
+ (acobject)->mac_length = (act); \
+ /* Set Flag field in Block 0 */ \
+ *((acobject)->auth_info.CCM_ctx_info.context) = bflag; \
+ /* Set Nonce field in Block 0 */ \
+ memcpy((acobject)->auth_info.CCM_ctx_info.context+1, acN, \
+ 15-(acq)); \
+ /* Set Flag field in ctr */ \
+ *((acobject)->cipher_ctx_info.context) = (acq)-1; \
+ /* Update the Q (payload length) field of Block0 */ \
+ (acobject)->q_length = acq; \
+ for (i = 0; i < (acq); i++) { \
+ *qptr-- = Q & 0xFF; \
+ Q >>= 8; \
+ } \
+ /* Set the Nonce field of the ctr */ \
+ memcpy((acobject)->cipher_ctx_info.context+1, acN, 15-(acq)); \
+ /* Clear the block counter field of the ctr */ \
+ memset((acobject)->cipher_ctx_info.context+16-(acq), 0, (acq)+1); \
+ } while (0)
+
+
+/**
+ * Update the First Block (IV) & Initial Counter Value per NIST CCM.
+ *
+ * This function will set the IV and CTR values per Appendix A of NIST Special
+ * Publication 800-38C (May 2004).
+ *
+ * Note this function assumes that #fsl_shw_ccm_nist_format_ctr_and_iv() has
+ * previously been called on the @a auth_object.
+ *
+ * @param acobject Pointer to object to operate on.
+ * @param acN The Nonce (packet number or other changing value). Must
+ * be (15 - @a q_length) octets long.
+ * @param acQ The value of Q (size of the payload in octets).
+ *
+ */
+/* Do we need to stash the +1 value of the CTR somewhere? */
+#define fsl_shw_ccm_nist_update_ctr_and_iv(acobject, acN, acQ) \
+ do { \
+ uint64_t Q = acQ; \
+ unsigned i; \
+ uint8_t* qptr = (acobject)->auth_info.CCM_ctx_info.context + 15; \
+ \
+ /* Update the Nonce field field of Block0 */ \
+ memcpy((acobject)->auth_info.CCM_ctx_info.context+1, acN, \
+ 15 - (acobject)->q_length); \
+ /* Update the Q (payload length) field of Block0 */ \
+ for (i = 0; i < (acobject)->q_length; i++) { \
+ *qptr-- = Q & 0xFF; \
+ Q >>= 8; \
+ } \
+ /* Update the Nonce field of the ctr */ \
+ memcpy((acobject)->cipher_ctx_info.context+1, acN, \
+ 15 - (acobject)->q_length); \
+ } while (0)
+
+
+/******************************************************************************
+ * Library functions
+ *****************************************************************************/
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSLSHW-PINTFC-API-GEN-003 */
+/**
+ * Determine the hardware security capabilities of this platform.
+ *
+ * Though a user context object is passed into this function, it will always
+ * act in a non-blocking manner.
+ *
+ * @param user_ctx The user context which will be used for the query.
+ *
+ * @return A pointer to the capabilities object.
+ */
+extern fsl_shw_pco_t* fsl_shw_get_capabilities(fsl_shw_uco_t* user_ctx);
+
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSLSHW-PINTFC-API-GEN-004 */
+/**
+ * Create an association between the the user and the provider of the API.
+ *
+ * @param user_ctx The user context which will be used for this association.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_register_user(fsl_shw_uco_t* user_ctx);
+
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSLSHW-PINTFC-API-GEN-005 */
+/**
+ * Destroy the association between the the user and the provider of the API.
+ *
+ * @param user_ctx The user context which is no longer needed.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_deregister_user(fsl_shw_uco_t* user_ctx);
+
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSLSHW-PINTFC-API-GEN-006 */
+/**
+ * Retrieve results from earlier operations.
+ *
+ * @param user_ctx The user's context.
+ * @param result_size The number of array elements of @a results.
+ * @param[in,out] results Pointer to first of the (array of) locations to
+ * store results.
+ * @param[out] result_count Pointer to store the number of results which
+ * were returned.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_get_results(fsl_shw_uco_t* user_ctx,
+ unsigned result_size,
+ fsl_shw_result_t results[],
+ unsigned* result_count);
+
+/**
+ * Place a key into a protected location for use only by cryptographic
+ * algorithms.
+ *
+ * This only needs to be used to a) unwrap a key, or b) set up a key which
+ * could be wrapped with a later call to #fsl_shw_extract_key(). Normal
+ * cleartext keys can simply be placed into #fsl_shw_sko_t key objects with
+ * #fsl_shw_sko_set_key() and used directly.
+ *
+ * The maximum key size supported for wrapped/unwrapped keys is 32 octets.
+ * (This is the maximum reasonable key length on Sahara - 32 octets for an HMAC
+ * key based on SHA-256.) The key size is determined by the @a key_info. The
+ * expected length of @a key can be determined by
+ * #fsl_shw_sko_calculate_wrapped_size()
+ *
+ * The protected key will not be available for use until this operation
+ * successfully completes.
+ *
+ * This feature is not available for all platforms, nor for all algorithms and
+ * modes.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param[in,out] key_info The information about the key to be which will
+ * be established. In the create case, the key
+ * length must be set.
+ * @param establish_type How @a key will be interpreted to establish a
+ * key for use.
+ * @param key If @a establish_type is #FSL_KEY_WRAP_UNWRAP,
+ * this is the location of a wrapped key. If
+ * @a establish_type is #FSL_KEY_WRAP_CREATE, this
+ * parameter can be @a NULL. If @a establish_type
+ * is #FSL_KEY_WRAP_ACCEPT, this is the location
+ * of a plaintext key.
+ */
+extern fsl_shw_return_t fsl_shw_establish_key(
+ fsl_shw_uco_t* user_ctx,
+ fsl_shw_sko_t* key_info,
+ fsl_shw_key_wrap_t establish_type,
+ const uint8_t* key);
+
+
+/**
+ * Wrap a key and retrieve the wrapped value.
+ *
+ * A wrapped key is a key that has been cryptographically obscured. It is
+ * only able to be used with #fsl_shw_establish_key().
+ *
+ * This function will also release the key (see #fsl_shw_release_key()) so
+ * that it must be re-established before reuse.
+ *
+ * This feature is not available for all platforms, nor for all algorithms and
+ * modes.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param key_info The information about the key to be deleted.
+ * @param[out] covered_key The location to store the wrapped key.
+ * (This size is based upon the maximum key size
+ * of 32 octets).
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_extract_key(fsl_shw_uco_t* user_ctx,
+ fsl_shw_sko_t* key_info,
+ uint8_t* covered_key);
+
+/*!
+ * Read the key value from a key object.
+ *
+ * Only a key marked as a software key (#FSL_SKO_KEY_SW_KEY) can be read with
+ * this call. It has no effect on the status of the key store.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param key_info The referenced key.
+ * @param[out] key The location to store the key value.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_read_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ uint8_t * key);
+
+/**
+ * De-establish a key so that it can no longer be accessed.
+ *
+ * The key will need to be re-established before it can again be used.
+ *
+ * This feature is not available for all platforms, nor for all algorithms and
+ * modes.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param key_info The information about the key to be deleted.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_release_key(
+ fsl_shw_uco_t* user_ctx,
+ fsl_shw_sko_t* key_info);
+
+
+/*
+ * In userspace, partition assignments will be tracked using the user context.
+ * In kernel mode, partition assignments are based on address only.
+ */
+
+/**
+ * Allocate a block of secure memory
+ *
+ * @param user_ctx User context
+ * @param size Memory size (octets). Note: currently only
+ * supports only single-partition sized blocks.
+ * @param UMID User Mode ID to use when registering the
+ * partition.
+ * @param permissions Permissions to initialize the partition with.
+ * Can be made by ORing flags from the
+ * #fsl_shw_permission_t.
+ *
+ * @return Address of the allocated memory. NULL if the
+ * call was not successful.
+ */
+extern void *fsl_shw_smalloc(fsl_shw_uco_t* user_ctx,
+ uint32_t size,
+ const uint8_t* UMID,
+ uint32_t permissions);
+
+
+/**
+ * Free a block of secure memory that was allocated with #fsl_shw_smalloc
+ *
+ * @param user_ctx User context
+ * @param address Address of the block of secure memory to be
+ * released.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_sfree(
+ fsl_shw_uco_t* user_ctx,
+ void* address);
+
+
+/**
+ * Check the status of a block of a secure memory that was allocated with
+ * #fsl_shw_smalloc
+ *
+ * @param user_ctx User context
+ * @param address Address of the block of secure memory to be
+ * released.
+ * @param status Status of the partition, of type
+ * #fsl_partition_status_t
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_sstatus(fsl_shw_uco_t* user_ctx,
+ void* address,
+ fsl_shw_partition_status_t* status);
+
+
+/**
+ * Diminish the permissions of a block of secure memory. Note that permissions
+ * can only be revoked.
+ *
+ * @param user_ctx User context
+ * @param address Base address of the secure memory to work with
+ * @param permissions Permissions to initialize the partition with.
+ * Can be made by ORing flags from the
+ * #fsl_shw_permission_t.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_diminish_perms(
+ fsl_shw_uco_t* user_ctx,
+ void* address,
+ uint32_t permissions);
+
+extern fsl_shw_return_t do_scc_engage_partition(
+ fsl_shw_uco_t* user_ctx,
+ void* address,
+ const uint8_t* UMID,
+ uint32_t permissions);
+
+extern fsl_shw_return_t do_system_keystore_slot_alloc(
+ fsl_shw_uco_t* user_ctx,
+ uint32_t key_lenth,
+ uint64_t ownerid,
+ uint32_t *slot);
+
+extern fsl_shw_return_t do_system_keystore_slot_dealloc(
+ fsl_shw_uco_t* user_ctx,
+ uint64_t ownerid,
+ uint32_t slot);
+
+extern fsl_shw_return_t do_system_keystore_slot_load(
+ fsl_shw_uco_t* user_ctx,
+ uint64_t ownerid,
+ uint32_t slot,
+ const uint8_t *key,
+ uint32_t key_length);
+
+extern fsl_shw_return_t do_system_keystore_slot_encrypt(
+ fsl_shw_uco_t* user_ctx,
+ uint64_t ownerid,
+ uint32_t slot,
+ uint32_t key_length,
+ uint8_t* black_data);
+
+extern fsl_shw_return_t do_system_keystore_slot_decrypt(
+ fsl_shw_uco_t* user_ctx,
+ uint64_t ownerid,
+ uint32_t slot,
+ uint32_t key_length,
+ const uint8_t* black_data);
+
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSL-SHW-PINTFC-COA-SKO */
+/* REQ-FSL-SHW-PINTFC-COA-SCCO */
+/* REQ-FSLSHW-PINTFC-API-BASIC-SYM-001 */
+/* PINTFC-API-BASIC-SYM-ARC4-001 */
+/* PINTFC-API-BASIC-SYM-ARC4-002 */
+/**
+ * Encrypt a stream of data with a symmetric-key algorithm.
+ *
+ * In ARC4, and also in #FSL_SYM_MODE_CBC and #FSL_SYM_MODE_CTR modes, the
+ * flags of the @a sym_ctx object will control part of the operation of this
+ * function. The #FSL_SYM_CTX_INIT flag means that there is no context info in
+ * the object. The #FSL_SYM_CTX_LOAD means to use information in the
+ * @a sym_ctx at the start of the operation, and the #FSL_SYM_CTX_SAVE flag
+ * means to update the object's context information after the operation has
+ * been performed.
+ *
+ * All of the data for an operation can be run through at once using the
+ * #FSL_SYM_CTX_INIT or #FSL_SYM_CTX_LOAD flags, as appropriate, and then using
+ * a @a length for the whole of the data.
+ *
+ * If a #FSL_SYM_CTX_SAVE flag were added, an additional call to the function
+ * would "pick up" where the previous call left off, allowing the user to
+ * perform the larger function in smaller steps.
+ *
+ * In #FSL_SYM_MODE_CBC and #FSL_SYM_MODE_ECB modes, the @a length must always
+ * be a multiple of the block size for the algorithm being used. For proper
+ * operation in #FSL_SYM_MODE_CTR mode, the @a length must be a multiple of the
+ * block size until the last operation on the total octet stream.
+ *
+ * Some users of ARC4 may want to compute the context (S-Box and pointers) from
+ * the key before any data is available. This may be done by running this
+ * function with a @a length of zero, with the init & save flags flags on in
+ * the @a sym_ctx. Subsequent operations would then run as normal with the
+ * load and save flags. Note that they key object is still required.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param key_info Key and algorithm being used for this operation.
+ * @param[in,out] sym_ctx Info on cipher mode, state of the cipher.
+ * @param length Length, in octets, of the pt (and ct).
+ * @param pt pointer to plaintext to be encrypted.
+ * @param[out] ct pointer to where to store the resulting ciphertext.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ *
+ */
+extern fsl_shw_return_t fsl_shw_symmetric_encrypt(
+ fsl_shw_uco_t* user_ctx,
+ fsl_shw_sko_t* key_info,
+ fsl_shw_scco_t* sym_ctx,
+ uint32_t length,
+ const uint8_t* pt,
+ uint8_t* ct);
+
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSL-SHW-PINTFC-COA-SKO */
+/* REQ-FSL-SHW-PINTFC-COA-SCCO */
+/* PINTFC-API-BASIC-SYM-002 */
+/* PINTFC-API-BASIC-SYM-ARC4-001 */
+/* PINTFC-API-BASIC-SYM-ARC4-002 */
+/**
+ * Decrypt a stream of data with a symmetric-key algorithm.
+ *
+ * In ARC4, and also in #FSL_SYM_MODE_CBC and #FSL_SYM_MODE_CTR modes, the
+ * flags of the @a sym_ctx object will control part of the operation of this
+ * function. The #FSL_SYM_CTX_INIT flag means that there is no context info in
+ * the object. The #FSL_SYM_CTX_LOAD means to use information in the
+ * @a sym_ctx at the start of the operation, and the #FSL_SYM_CTX_SAVE flag
+ * means to update the object's context information after the operation has
+ * been performed.
+ *
+ * All of the data for an operation can be run through at once using the
+ * #FSL_SYM_CTX_INIT or #FSL_SYM_CTX_LOAD flags, as appropriate, and then using
+ * a @a length for the whole of the data.
+ *
+ * If a #FSL_SYM_CTX_SAVE flag were added, an additional call to the function
+ * would "pick up" where the previous call left off, allowing the user to
+ * perform the larger function in smaller steps.
+ *
+ * In #FSL_SYM_MODE_CBC and #FSL_SYM_MODE_ECB modes, the @a length must always
+ * be a multiple of the block size for the algorithm being used. For proper
+ * operation in #FSL_SYM_MODE_CTR mode, the @a length must be a multiple of the
+ * block size until the last operation on the total octet stream.
+ *
+ * Some users of ARC4 may want to compute the context (S-Box and pointers) from
+ * the key before any data is available. This may be done by running this
+ * function with a @a length of zero, with the #FSL_SYM_CTX_INIT &
+ * #FSL_SYM_CTX_SAVE flags on in the @a sym_ctx. Subsequent operations would
+ * then run as normal with the load & save flags. Note that they key object is
+ * still required.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param key_info The key and algorithm being used in this operation.
+ * @param[in,out] sym_ctx Info on cipher mode, state of the cipher.
+ * @param length Length, in octets, of the ct (and pt).
+ * @param ct pointer to ciphertext to be decrypted.
+ * @param[out] pt pointer to where to store the resulting plaintext.
+ *
+ * @return A return code of type #fsl_shw_return_t
+ *
+ */
+extern fsl_shw_return_t fsl_shw_symmetric_decrypt(
+ fsl_shw_uco_t* user_ctx,
+ fsl_shw_sko_t* key_info,
+ fsl_shw_scco_t* sym_ctx,
+ uint32_t length,
+ const uint8_t* ct,
+ uint8_t* pt);
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSL-SHW-PINTFC-COA-HCO */
+/* REQ-FSLSHW-PINTFC-API-BASIC-HASH-005 */
+/**
+ * Hash a stream of data with a cryptographic hash algorithm.
+ *
+ * The flags in the @a hash_ctx control the operation of this function.
+ *
+ * Hashing functions work on 64 octets of message at a time. Therefore, when
+ * any partial hashing of a long message is performed, the message @a length of
+ * each segment must be a multiple of 64. When ready to
+ * #FSL_HASH_FLAGS_FINALIZE the hash, the @a length may be any value.
+ *
+ * With the #FSL_HASH_FLAGS_INIT and #FSL_HASH_FLAGS_FINALIZE flags on, a
+ * one-shot complete hash, including padding, will be performed. The @a length
+ * may be any value.
+ *
+ * The first octets of a data stream can be hashed by setting the
+ * #FSL_HASH_FLAGS_INIT and #FSL_HASH_FLAGS_SAVE flags. The @a length must be
+ * a multiple of 64.
+ *
+ * The flag #FSL_HASH_FLAGS_LOAD is used to load a context previously saved by
+ * #FSL_HASH_FLAGS_SAVE. The two in combination will allow a (multiple-of-64
+ * octets) 'middle sequence' of the data stream to be hashed with the
+ * beginning. The @a length must again be a multiple of 64.
+ *
+ * Since the flag #FSL_HASH_FLAGS_LOAD is used to load a context previously
+ * saved by #FSL_HASH_FLAGS_SAVE, the #FSL_HASH_FLAGS_LOAD and
+ * #FSL_HASH_FLAGS_FINALIZE flags, used together, can be used to finish the
+ * stream. The @a length may be any value.
+ *
+ * If the user program wants to do the padding for the hash, it can leave off
+ * the #FSL_HASH_FLAGS_FINALIZE flag. The @a length must then be a multiple of
+ * 64 octets.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param[in,out] hash_ctx Hashing algorithm and state of the cipher.
+ * @param msg Pointer to the data to be hashed.
+ * @param length Length, in octets, of the @a msg.
+ * @param[out] result If not null, pointer to where to store the hash
+ * digest.
+ * @param result_len Number of octets to store in @a result.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_hash(
+ fsl_shw_uco_t* user_ctx,
+ fsl_shw_hco_t* hash_ctx,
+ const uint8_t* msg,
+ uint32_t length,
+ uint8_t* result,
+ uint32_t result_len);
+
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSL-SHW-PINTFC-API-BASIC-HMAC-001 */
+/**
+ * Precompute the Key hashes for an HMAC operation.
+ *
+ * This function may be used to calculate the inner and outer precomputes,
+ * which are the hash contexts resulting from hashing the XORed key for the
+ * 'inner hash' and the 'outer hash', respectively, of the HMAC function.
+ *
+ * After execution of this function, the @a hmac_ctx will contain the
+ * precomputed inner and outer contexts, so that they may be used by
+ * #fsl_shw_hmac(). The flags of @a hmac_ctx will be updated with
+ * #FSL_HMAC_FLAGS_PRECOMPUTES_PRESENT to mark their presence. In addtion, the
+ * #FSL_HMAC_FLAGS_INIT flag will be set.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param key_info The key being used in this operation. Key must be
+ * 1 to 64 octets long.
+ * @param[in,out] hmac_ctx The context which controls, by its flags and
+ * algorithm, the operation of this function.
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_hmac_precompute(
+ fsl_shw_uco_t* user_ctx,
+ fsl_shw_sko_t* key_info,
+ fsl_shw_hmco_t* hmac_ctx);
+
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSLSHW-PINTFC-API-BASIC-HMAC-002 */
+/**
+ * Continue, finalize, or one-shot an HMAC operation.
+ *
+ * There are a number of ways to use this function. The flags in the
+ * @a hmac_ctx object will determine what operations occur.
+ *
+ * If #FSL_HMAC_FLAGS_INIT is set, then the hash will be started either from
+ * the @a key_info, or from the precomputed inner hash value in the
+ * @a hmac_ctx, depending on the value of #FSL_HMAC_FLAGS_PRECOMPUTES_PRESENT.
+ *
+ * If, instead, #FSL_HMAC_FLAGS_LOAD is set, then the hash will be continued
+ * from the ongoing inner hash computation in the @a hmac_ctx.
+ *
+ * If #FSL_HMAC_FLAGS_FINALIZE are set, then the @a msg will be padded, hashed,
+ * the outer hash will be performed, and the @a result will be generated.
+ *
+ * If the #FSL_HMAC_FLAGS_SAVE flag is set, then the (ongoing or final) digest
+ * value will be stored in the ongoing inner hash computation field of the @a
+ * hmac_ctx.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param key_info If #FSL_HMAC_FLAGS_INIT is set in the @a hmac_ctx,
+ * this is the key being used in this operation, and the
+ * IPAD. If #FSL_HMAC_FLAGS_INIT is set in the @a
+ * hmac_ctx and @a key_info is NULL, then
+ * #fsl_shw_hmac_precompute() has been used to populate
+ * the @a inner_precompute and @a outer_precompute
+ * contexts. If #FSL_HMAC_FLAGS_INIT is not set, this
+ * parameter is ignored.
+
+ * @param[in,out] hmac_ctx The context which controls, by its flags and
+ * algorithm, the operation of this function.
+ * @param msg Pointer to the message to be hashed.
+ * @param length Length, in octets, of the @a msg.
+ * @param[out] result Pointer, of @a result_len octets, to where to
+ * store the HMAC.
+ * @param result_len Length of @a result buffer.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_hmac(
+ fsl_shw_uco_t* user_ctx,
+ fsl_shw_sko_t* key_info,
+ fsl_shw_hmco_t* hmac_ctx,
+ const uint8_t* msg,
+ uint32_t length,
+ uint8_t* result,
+ uint32_t result_len);
+
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSLSHW-PINTFC-API-BASIC-RNG-002 */
+/**
+ * Get random data.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param length The number of octets of @a data being requested.
+ * @param[out] data A pointer to a location of @a length octets to where
+ * random data will be returned.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_get_random(
+ fsl_shw_uco_t* user_ctx,
+ uint32_t length,
+ uint8_t* data);
+
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSLSHW-PINTFC-API-BASIC-RNG-003 */
+/**
+ * Add entropy to random number generator.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param length Number of bytes at @a data.
+ * @param data Entropy to add to random number generator.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_add_entropy(
+ fsl_shw_uco_t* user_ctx,
+ uint32_t length,
+ uint8_t* data);
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSL-SHW-PINTFC-COA-SKO */
+/**
+ * Perform Generation-Encryption by doing a Cipher and a Hash.
+ *
+ * Generate the authentication value @a auth_value as well as encrypt the @a
+ * payload into @a ct (the ciphertext). This is a one-shot function, so all of
+ * the @a auth_data and the total message @a payload must passed in one call.
+ * This also means that the flags in the @a auth_ctx must be #FSL_ACCO_CTX_INIT
+ * and #FSL_ACCO_CTX_FINALIZE.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param auth_ctx Controlling object for Authenticate-decrypt.
+ * @param cipher_key_info The key being used for the cipher part of this
+ * operation. In CCM mode, this key is used for
+ * both parts.
+ * @param auth_key_info The key being used for the authentication part
+ * of this operation. In CCM mode, this key is
+ * ignored and may be NULL.
+ * @param auth_data_length Length, in octets, of @a auth_data.
+ * @param auth_data Data to be authenticated but not encrypted.
+ * @param payload_length Length, in octets, of @a payload.
+ * @param payload Pointer to the plaintext to be encrypted.
+ * @param[out] ct Pointer to the where the encrypted @a payload
+ * will be stored. Must be @a payload_length
+ * octets long.
+ * @param[out] auth_value Pointer to where the generated authentication
+ * field will be stored. Must be as many octets as
+ * indicated by MAC length in the @a function_ctx.
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_gen_encrypt(
+ fsl_shw_uco_t* user_ctx,
+ fsl_shw_acco_t* auth_ctx,
+ fsl_shw_sko_t* cipher_key_info,
+ fsl_shw_sko_t* auth_key_info,
+ uint32_t auth_data_length,
+ const uint8_t* auth_data,
+ uint32_t payload_length,
+ const uint8_t* payload,
+ uint8_t* ct,
+ uint8_t* auth_value);
+
+/* REQ-FSL-SHW-PINTFC-COA-UCO */
+/* REQ-FSL-SHW-PINTFC-COA-SKO */
+/**
+ * Perform Authentication-Decryption in Cipher + Hash.
+ *
+ * This function will perform a one-shot decryption of a data stream as well as
+ * authenticate the authentication value. This is a one-shot function, so all
+ * of the @a auth_data and the total message @a payload must passed in one
+ * call. This also means that the flags in the @a auth_ctx must be
+ * #FSL_ACCO_CTX_INIT and #FSL_ACCO_CTX_FINALIZE.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param auth_ctx Controlling object for Authenticate-decrypt.
+ * @param cipher_key_info The key being used for the cipher part of this
+ * operation. In CCM mode, this key is used for
+ * both parts.
+ * @param auth_key_info The key being used for the authentication part
+ * of this operation. In CCM mode, this key is
+ * ignored and may be NULL.
+ * @param auth_data_length Length, in octets, of @a auth_data.
+ * @param auth_data Data to be authenticated but not decrypted.
+ * @param payload_length Length, in octets, of @a ct and @a pt.
+ * @param ct Pointer to the encrypted input stream.
+ * @param auth_value The (encrypted) authentication value which will
+ * be authenticated. This is the same data as the
+ * (output) @a auth_value argument to
+ * #fsl_shw_gen_encrypt().
+ * @param[out] payload Pointer to where the plaintext resulting from
+ * the decryption will be stored.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+extern fsl_shw_return_t fsl_shw_auth_decrypt(
+ fsl_shw_uco_t* user_ctx,
+ fsl_shw_acco_t* auth_ctx,
+ fsl_shw_sko_t* cipher_key_info,
+ fsl_shw_sko_t* auth_key_info,
+ uint32_t auth_data_length,
+ const uint8_t* auth_data,
+ uint32_t payload_length,
+ const uint8_t* ct,
+ const uint8_t* auth_value,
+ uint8_t* payload);
+
+/*!
+ * Cause the hardware to create a new random key for secure memory use.
+ *
+ * Have the hardware use the secure hardware random number generator to load a
+ * new secret key into the hardware random key register. It will not be made
+ * active without a call to #fsl_shw_select_pf_key().
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+#ifdef __KERNEL__
+
+extern fsl_shw_return_t fsl_shw_gen_random_pf_key(fsl_shw_uco_t * user_ctx);
+
+#else
+
+#define fsl_shw_gen_random_pf_key(user_ctx) FSL_RETURN_NO_RESOURCE_S
+
+#endif /* __KERNEL__ */
+
+/*!
+ * Retrieve the detected tamper event.
+ *
+ * Note that if more than one event was detected, this routine will only ever
+ * return one of them.
+ *
+ * @param[in] user_ctx A user context from #fsl_shw_register_user().
+ * @param[out] tamperp Location to store the tamper information.
+ * @param[out] timestampp Locate to store timestamp from hardwhare when
+ * an event was detected.
+ *
+ *
+ * @return A return code of type #fsl_shw_return_t (for instance, if the platform
+ * is not in a fail state.
+ */
+#ifdef __KERNEL__
+
+extern fsl_shw_return_t fsl_shw_read_tamper_event(fsl_shw_uco_t * user_ctx,
+ fsl_shw_tamper_t * tamperp,
+ uint64_t * timestampp);
+#else
+
+#define fsl_shw_read_tamper_event(user_ctx,tamperp,timestampp) \
+ FSL_RETURN_NO_RESOURCE_S
+
+#endif /* __KERNEL__ */
+
+/*****************************************************************************
+ *
+ * Functions internal to SHW driver.
+ *
+*****************************************************************************/
+
+fsl_shw_return_t
+do_scc_encrypt_region(fsl_shw_uco_t* user_ctx,
+ void* partition_base, uint32_t offset_bytes,
+ uint32_t byte_count, uint8_t* black_data,
+ uint32_t* IV, fsl_shw_cypher_mode_t cypher_mode);
+
+fsl_shw_return_t
+do_scc_decrypt_region(fsl_shw_uco_t* user_ctx,
+ void* partition_base, uint32_t offset_bytes,
+ uint32_t byte_count, const uint8_t* black_data,
+ uint32_t* IV, fsl_shw_cypher_mode_t cypher_mode);
+
+
+/*****************************************************************************
+ *
+ * Functions available to other SHW-family drivers.
+ *
+*****************************************************************************/
+
+#ifdef __KERNEL__
+/**
+ * Add an entry to a work/result queue.
+ *
+ * @param pool Pointer to list structure
+ * @param entry Entry to place at tail of list
+ *
+ * @return void
+ */
+inline static void SHW_ADD_QUEUE_ENTRY(shw_queue_t* pool,
+ shw_queue_entry_t* entry)
+{
+ os_lock_context_t lock_context;
+
+ entry->next = NULL;
+ os_lock_save_context(shw_queue_lock, lock_context);
+
+ if (pool->tail != NULL) {
+ pool->tail->next = entry;
+ } else {
+ /* Queue was empty, so this is also the head. */
+ pool->head = entry;
+ }
+ pool->tail = entry;
+
+ os_unlock_restore_context(shw_queue_lock, lock_context);
+
+ return;
+
+
+}
+
+
+/**
+ * Get first entry on the queue and remove it from the queue.
+ *
+ * @return Pointer to first entry, or NULL if none.
+ */
+inline static shw_queue_entry_t* SHW_POP_FIRST_ENTRY(shw_queue_t* queue)
+{
+ shw_queue_entry_t* entry;
+ os_lock_context_t lock_context;
+
+ os_lock_save_context(shw_queue_lock, lock_context);
+
+ entry = queue->head;
+
+ if (entry != NULL) {
+ queue->head = entry->next;
+ entry->next = NULL;
+ /* If this was only entry, clear the tail. */
+ if (queue->tail == entry) {
+ queue->tail = NULL;
+ }
+ }
+
+ os_unlock_restore_context(shw_queue_lock, lock_context);
+
+ return entry;
+}
+
+
+
+/**
+ * Remove an entry from the list.
+ *
+ * If the entry not on the queue, no error will be returned.
+ *
+ * @param pool Pointer to work queue
+ * @param entry Entry to remove from queue
+ *
+ * @return void
+ *
+ */
+inline static void SHW_QUEUE_REMOVE_ENTRY(shw_queue_t* pool,
+ shw_queue_entry_t* entry)
+{
+ os_lock_context_t lock_context;
+
+ os_lock_save_context(shw_queue_lock, lock_context);
+
+ /* Check for quick case.*/
+ if (pool->head == entry) {
+ pool->head = entry->next;
+ entry->next = NULL;
+ if (pool->tail == entry) {
+ pool->tail = NULL;
+ }
+ } else {
+ register shw_queue_entry_t* prev = pool->head;
+
+ /* We know it is not the head, so start looking at entry after head. */
+ while (prev->next) {
+ if (prev->next != entry) {
+ prev = prev->next; /* Try another */
+ continue;
+ } else {
+ /* Unlink from chain. */
+ prev->next = entry->next;
+ entry->next = NULL;
+ /* If last in chain, update tail. */
+ if (pool->tail == entry) {
+ pool->tail = prev;
+ }
+ break;
+ }
+ } /* while */
+ }
+
+ os_unlock_restore_context(shw_queue_lock, lock_context);
+
+ return;
+}
+#endif /* __KERNEL__ */
+
+
+/*****************************************************************************
+ *
+ * Functions available to User-Mode API functions
+ *
+ ****************************************************************************/
+#ifndef __KERNEL__
+
+
+ /**
+ * Sanity checks the user context object fields to ensure that they make some
+ * sense before passing the uco as a parameter.
+ *
+ * @brief Verify the user context object
+ *
+ * @param uco user context object
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t validate_uco(fsl_shw_uco_t *uco);
+
+
+/**
+ * Initialize a request block to go to the driver.
+ *
+ * @param hdr Pointer to request block header
+ * @param user_ctx Pointer to user's context
+ *
+ * @return void
+ */
+inline static void init_req(struct shw_req_header* hdr,
+ fsl_shw_uco_t* user_ctx)
+{
+ hdr->flags = user_ctx->flags;
+ hdr->user_ref = user_ctx->user_ref;
+ hdr->code = FSL_RETURN_ERROR_S;
+
+ return;
+}
+
+
+/**
+ * Send a request block off to the driver.
+ *
+ * If this is a non-blocking request, then req will be freed.
+ *
+ * @param type The type of request being sent
+ * @param req Pointer to the request block
+ * @param ctx Pointer to user's context
+ *
+ * @return code from driver if ioctl() succeeded, otherwise
+ * FSL_RETURN_INTERNAL_ERROR_S.
+ */
+inline static fsl_shw_return_t send_req(shw_user_request_t type,
+ struct shw_req_header* req,
+ fsl_shw_uco_t* ctx)
+{
+ fsl_shw_return_t ret = FSL_RETURN_INTERNAL_ERROR_S;
+ unsigned blocking = ctx->flags & FSL_UCO_BLOCKING_MODE;
+ int code;
+
+ code = ioctl(ctx->openfd, SHW_IOCTL_REQUEST + type, req);
+
+ if (code == 0) {
+ if (blocking) {
+ ret = req->code;
+ } else {
+ ret = FSL_RETURN_OK_S;
+ }
+ } else {
+#ifdef FSL_DEBUG
+ fprintf(stderr, "SHW: send_req failed with (%d), %s\n", errno,
+ strerror(errno));
+#endif
+ }
+
+ if (blocking) {
+ free(req);
+ }
+
+ return ret;
+}
+
+
+#endif /* no __KERNEL__ */
+
+#if defined(FSL_HAVE_DRYICE)
+/* Some kernel functions */
+void fsl_shw_permute1_bytes(const uint8_t * key, uint8_t * permuted_key,
+ int key_count);
+void fsl_shw_permute1_bytes_to_words(const uint8_t * key,
+ uint32_t * permuted_key, int key_count);
+
+#define PFKEY_TO_STR(key_in) \
+({ \
+ di_key_t key = key_in; \
+ \
+ ((key == DI_KEY_FK) ? "IIM" : \
+ ((key == DI_KEY_PK) ? "PRG" : \
+ ((key == DI_KEY_RK) ? "RND" : \
+ ((key == DI_KEY_FPK) ? "IIM_PRG" : \
+ ((key == DI_KEY_FRK) ? "IIM_RND" : "unk"))))); \
+})
+
+#ifdef DIAG_SECURITY_FUNC
+extern const char *di_error_string(int code);
+#endif
+
+#endif /* HAVE DRYICE */
+
+#endif /* SHW_DRIVER_H */
diff --git a/drivers/mxc/security/rng/include/shw_hash.h b/drivers/mxc/security/rng/include/shw_hash.h
new file mode 100644
index 000000000000..8026c7ecb3fd
--- /dev/null
+++ b/drivers/mxc/security/rng/include/shw_hash.h
@@ -0,0 +1,96 @@
+/*
+ * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU Lesser General
+ * Public License. You may obtain a copy of the GNU Lesser General
+ * Public License Version 2.1 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/lgpl-license.html
+ * http://www.gnu.org/copyleft/lgpl.html
+ */
+
+/*!
+ * @file shw_hash.h
+ *
+ * This file contains definitions for use of the (internal) SHW hash
+ * software computation. It defines the usual three steps:
+ *
+ * - #shw_hash_init()
+ * - #shw_hash_update()
+ * - #shw_hash_final()
+ *
+ * The only other item of note to callers is #SHW_HASH_LEN, which is the number
+ * of bytes calculated for the hash.
+ */
+
+#ifndef SHW_HASH_H
+#define SHW_HASH_H
+
+/*! Define which gives the number of bytes available in an hash result */
+#define SHW_HASH_LEN 32
+
+/* Define which matches block length in bytes of the underlying hash */
+#define SHW_HASH_BLOCK_LEN 64
+
+/* "Internal" define which matches SHA-256 state size (32-bit words) */
+#define SHW_HASH_STATE_WORDS 8
+
+/* "Internal" define which matches word length in blocks of the underlying
+ hash. */
+#define SHW_HASH_BLOCK_WORD_SIZE 16
+
+#define SHW_HASH_STATE_SIZE 32
+
+/*!
+ * State for a SHA-1/SHA-2 Hash
+ *
+ * (Note to maintainers: state needs to be updated to uint64_t to handle
+ * SHA-384/SHA-512)... And bit_count to uint128_t (heh).
+ */
+typedef struct shw_hash_state {
+ unsigned int partial_count_bytes; /*!< Number of bytes of message sitting
+ * in @c partial_block */
+ uint8_t partial_block[SHW_HASH_BLOCK_LEN]; /*!< Data waiting to be processed as a block */
+ uint32_t state[SHW_HASH_STATE_WORDS]; /*!< Current hash state variables */
+ uint64_t bit_count; /*!< Number of bits sent through the update function */
+} shw_hash_state_t;
+
+/*!
+ * Initialize the hash state structure
+ *
+ * @param state Address of hash state structure.
+ * @param algorithm Which hash algorithm to use (must be FSL_HASH_ALG_SHA256)
+ *
+ * @return FSL_RETURN_OK_S if all went well, otherwise an error code.
+ */
+fsl_shw_return_t shw_hash_init(shw_hash_state_t * state,
+ fsl_shw_hash_alg_t algorithm);
+
+/*!
+ * Put data into the hash calculation
+ *
+ * @param state Address of hash state structure.
+ * @param msg Address of the message data for the hash.
+ * @param msg_len Number of bytes of @c msg.
+ *
+ * @return FSL_RETURN_OK_S if all went well, otherwise an error code.
+ */
+fsl_shw_return_t shw_hash_update(shw_hash_state_t * state,
+ const uint8_t * msg, unsigned int msg_len);
+
+/*!
+ * Calculate the final hash value
+ *
+ * @param state Address of hash state structure.
+ * @param hash Address of location to store the hash.
+ * @param hash_len Number of bytes of @c hash to be stored.
+ *
+ * @return FSL_RETURN_OK_S if all went well, FSL_RETURN_BAD_DATA_LENGTH_S if
+ * hash_len is too long, otherwise an error code.
+ */
+fsl_shw_return_t shw_hash_final(shw_hash_state_t * state,
+ uint8_t * hash, unsigned int hash_len);
+
+#endif /* SHW_HASH_H */
diff --git a/drivers/mxc/security/rng/include/shw_hmac.h b/drivers/mxc/security/rng/include/shw_hmac.h
new file mode 100644
index 000000000000..f73a78f5b02d
--- /dev/null
+++ b/drivers/mxc/security/rng/include/shw_hmac.h
@@ -0,0 +1,82 @@
+/*
+ * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU Lesser General
+ * Public License. You may obtain a copy of the GNU Lesser General
+ * Public License Version 2.1 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/lgpl-license.html
+ * http://www.gnu.org/copyleft/lgpl.html
+ */
+
+/*!
+ * @file shw_hmac.h
+ *
+ * This file contains definitions for use of the (internal) SHW HMAC
+ * software computation. It defines the usual three steps:
+ *
+ * - #shw_hmac_init()
+ * - #shw_hmac_update()
+ * - #shw_hmac_final()
+ *
+ * The only other item of note to callers is #SHW_HASH_LEN, which is the number
+ * of bytes calculated for the HMAC.
+ */
+
+#ifndef SHW_HMAC_H
+#define SHW_HMAC_H
+
+#include "shw_hash.h"
+
+/*!
+ * State for an HMAC
+ *
+ * Note to callers: This structure contains key material and should be kept in
+ * a secure location, such as internal RAM.
+ */
+typedef struct shw_hmac_state {
+ shw_hash_state_t inner_hash; /*!< Current state of inner hash */
+ shw_hash_state_t outer_hash; /*!< Current state of outer hash */
+} shw_hmac_state_t;
+
+/*!
+ * Initialize the HMAC state structure with the HMAC key
+ *
+ * @param state Address of HMAC state structure.
+ * @param key Address of the key to be used for the HMAC.
+ * @param key_len Number of bytes of @c key. This must not be greater than
+ * the block size of the underlying hash (#SHW_HASH_BLOCK_LEN).
+ *
+ * @return FSL_RETURN_OK_S if all went well, otherwise an error code.
+ */
+fsl_shw_return_t shw_hmac_init(shw_hmac_state_t * state,
+ const uint8_t * key, unsigned int key_len);
+
+/*!
+ * Put data into the HMAC calculation
+ *
+ * @param state Address of HMAC state structure.
+ * @param msg Address of the message data for the HMAC.
+ * @param msg_len Number of bytes of @c msg.
+ *
+ * @return FSL_RETURN_OK_S if all went well, otherwise an error code.
+ */
+fsl_shw_return_t shw_hmac_update(shw_hmac_state_t * state,
+ const uint8_t * msg, unsigned int msg_len);
+
+/*!
+ * Calculate the final HMAC
+ *
+ * @param state Address of HMAC state structure.
+ * @param hmac Address of location to store the HMAC.
+ * @param hmac_len Number of bytes of @c mac to be stored. Probably best if
+ * this value is no greater than #SHW_HASH_LEN.
+ *
+ * @return FSL_RETURN_OK_S if all went well, otherwise an error code.
+ */
+fsl_shw_return_t shw_hmac_final(shw_hmac_state_t * state,
+ uint8_t * hmac, unsigned int hmac_len);
+
+#endif /* SHW_HMAC_H */
diff --git a/drivers/mxc/security/rng/include/shw_internals.h b/drivers/mxc/security/rng/include/shw_internals.h
new file mode 100644
index 000000000000..1bf3b1a86374
--- /dev/null
+++ b/drivers/mxc/security/rng/include/shw_internals.h
@@ -0,0 +1,162 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+#ifndef SHW_INTERNALS_H
+#define SHW_INTERNALS_H
+
+/*! @file shw_internals.h
+ *
+ * This file contains definitions which are internal to the SHW driver.
+ *
+ * This header file should only ever be included by shw_driver.c
+ *
+ * Compile-time flags minimally needed:
+ *
+ * @li Some sort of platform flag.
+ *
+ */
+
+#include "portable_os.h"
+#include "shw_driver.h"
+
+/*! @defgroup shwcompileflags SHW Compile Flags
+ *
+ * These are flags which are used to configure the SHW driver at compilation
+ * time.
+ *
+ * The terms 'defined' and 'undefined' refer to whether a @c \#define (or -D on
+ * a compile command) has defined a given preprocessor symbol. If a given
+ * symbol is defined, then @c \#ifdef \<symbol\> will succeed. Some symbols
+ * described below default to not having a definition, i.e. they are undefined.
+ *
+ */
+
+/*! @addtogroup shwcompileflags */
+/*! @{ */
+#ifndef SHW_MAJOR_NODE
+/*!
+ * This should be configured in a Makefile/compile command line. It is the
+ * value the driver will use to register itself as a device driver for a
+ * /dev/node file. Zero means allow (Linux) to assign a value. Any positive
+ * number will be attempted as the registration value, to allow for
+ * coordination with the creation/existence of a /dev/fsl_shw (for instance)
+ * file in the filesystem.
+ */
+#define SHW_MAJOR_NODE 0
+#endif
+
+/* Temporarily define compile-time flags to make Doxygen happy and allow them
+ to get into the documentation. */
+#ifdef DOXYGEN_HACK
+
+/*!
+ * Turn on compilation of run-time operational, debug, and error messages.
+ *
+ * This flag is undefined by default.
+ */
+/* REQ-FSLSHW-DEBUG-001 */
+#define SHW_DEBUG
+#undef SHW_DEBUG
+
+/*! @} */
+#endif /* end DOXYGEN_HACK */
+
+#ifndef SHW_DRIVER_NAME
+/*! @addtogroup shwcompileflags */
+/*! @{ */
+/*! Name the driver will use to register itself to the kernel as the driver for
+ * the #shw_major_node and interrupt handling. */
+#define SHW_DRIVER_NAME "fsl_shw"
+/*! @} */
+#endif
+/*#define SHW_DEBUG*/
+
+/*!
+ * Add a user context onto the list of registered users.
+ *
+ * Place it at the head of the #user_list queue.
+ *
+ * @param ctx A pointer to a user context
+ *
+ * @return void
+ */
+inline static void SHW_ADD_USER(fsl_shw_uco_t * ctx)
+{
+ os_lock_context_t lock_context;
+
+ os_lock_save_context(shw_queue_lock, lock_context);
+ ctx->next = user_list;
+ user_list = ctx;
+ os_unlock_restore_context(shw_queue_lock, lock_context);
+
+}
+
+/*!
+ * Remove a user context from the list of registered users.
+ *
+ * @param ctx A pointer to a user context
+ *
+ * @return void
+ *
+ */
+inline static void SHW_REMOVE_USER(fsl_shw_uco_t * ctx)
+{
+ fsl_shw_uco_t *prev_ctx = user_list;
+ os_lock_context_t lock_context;
+
+ os_lock_save_context(shw_queue_lock, lock_context);
+
+ if (prev_ctx == ctx) {
+ /* Found at head, so just set new head */
+ user_list = ctx->next;
+ } else {
+ for (; (prev_ctx != NULL); prev_ctx = prev_ctx->next) {
+ if (prev_ctx->next == ctx) {
+ prev_ctx->next = ctx->next;
+ break;
+ }
+ }
+ }
+ os_unlock_restore_context(shw_queue_lock, lock_context);
+}
+
+static void shw_user_callback(fsl_shw_uco_t * uco);
+
+/* internal functions */
+static os_error_code shw_setup_user_driver_interaction(void);
+static void shw_cleanup(void);
+
+static os_error_code init_uco(fsl_shw_uco_t * user_ctx, void *user_mode_uco);
+static os_error_code get_capabilities(fsl_shw_uco_t * user_ctx,
+ void *user_mode_pco_request);
+static os_error_code get_results(fsl_shw_uco_t * user_ctx,
+ void *user_mode_result_req);
+static os_error_code get_random(fsl_shw_uco_t * user_ctx,
+ void *user_mode_get_random_req);
+static os_error_code add_entropy(fsl_shw_uco_t * user_ctx,
+ void *user_mode_add_entropy_req);
+
+void* wire_user_memory(void* address, uint32_t length, void** page_ctx);
+void unwire_user_memory(void** page_ctx);
+os_error_code map_user_memory(struct vm_area_struct* vma,
+ uint32_t physical_addr, uint32_t size);
+os_error_code unmap_user_memory(uint32_t user_addr, uint32_t size);
+
+#if defined(LINUX_VERSION_CODE)
+
+MODULE_AUTHOR("Freescale Semiconductor");
+MODULE_DESCRIPTION("Device Driver for FSL SHW API");
+
+#endif /* LINUX_VERSION_CODE */
+
+#endif /* SHW_INTERNALS_H */
diff --git a/drivers/mxc/security/rng/rng_driver.c b/drivers/mxc/security/rng/rng_driver.c
new file mode 100644
index 000000000000..51eda5ccbe61
--- /dev/null
+++ b/drivers/mxc/security/rng/rng_driver.c
@@ -0,0 +1,1150 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+/*! @file rng_driver.c
+ *
+ * This is the driver code for the hardware Random Number Generator (RNG).
+ *
+ * It provides the following functions to callers:
+ * fsl_shw_return_t fsl_shw_get_random(fsl_shw_uco_t* user_ctx,
+ * uint32_t length,
+ * uint8_t* data);
+ *
+ * fsl_shw_return_t fsl_shw_add_entropy(fsl_shw_uco_t* user_ctx,
+ * uint32_t length,
+ * uint8_t* data);
+ *
+ * The life of the driver starts at boot (or module load) time, with a call by
+ * the kernel to #rng_init(). As part of initialization, a background task
+ * running #rng_entropy_task() will be created.
+ *
+ * The life of the driver ends when the kernel is shutting down (or the driver
+ * is being unloaded). At this time, #rng_shutdown() is called. No function
+ * will ever be called after that point. In the case that the driver is
+ * reloaded, a new copy of the driver, with fresh global values, etc., is
+ * loaded, and there will be a new call to #rng_init().
+ *
+ * A call to fsl_shw_get_random() gets converted into a work entry which is
+ * queued and handed off to a background task for fulfilment. This provides
+ * for a single thread of control for reading the RNG's FIFO register, which
+ * might otherwise underflow if not carefully managed.
+ *
+ * A call to fsl_shw_add_entropy() will cause the additional entropy to
+ * be passed directly into the hardware.
+ *
+ * In a debug configuration, it provides the following kernel functions:
+ * rng_return_t rng_read_register(uint32_t byte_offset, uint32_t* valuep);
+ * rng_return_t rng_write_register(uint32_t byte_offset, uint32_t value);
+ * @ingroup RNG
+ */
+
+#include "portable_os.h"
+#include "fsl_shw.h"
+#include "rng_internals.h"
+
+#ifdef FSL_HAVE_SCC2
+#include <linux/mxc_scc2_driver.h>
+#else
+#include <linux/mxc_scc_driver.h>
+#endif
+
+#if defined(RNG_DEBUG) || defined(RNG_ENTROPY_DEBUG) || \
+ defined(RNG_REGISTER_DEBUG)
+
+#include <diagnostic.h>
+
+#else
+
+#define LOG_KDIAG_ARGS(fmt, ...)
+#define LOG_KDIAG(diag)
+
+#endif
+
+/* These are often handy */
+#ifndef FALSE
+/*! Non-true value for arguments, return values. */
+#define FALSE 0
+#endif
+#ifndef TRUE
+/*! True value for arguments, return values. */
+#define TRUE 1
+#endif
+
+/******************************************************************************
+ *
+ * Global / Static Variables
+ *
+ *****************************************************************************/
+
+/*!
+ * This is type void* so that a) it cannot directly be dereferenced, and b)
+ * pointer arithmetic on it will function for the byte offsets in rng_rnga.h
+ * and rng_rngc.h
+ *
+ * rng_base is the location in the iomap where the RNG's registers
+ * (and memory) start.
+ *
+ * The referenced data is declared volatile so that the compiler will
+ * not make any assumptions about the value of registers in the RNG,
+ * and thus will always reload the register into CPU memory before
+ * using it (i.e. wherever it is referenced in the driver).
+ *
+ * This value should only be referenced by the #RNG_READ_REGISTER and
+ * #RNG_WRITE_REGISTER macros and their ilk. All dereferences must be
+ * 32 bits wide.
+ */
+static volatile void *rng_base;
+
+/*!
+ * Flag to say whether interrupt handler has been registered for RNG
+ * interrupt */
+static int rng_irq_set = FALSE;
+
+/*!
+ * Size of the RNG's OUTPUT_FIFO, in words. Retrieved with
+ * #RNG_GET_FIFO_SIZE() during driver initialization.
+ */
+static int rng_output_fifo_size;
+
+/*! Major number for device driver. */
+static int rng_major;
+
+/*! Registration handle for registering driver with OS. */
+os_driver_reg_t rng_reg_handle;
+
+/*!
+ * Internal flag to know whether RNG is in Failed state (and thus many
+ * registers are unavailable). If the value ever goes to #RNG_STATUS_FAILED,
+ * it will never change.
+ */
+static volatile rng_status_t rng_availability = RNG_STATUS_INITIAL;
+
+/*!
+ * Global lock for the RNG driver. Mainly used for entries on the RNG work
+ * queue.
+ */
+static os_lock_t rng_queue_lock = NULL;
+
+/*!
+ * Queue for the RNG task to process.
+ */
+static shw_queue_t rng_work_queue;
+
+/*!
+ * Flag to say whether task initialization succeeded.
+ */
+static unsigned task_started = FALSE;
+/*!
+ * Waiting queue for RNG SELF TESTING
+ */
+static DECLARE_COMPLETION(rng_self_testing);
+static DECLARE_COMPLETION(rng_seed_done);
+/*!
+ * Object for blocking-mode callers of RNG driver to sleep.
+ */
+OS_WAIT_OBJECT(rng_wait_queue);
+
+/******************************************************************************
+ *
+ * Function Implementations - Externally Accessible
+ *
+ *****************************************************************************/
+
+/*****************************************************************************/
+/* fn rng_init() */
+/*****************************************************************************/
+/*!
+ * Initialize the driver.
+ *
+ * Set up the driver to have access to RNG device registers and verify that
+ * it appears to be a proper working device.
+ *
+ * Set up interrupt handling. Assure RNG is ready to go and (possibly) set it
+ * into High Assurance mode. Create a background task to run
+ * #rng_entropy_task(). Set up up a callback with the SCC driver should the
+ * security alarm go off. Tell the kernel that the driver is here.
+ *
+ * This routine is called during kernel init or module load (insmod).
+ *
+ * The function will fail in one of two ways: Returning OK to the caller so
+ * that kernel startup / driver initialization completes, or returning an
+ * error. In the success case, the function could set the rng_avaailability to
+ * RNG_STATUS_FAILED so that only minimal support (e.g. register peek / poke)
+ * is available in the driver.
+ *
+ * @return a call to os_dev_init_return()
+ */
+OS_DEV_INIT(rng_init)
+{
+ struct clk *clk;
+ os_error_code return_code = OS_ERROR_FAIL_S;
+ rng_availability = RNG_STATUS_CHECKING;
+
+#if !defined(FSL_HAVE_RNGA)
+ INIT_COMPLETION(rng_self_testing);
+ INIT_COMPLETION(rng_seed_done);
+#endif
+ rng_work_queue.head = NULL;
+ rng_work_queue.tail = NULL;
+
+ clk = clk_get(NULL, "rng_clk");
+
+ // Check that the clock was found
+ if (IS_ERR(clk)) {
+ LOG_KDIAG("RNG: Failed to find rng_clock.");
+ return_code = OS_ERROR_FAIL_S;
+ goto check_err;
+ }
+
+ clk_enable(clk);
+
+ os_printk(KERN_INFO "RNG Driver: Loading\n");
+
+ return_code = rng_map_RNG_memory();
+ if (return_code != OS_ERROR_OK_S) {
+ rng_availability = RNG_STATUS_UNIMPLEMENTED;
+ LOG_KDIAG_ARGS("RNG: Driver failed to map RNG registers. %d",
+ return_code);
+ goto check_err;
+ }
+ LOG_KDIAG_ARGS("RNG Driver: rng_base is 0x%08x", (uint32_t) rng_base);
+ /*Check SCC keys are fused */
+ if (RNG_HAS_ERROR()) {
+ if (RNG_HAS_BAD_KEY()) {
+#ifdef RNG_DEBUG
+#if !defined(FSL_HAVE_RNGA)
+ LOG_KDIAG("ERROR: BAD KEYS SELECTED");
+ {
+ uint32_t rngc_status =
+ RNG_READ_REGISTER(RNGC_STATUS);
+ uint32_t rngc_error =
+ RNG_READ_REGISTER(RNGC_ERROR);
+ LOG_KDIAG_ARGS
+ ("status register: %08x, error status: %08x",
+ rngc_status, rngc_error);
+ }
+#endif
+#endif
+ rng_availability = RNG_STATUS_FAILED;
+ return_code = OS_ERROR_FAIL_S;
+ goto check_err;
+ }
+ }
+
+ /* Check RNG configuration and status */
+ return_code = rng_grab_config_values();
+ if (return_code != OS_ERROR_OK_S) {
+ rng_availability = RNG_STATUS_UNIMPLEMENTED;
+ goto check_err;
+ }
+
+ /* Masking All Interrupts */
+ /* They are unmasked later in rng_setup_interrupt_handling() */
+ RNG_MASK_ALL_INTERRUPTS();
+
+ RNG_WAKE();
+
+ /* Determine status of RNG */
+ if (RNG_OSCILLATOR_FAILED()) {
+ LOG_KDIAG("RNG Driver: RNG Oscillator is dead");
+ rng_availability = RNG_STATUS_FAILED;
+ goto check_err;
+ }
+
+ /* Oscillator not dead. Setup interrupt code and start the RNG. */
+ if ((return_code = rng_setup_interrupt_handling()) == OS_ERROR_OK_S) {
+#if defined(FSL_HAVE_RNGA)
+ scc_return_t scc_code;
+#endif
+
+ RNG_GO();
+
+ /* Self Testing For RNG */
+ do {
+ RNG_CLEAR_ERR();
+
+ /* wait for Clearing Erring finished */
+ msleep(1);
+
+ RNG_UNMASK_ALL_INTERRUPTS();
+ RNG_SELF_TEST();
+#if !defined(FSL_HAVE_RNGA)
+ wait_for_completion(&rng_self_testing);
+#endif
+ } while (RNG_CHECK_SELF_ERR());
+
+ RNG_CLEAR_ALL_STATUS();
+ /* checking for RNG SEED done */
+ do {
+ RNG_CLEAR_ERR();
+ RNG_SEED_GEN();
+#if !defined(FSL_HAVE_RNGA)
+ wait_for_completion(&rng_seed_done);
+#endif
+ } while (RNG_CHECK_SEED_ERR());
+#ifndef RNG_NO_FORCE_HIGH_ASSURANCE
+ RNG_SET_HIGH_ASSURANCE();
+#endif
+ if (RNG_GET_HIGH_ASSURANCE()) {
+ LOG_KDIAG("RNG Driver: RNG is in High Assurance mode");
+ } else {
+#ifndef RNG_NO_FORCE_HIGH_ASSURANCE
+ LOG_KDIAG
+ ("RNG Driver: RNG could not be put in High Assurance mode");
+ rng_availability = RNG_STATUS_FAILED;
+ goto check_err;
+#endif /* RNG_NO_FORCE_HIGH_ASSURANCE */
+ }
+
+ /* Check that RNG is OK */
+ if (!RNG_WORKING()) {
+ LOG_KDIAG_ARGS
+ ("RNG determined to be inoperable. Status %08x",
+ RNG_GET_STATUS());
+ /* Couldn't wake it up or other problem */
+ rng_availability = RNG_STATUS_FAILED;
+ goto check_err;
+ }
+
+ rng_queue_lock = os_lock_alloc_init();
+ if (rng_queue_lock == NULL) {
+ LOG_KDIAG("RNG: lock initialization failed");
+ rng_availability = RNG_STATUS_FAILED;
+ goto check_err;
+ }
+
+ return_code = os_create_task(rng_entropy_task);
+ if (return_code != OS_ERROR_OK_S) {
+ LOG_KDIAG("RNG: task initialization failed");
+ rng_availability = RNG_STATUS_FAILED;
+ goto check_err;
+ } else {
+ task_started = TRUE;
+ }
+#ifdef FSL_HAVE_RNGA
+ scc_code = scc_monitor_security_failure(rng_sec_failure);
+ if (scc_code != SCC_RET_OK) {
+ LOG_KDIAG_ARGS("Failed to register SCC callback: %d",
+ scc_code);
+#ifndef RNG_NO_FORCE_HIGH_ASSURANCE
+ return_code = OS_ERROR_FAIL_S;
+ goto check_err;
+#endif
+ }
+#endif /* FSL_HAVE_RNGA */
+ return_code = os_driver_init_registration(rng_reg_handle);
+ if (return_code != OS_ERROR_OK_S) {
+ goto check_err;
+ }
+ /* add power suspend here */
+ /* add power resume here */
+ return_code =
+ os_driver_complete_registration(rng_reg_handle,
+ rng_major, RNG_DRIVER_NAME);
+ }
+ /* RNG is working */
+
+ check_err:
+
+ /* If FIFO underflow or other error occurred during drain, this will fail,
+ * as system will have been put into fail mode by SCC. */
+ if ((return_code == OS_ERROR_OK_S)
+ && (rng_availability == RNG_STATUS_CHECKING)) {
+ RNG_PUT_RNG_TO_SLEEP();
+ rng_availability = RNG_STATUS_OK; /* RNG & driver are ready */
+ } else if (return_code != OS_ERROR_OK_S) {
+ os_printk(KERN_ALERT "Driver initialization failed. %d",
+ return_code);
+ rng_cleanup();
+ }
+
+ os_dev_init_return(return_code);
+
+} /* rng_init */
+
+/*****************************************************************************/
+/* fn rng_shutdown() */
+/*****************************************************************************/
+/*!
+ * Prepare driver for exit.
+ *
+ * This is called during @c rmmod when the driver is unloading.
+ * Try to undo whatever was done during #rng_init(), to make the machine be
+ * in the same state, if possible.
+ *
+ * Calls rng_cleanup() to do all work, and then unmap device's register space.
+ */
+OS_DEV_SHUTDOWN(rng_shutdown)
+{
+ LOG_KDIAG("shutdown called");
+
+ rng_cleanup();
+
+ os_driver_remove_registration(rng_reg_handle);
+ if (rng_base != NULL) {
+ /* release the virtual memory map to the RNG */
+ os_unmap_device((void *)rng_base, RNG_ADDRESS_RANGE);
+ rng_base = NULL;
+ }
+
+ os_dev_shutdown_return(OS_ERROR_OK_S);
+} /* rng_shutdown */
+
+/*****************************************************************************/
+/* fn rng_cleanup() */
+/*****************************************************************************/
+/*!
+ * Undo everything done by rng_init() and place driver in fail mode.
+ *
+ * Deregister from SCC, stop tasklet, shutdown the RNG. Leave the register
+ * map in place in case other drivers call rng_read/write_register()
+ *
+ * @return void
+ */
+static void rng_cleanup(void)
+{
+ struct clk *clk;
+
+#ifdef FSL_HAVE_RNGA
+ scc_stop_monitoring_security_failure(rng_sec_failure);
+#endif
+
+ clk = clk_get(NULL, "rng_clk");
+ clk_disable(clk);
+ if (task_started) {
+ os_dev_stop_task(rng_entropy_task);
+ }
+
+ if (rng_base != NULL) {
+ /* mask off RNG interrupts */
+ RNG_MASK_ALL_INTERRUPTS();
+ RNG_SLEEP();
+
+ if (rng_irq_set) {
+ /* unmap the interrupts from the IRQ lines */
+ os_deregister_interrupt(INT_RNG);
+ rng_irq_set = FALSE;
+ }
+ LOG_KDIAG("Leaving rng driver status as failed");
+ rng_availability = RNG_STATUS_FAILED;
+ } else {
+ LOG_KDIAG("Leaving rng driver status as unimplemented");
+ rng_availability = RNG_STATUS_UNIMPLEMENTED;
+ }
+ LOG_KDIAG("Cleaned up");
+} /* rng_cleanup */
+
+/*!
+ * Post-process routine for fsl_shw_get_random().
+ *
+ * This function will copy the random data generated by the background task
+ * into the user's buffer and then free the local buffer.
+ *
+ * @param gen_entry The work request.
+ *
+ * @return 0 = meaning work completed, pass back result.
+ */
+static uint32_t finish_random(shw_queue_entry_t * gen_entry)
+{
+ rng_work_entry_t *work = (rng_work_entry_t *) gen_entry;
+
+ if (work->hdr.flags & FSL_UCO_USERMODE_USER) {
+ os_copy_to_user(work->data_user, work->data_local,
+ work->length);
+ } else {
+ memcpy(work->data_user, work->data_local, work->length);
+ }
+
+ os_free_memory(work->data_local);
+ work->data_local = NULL;
+
+ return 0; /* means completed. */
+}
+
+/* REQ-FSLSHW-PINTFC-API-BASIC-RNG-002 */
+/*****************************************************************************/
+/* fn fsl_shw_get_random() */
+/*****************************************************************************/
+/*!
+ * Get random data.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param length The number of octets of @a data being requested.
+ * @param data A pointer to a location of @a length octets to where
+ * random data will be returned.
+ *
+ * @return FSL_RETURN_NO_RESOURCE_S A return code of type #fsl_shw_return_t.
+ * FSL_RETURN_OK_S
+ */
+fsl_shw_return_t fsl_shw_get_random(fsl_shw_uco_t * user_ctx, uint32_t length,
+ uint8_t * data)
+{
+ fsl_shw_return_t return_code = FSL_RETURN_NO_RESOURCE_S;
+ /* Boost up length to cover any 'missing' bytes at end of a word */
+ uint32_t *buf = os_alloc_memory(length + 3, 0);
+ volatile rng_work_entry_t *work = os_alloc_memory(sizeof(*work), 0);
+
+ if ((rng_availability != RNG_STATUS_OK) || (buf == NULL)
+ || (work == NULL)) {
+ if (rng_availability != RNG_STATUS_OK) {
+ LOG_KDIAG_ARGS("rng not available: %d\n",
+ rng_availability);
+ } else {
+ LOG_KDIAG_ARGS
+ ("Resource allocation failure: %d or %d bytes",
+ length, sizeof(*work));
+ }
+ /* Cannot perform function. Clean up and clear out. */
+ if (buf != NULL) {
+ os_free_memory(buf);
+ }
+ if (work != NULL) {
+ os_free_memory((void *)work);
+ }
+ } else {
+ unsigned blocking = user_ctx->flags & FSL_UCO_BLOCKING_MODE;
+
+ work->hdr.user_ctx = user_ctx;
+ work->hdr.flags = user_ctx->flags;
+ work->hdr.callback = user_ctx->callback;
+ work->hdr.user_ref = user_ctx->user_ref;
+ work->hdr.postprocess = finish_random;
+ work->length = length;
+ work->data_local = buf;
+ work->data_user = data;
+
+ RNG_ADD_WORK_ENTRY((rng_work_entry_t *) work);
+
+ if (blocking) {
+ os_sleep(rng_wait_queue, work->completed != FALSE,
+ FALSE);
+ finish_random((shw_queue_entry_t *) work);
+ return_code = work->hdr.code;
+ os_free_memory((void *)work);
+ } else {
+ return_code = FSL_RETURN_OK_S;
+ }
+ }
+
+ return return_code;
+} /* fsl_shw_get_entropy */
+
+/*****************************************************************************/
+/* fn fsl_shw_add_entropy() */
+/*****************************************************************************/
+/*!
+ * Add entropy to random number generator.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ * @param length Number of bytes at @a data.
+ * @param data Entropy to add to random number generator.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_add_entropy(fsl_shw_uco_t * user_ctx, uint32_t length,
+ uint8_t * data)
+{
+ fsl_shw_return_t return_code = FSL_RETURN_NO_RESOURCE_S;
+#if defined(FSL_HAVE_RNGC)
+ /* No Entropy Register in RNGC */
+ return_code = FSL_RETURN_OK_S;
+#else
+ uint32_t *local_data = NULL;
+ if (rng_availability == RNG_STATUS_OK) {
+ /* make 32-bit aligned place to hold data */
+ local_data = os_alloc_memory(length + 3, 0);
+ if (local_data == NULL) {
+ return_code = FSL_RETURN_NO_RESOURCE_S;
+ } else {
+ memcpy(local_data, data, length);
+
+ /* Copy one word at a time to hardware */
+ while (TRUE) {
+ register uint32_t *ptr = local_data;
+
+ RNG_ADD_ENTROPY(*ptr++);
+ if (length <= 4) {
+ break;
+ }
+ length -= 4;
+ }
+ return_code = FSL_RETURN_OK_S;
+ os_free_memory(local_data);
+ } /* else local_data not NULL */
+
+ }
+#endif
+ /* rng_availability is OK */
+ return return_code;
+} /* fsl_shw_add_entropy */
+
+#ifdef RNG_REGISTER_PEEK_POKE
+/*****************************************************************************/
+/* fn rng_read_register() */
+/*****************************************************************************/
+/*
+ * Debug routines to allow reading of RNG registers.
+ *
+ * This routine is only for accesses by other than this driver.
+ *
+ * @param register_offset The byte offset of the register to be read.
+ * @param value Pointer to store the value of the register.
+ *
+ * @return RNG_RET_OK or an error return.
+ */
+rng_return_t rng_read_register(uint32_t register_offset, uint32_t * value)
+{
+ rng_return_t return_code = RNG_RET_FAIL;
+
+ if ((rng_availability == RNG_STATUS_OK)
+ || (rng_availability == RNG_STATUS_FAILED)) {
+ if ((rng_check_register_offset(register_offset)
+ && rng_check_register_accessible(register_offset,
+ RNG_CHECK_READ))) {
+ /* The guards let the check through */
+ *value = RNG_READ_REGISTER(register_offset);
+ return_code = RNG_RET_OK;
+ }
+ }
+
+ return return_code;
+} /* rng_read_register */
+
+/*****************************************************************************/
+/* fn rng_write_register() */
+/*****************************************************************************/
+/*
+ * Debug routines to allow writing of RNG registers.
+ *
+ * This routine is only for accesses by other than this driver.
+ *
+ * @param register_offset The byte offset of the register to be written.
+ * @param value Value to store in the register.
+ *
+ * @return RNG_RET_OK or an error return.
+ */
+rng_return_t rng_write_register(uint32_t register_offset, uint32_t value)
+{
+ rng_return_t return_code = RNG_RET_FAIL;
+
+ if ((rng_availability == RNG_STATUS_OK)
+ || (rng_availability == RNG_STATUS_FAILED)) {
+ if ((rng_check_register_offset(register_offset)
+ && rng_check_register_accessible(register_offset,
+ RNG_CHECK_WRITE))) {
+ RNG_WRITE_REGISTER(register_offset, value);
+ return_code = RNG_RET_OK;
+ }
+ }
+
+ return return_code;
+} /* rng_write_register */
+#endif /* RNG_REGISTER_PEEK_POKE */
+
+/******************************************************************************
+ *
+ * Function Implementations - Internal
+ *
+ *****************************************************************************/
+
+#ifdef RNG_REGISTER_PEEK_POKE
+/*****************************************************************************/
+/* fn check_register_offset() */
+/*****************************************************************************/
+/*!
+ * Verify that the @c offset is appropriate for the RNG's register set.
+ *
+ * @param[in] offset The (byte) offset within the RNG block
+ * of the register to be accessed. See
+ * RNG(A, C) register definitions for meanings.
+ *
+ * This routine is only for checking accesses by other than this driver.
+ *
+ * @return 0 if register offset out of bounds, 1 if ok to use
+ */
+inline int rng_check_register_offset(uint32_t offset)
+{
+ int return_code = FALSE; /* invalid */
+
+ /* Make sure offset isn't too high and also that it is aligned to
+ * aa 32-bit offset (multiple of four).
+ */
+ if ((offset < RNG_ADDRESS_RANGE) && (offset % sizeof(uint32_t) == 0)) {
+ return_code = TRUE; /* OK */
+ } else {
+ pr_debug("RNG: Denied access to offset %8x\n", offset);
+ }
+
+ return return_code;
+
+} /* rng_check_register */
+
+/*****************************************************************************/
+/* fn check_register_accessible() */
+/*****************************************************************************/
+/*!
+ * Make sure that register access is legal.
+ *
+ * Verify that, if in secure mode, only safe registers are used.
+ * For any register access, make sure that read-only registers are not written
+ * and that write-only registers are not read. This check also disallows any
+ * access to the RNG's Output FIFO, to prevent other drivers from draining the
+ * FIFO and causing an underflow condition.
+ *
+ * This routine is only for checking accesses by other than this driver.
+ *
+ * @param offset The (byte) offset within the RNG block
+ * of the register to be accessed. See
+ * @ref rngregs for meanings.
+ * @param access_write 0 for read, anything else for write
+ *
+ * @return 0 if invalid, 1 if OK.
+ */
+static int rng_check_register_accessible(uint32_t offset, int access_write)
+{
+ int return_code = FALSE; /* invalid */
+ uint32_t secure = RNG_GET_HIGH_ASSURANCE();
+
+ /* First check for RNG in Secure Mode -- most registers inaccessible.
+ * Also disallowing access to RNG_OUTPUT_FIFO except by the driver.
+ */
+ if (!
+#ifdef FSL_HAVE_RNGA
+ (secure &&
+ ((offset == RNGA_OUTPUT_FIFO) ||
+ (offset == RNGA_MODE) ||
+ (offset == RNGA_VERIFICATION_CONTROL) ||
+ (offset == RNGA_OSCILLATOR_CONTROL_COUNTER) ||
+ (offset == RNGA_OSCILLATOR1_COUNTER) ||
+ (offset == RNGA_OSCILLATOR2_COUNTER) ||
+ (offset == RNGA_OSCILLATOR_COUNTER_STATUS)))
+#else /* RNGB or RNGC */
+ (secure &&
+ ((offset == RNGC_FIFO) ||
+ (offset == RNGC_VERIFICATION_CONTROL) ||
+ (offset == RNGC_OSC_COUNTER_CONTROL) ||
+ (offset == RNGC_OSC_COUNTER) ||
+ (offset == RNGC_OSC_COUNTER_STATUS)))
+#endif
+ ) {
+
+ /* Passed that test. Either not in high assurance, and/or are
+ checking register that is always available. Now check
+ R/W permissions. */
+ if (access_write == RNG_CHECK_READ) { /* read request */
+ /* Only the entropy register is write-only */
+#ifdef FSL_HAVE_RNGC
+ /* No registers are write-only */
+ return_code = TRUE;
+#else /* else RNGA or RNGB */
+#ifdef FSL_HAVE_RNGA
+ if (1) {
+#else
+ if (!(offset == RNGB_ENTROPY)) {
+#endif
+ return_code = TRUE; /* Let all others be read */
+ } else {
+ pr_debug
+ ("RNG: Offset %04x denied read access\n",
+ offset);
+ }
+#endif /* RNGA or RNGB */
+ } /* read */
+ else { /* access_write means write */
+ /* Check against list of non-writable registers */
+ if (!
+#ifdef FSL_HAVE_RNGA
+ ((offset == RNGA_STATUS) ||
+ (offset == RNGA_OUTPUT_FIFO) ||
+ (offset == RNGA_OSCILLATOR1_COUNTER) ||
+ (offset == RNGA_OSCILLATOR2_COUNTER) ||
+ (offset == RNGA_OSCILLATOR_COUNTER_STATUS))
+#else /* FSL_HAVE_RNGB or FSL_HAVE_RNGC */
+ ((offset == RNGC_STATUS) ||
+ (offset == RNGC_FIFO) ||
+ (offset == RNGC_OSC_COUNTER) ||
+ (offset == RNGC_OSC_COUNTER_STATUS))
+#endif
+ ) {
+ return_code = TRUE; /* can be written */
+ } else {
+ LOG_KDIAG_ARGS
+ ("Offset %04x denied write access", offset);
+ }
+ } /* write */
+ } /* not high assurance and inaccessible register... */
+ else {
+ LOG_KDIAG_ARGS("Offset %04x denied high-assurance access",
+ offset);
+ }
+
+ return return_code;
+} /* rng_check_register_accessible */
+#endif /* RNG_REGISTER_PEEK_POKE */
+
+/*****************************************************************************/
+/* fn rng_irq() */
+/*****************************************************************************/
+/*!
+ * This is the interrupt handler for the RNG. It is only ever invoked if the
+ * RNG detects a FIFO Underflow error.
+ *
+ * If the error is a Security Violation, this routine will
+ * set the #rng_availability to #RNG_STATUS_FAILED, as the entropy pool may
+ * have been corrupted. The RNG will also be placed into low power mode. The
+ * SCC will have noticed the problem as well.
+ *
+ * The other possibility, if the RNG is not in High Assurance mode, would be
+ * simply a FIFO Underflow. No special action, other than to
+ * clear the interrupt, is taken.
+ */
+OS_DEV_ISR(rng_irq)
+{
+ int handled = FALSE; /* assume interrupt isn't from RNG */
+
+ LOG_KDIAG("rng irq!");
+
+ if (RNG_SEED_DONE()) {
+ complete(&rng_seed_done);
+ RNG_CLEAR_ALL_STATUS();
+ handled = TRUE;
+ }
+
+ if (RNG_SELF_TEST_DONE()) {
+ complete(&rng_self_testing);
+ RNG_CLEAR_ALL_STATUS();
+ handled = TRUE;
+ }
+ /* Look to see whether RNG needs attention */
+ if (RNG_HAS_ERROR()) {
+ if (RNG_GET_HIGH_ASSURANCE()) {
+ RNG_SLEEP();
+ rng_availability = RNG_STATUS_FAILED;
+ RNG_MASK_ALL_INTERRUPTS();
+ }
+ handled = TRUE;
+ /* Clear the interrupt */
+ RNG_CLEAR_ALL_STATUS();
+
+ }
+ os_dev_isr_return(handled);
+} /* rng_irq */
+
+/*****************************************************************************/
+/* fn map_RNG_memory() */
+/*****************************************************************************/
+/*!
+ * Place the RNG's memory into kernel virtual space.
+ *
+ * @return OS_ERROR_OK_S on success, os_error_code on failure
+ */
+static os_error_code rng_map_RNG_memory(void)
+{
+ os_error_code error_code = OS_ERROR_FAIL_S;
+
+ rng_base = os_map_device(RNG_BASE_ADDR, RNG_ADDRESS_RANGE);
+ if (rng_base == NULL) {
+ /* failure ! */
+ LOG_KDIAG("RNG Driver: ioremap failed.");
+ } else {
+ error_code = OS_ERROR_OK_S;
+ }
+
+ return error_code;
+} /* rng_map_RNG_memory */
+
+/*****************************************************************************/
+/* fn rng_setup_interrupt_handling() */
+/*****************************************************************************/
+/*!
+ * Register #rng_irq() as the interrupt handler for #INT_RNG.
+ *
+ * @return OS_ERROR_OK_S on success, os_error_code on failure
+ */
+static os_error_code rng_setup_interrupt_handling(void)
+{
+ os_error_code error_code;
+
+ /*
+ * Install interrupt service routine for the RNG. Ignore the
+ * assigned IRQ number.
+ */
+ error_code = os_register_interrupt(RNG_DRIVER_NAME, INT_RNG,
+ OS_DEV_ISR_REF(rng_irq));
+ if (error_code != OS_ERROR_OK_S) {
+ LOG_KDIAG("RNG Driver: Error installing Interrupt Handler");
+ } else {
+ rng_irq_set = TRUE;
+ RNG_UNMASK_ALL_INTERRUPTS();
+ }
+
+ return error_code;
+} /* rng_setup_interrupt_handling */
+
+/*****************************************************************************/
+/* fn rng_grab_config_values() */
+/*****************************************************************************/
+/*!
+ * Read configuration information from the RNG.
+ *
+ * Sets #rng_output_fifo_size.
+ *
+ * @return A error code indicating whether the part is the expected one.
+ */
+static os_error_code rng_grab_config_values(void)
+{
+ enum rng_type type;
+ os_error_code ret = OS_ERROR_FAIL_S;
+
+ /* Go for type, versions... */
+ type = RNG_GET_RNG_TYPE();
+
+ /* Make sure type is the one this code has been compiled for. */
+ if (RNG_VERIFY_TYPE(type)) {
+ rng_output_fifo_size = RNG_GET_FIFO_SIZE();
+ if (rng_output_fifo_size != 0) {
+ ret = OS_ERROR_OK_S;
+ }
+ }
+ if (ret != OS_ERROR_OK_S) {
+ LOG_KDIAG_ARGS
+ ("Unknown or unexpected RNG type %d (FIFO size %d)."
+ " Failing driver initialization", type,
+ rng_output_fifo_size);
+ }
+
+ return ret;
+}
+
+ /* rng_grab_config_values */
+
+/*****************************************************************************/
+/* fn rng_drain_fifo() */
+/*****************************************************************************/
+/*!
+ * This function copies words from the RNG FIFO into the caller's buffer.
+ *
+ *
+ * @param random_p Location to copy random data
+ * @param count_words Number of words to copy
+ *
+ * @return An error code.
+ */
+static fsl_shw_return_t rng_drain_fifo(uint32_t * random_p, int count_words)
+{
+
+ int words_in_rng; /* Number of words available now in RNG */
+ fsl_shw_return_t code = FSL_RETURN_ERROR_S;
+ int sequential_count = 0; /* times through big while w/empty FIFO */
+ int fifo_empty_count = 0; /* number of times FIFO was empty */
+ int max_sequential = 0; /* max times 0 seen in a row */
+#if !defined(FSL_HAVE_RNGA)
+ int count_for_reseed = 0;
+ INIT_COMPLETION(rng_seed_done);
+#endif
+#if !defined(FSL_HAVE_RNGA)
+ if (RNG_RESEED()) {
+ do {
+ LOG_KDIAG("Reseeding RNG");
+
+ RNG_CLEAR_ERR();
+ RNG_SEED_GEN();
+ wait_for_completion(&rng_seed_done);
+ if (count_for_reseed == 3) {
+ os_printk(KERN_ALERT
+ "Device was not able to enter RESEED Mode\n");
+ code = FSL_RETURN_INTERNAL_ERROR_S;
+ }
+ count_for_reseed++;
+ } while (RNG_CHECK_SEED_ERR());
+ }
+#endif
+ /* Copy all of them in. Stop if pool fills. */
+ while ((rng_availability == RNG_STATUS_OK) && (count_words > 0)) {
+ /* Ask RNG how many words currently in FIFO */
+ words_in_rng = RNG_GET_WORDS_IN_FIFO();
+ if (words_in_rng == 0) {
+ ++sequential_count;
+ fifo_empty_count++;
+ if (sequential_count > max_sequential) {
+ max_sequential = sequential_count;
+ }
+ if (sequential_count >= RNG_MAX_TRIES) {
+ LOG_KDIAG_ARGS("FIFO staying empty (%d)",
+ words_in_rng);
+ code = FSL_RETURN_NO_RESOURCE_S;
+ break;
+ }
+ } else {
+ /* Found at least one word */
+ sequential_count = 0;
+ /* Now adjust: words_in_rng = MAX(count_words, words_in_rng) */
+ words_in_rng = (count_words < words_in_rng)
+ ? count_words : words_in_rng;
+ } /* else found words */
+
+#ifdef RNG_FORCE_FIFO_UNDERFLOW
+ /*
+ * For unit test, force occasional extraction of more words than
+ * available. This should cause FIFO Underflow, and IRQ invocation.
+ */
+ words_in_rng = count_words;
+#endif
+
+ /* Copy out all available & neeeded data */
+ while (words_in_rng-- > 0) {
+ *random_p++ = RNG_READ_FIFO();
+ count_words--;
+ }
+ } /* while words still needed */
+
+ if (count_words == 0) {
+ code = FSL_RETURN_OK_S;
+ }
+ if (fifo_empty_count != 0) {
+ LOG_KDIAG_ARGS("FIFO empty %d times, max loop count %d",
+ fifo_empty_count, max_sequential);
+ }
+
+ return code;
+} /* rng_drain_fifo */
+
+/*****************************************************************************/
+/* fn rng_entropy_task() */
+/*****************************************************************************/
+/*!
+ * This is the background task of the driver. It is scheduled by
+ * RNG_ADD_WORK_ENTRY().
+ *
+ * This will process each entry on the #rng_work_queue. Blocking requests will
+ * cause sleepers to be awoken. Non-blocking requests will be placed on the
+ * results queue, and if appropriate, the callback function will be invoked.
+ */
+OS_DEV_TASK(rng_entropy_task)
+{
+ rng_work_entry_t *work;
+
+ os_dev_task_begin();
+
+#ifdef RNG_ENTROPY_DEBUG
+ LOG_KDIAG("entropy task starting");
+#endif
+
+ while ((work = RNG_GET_WORK_ENTRY()) != NULL) {
+#ifdef RNG_ENTROPY_DEBUG
+ LOG_KDIAG_ARGS("found %d bytes of work at %p (%p)",
+ work->length, work, work->data_local);
+#endif
+ work->hdr.code = rng_drain_fifo(work->data_local,
+ BYTES_TO_WORDS(work->length));
+ work->completed = TRUE;
+
+ if (work->hdr.flags & FSL_UCO_BLOCKING_MODE) {
+#ifdef RNG_ENTROPY_DEBUG
+ LOG_KDIAG("Waking queued processes");
+#endif
+ os_wake_sleepers(rng_wait_queue);
+ } else {
+ os_lock_context_t lock_context;
+
+ os_lock_save_context(rng_queue_lock, lock_context);
+ RNG_ADD_QUEUE_ENTRY(&work->hdr.user_ctx->result_pool,
+ work);
+ os_unlock_restore_context(rng_queue_lock, lock_context);
+
+ if (work->hdr.flags & FSL_UCO_CALLBACK_MODE) {
+ if (work->hdr.callback != NULL) {
+ work->hdr.callback(work->hdr.user_ctx);
+ } else {
+#ifdef RNG_ENTROPY_DEBUG
+ LOG_KDIAG_ARGS
+ ("Callback ptr for %p is NULL",
+ work);
+#endif
+ }
+ }
+ }
+ } /* while */
+
+#ifdef RNG_ENTROPY_DEBUG
+ LOG_KDIAG("entropy task ending");
+#endif
+
+ os_dev_task_return(OS_ERROR_OK_S);
+} /* rng_entropy_task */
+
+#ifdef FSL_HAVE_RNGA
+/*****************************************************************************/
+/* fn rng_sec_failure() */
+/*****************************************************************************/
+/*!
+ * Function to handle "Security Alarm" indication from SCC.
+ *
+ * This function is registered with the Security Monitor ans the callback
+ * function for the RNG driver. Upon alarm, it will shut down the driver so
+ * that no more random data can be retrieved.
+ *
+ * @return void
+ */
+static void rng_sec_failure(void)
+{
+ os_printk(KERN_ALERT "RNG Driver: Security Failure Alarm received.\n");
+
+ rng_cleanup();
+
+ return;
+}
+#endif
+
+#ifdef RNG_REGISTER_DEBUG
+/*****************************************************************************/
+/* fn dbg_rng_read_register() */
+/*****************************************************************************/
+/*!
+ * Noisily read a 32-bit value to an RNG register.
+ * @param offset The address of the register to read.
+ *
+ * @return The register value
+ * */
+static uint32_t dbg_rng_read_register(uint32_t offset)
+{
+ uint32_t value;
+
+ value = os_read32(rng_base + offset);
+#ifndef RNG_ENTROPY_DEBUG
+ if (offset != RNG_OUTPUT_FIFO) {
+#endif
+ pr_debug("RNG RD: 0x%4x : 0x%08x\n", offset, value);
+#ifndef RNG_ENTROPY_DEBUG
+ }
+#endif
+ return value;
+}
+
+/*****************************************************************************/
+/* fn dbg_rng_write_register() */
+/*****************************************************************************/
+/*!
+ * Noisily write a 32-bit value to an RNG register.
+ * @param offset The address of the register to written.
+ *
+ * @param value The new register value
+ */
+static void dbg_rng_write_register(uint32_t offset, uint32_t value)
+{
+ LOG_KDIAG_ARGS("WR: 0x%4x : 0x%08x", offset, value);
+ os_write32(value, rng_base + offset);
+ return;
+}
+
+#endif /* RNG_REGISTER_DEBUG */
diff --git a/drivers/mxc/security/rng/shw_driver.c b/drivers/mxc/security/rng/shw_driver.c
new file mode 100644
index 000000000000..a6e80a0d4eb0
--- /dev/null
+++ b/drivers/mxc/security/rng/shw_driver.c
@@ -0,0 +1,2335 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+/*! @file shw_driver.c
+ *
+ * This is the user-mode driver code for the FSL Security Hardware (SHW) API.
+ * as well as the 'common' FSL SHW API code for kernel API users.
+ *
+ * Its interaction with the Linux kernel is from calls to shw_init() when the
+ * driver is loaded, and shw_shutdown() should the driver be unloaded.
+ *
+ * The User API (driver interface) is handled by the following functions:
+ * @li shw_open() - handles open() system call on FSL SHW device
+ * @li shw_release() - handles close() system call on FSL SHW device
+ * @li shw_ioctl() - handles ioctl() system call on FSL SHW device
+ *
+ * The driver also provides the following functions for kernel users of the FSL
+ * SHW API:
+ * @li fsl_shw_register_user()
+ * @li fsl_shw_deregister_user()
+ * @li fsl_shw_get_capabilities()
+ * @li fsl_shw_get_results()
+ *
+ * All other functions are internal to the driver.
+ *
+ * The life of the driver starts at boot (or module load) time, with a call by
+ * the kernel to shw_init().
+ *
+ * The life of the driver ends when the kernel is shutting down (or the driver
+ * is being unloaded). At this time, shw_shutdown() is called. No function
+ * will ever be called after that point.
+ *
+ * In the case that the driver is reloaded, a new copy of the driver, with
+ * fresh global values, etc., is loaded, and there will be a new call to
+ * shw_init().
+ *
+ * In user mode, the user's fsl_shw_register_user() call causes an open() event
+ * on the driver followed by a ioctl() with the registration information. Any
+ * subsequent API calls by the user are handled through the ioctl() function
+ * and shuffled off to the appropriate routine (or driver) for service. The
+ * fsl_shw_deregister_user() call by the user results in a close() function
+ * call on the driver.
+ *
+ * In kernel mode, the driver provides the functions fsl_shw_register_user(),
+ * fsl_shw_deregister_user(), fsl_shw_get_capabilities(), and
+ * fsl_shw_get_results(). Other parts of the API are provided by other
+ * drivers, if available, to support the cryptographic functions.
+ */
+
+#include "portable_os.h"
+#include "fsl_shw.h"
+#include "fsl_shw_keystore.h"
+
+#include "shw_internals.h"
+
+#ifdef FSL_HAVE_SCC2
+#include <linux/mxc_scc2_driver.h>
+#else
+#include <linux/mxc_scc_driver.h>
+#endif
+
+#ifdef SHW_DEBUG
+#include <diagnostic.h>
+#endif
+
+/******************************************************************************
+ *
+ * Function Declarations
+ *
+ *****************************************************************************/
+
+/* kernel interface functions */
+OS_DEV_INIT_DCL(shw_init);
+OS_DEV_SHUTDOWN_DCL(shw_shutdown);
+OS_DEV_IOCTL_DCL(shw_ioctl);
+OS_DEV_MMAP_DCL(shw_mmap);
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_smalloc);
+EXPORT_SYMBOL(fsl_shw_sfree);
+EXPORT_SYMBOL(fsl_shw_sstatus);
+EXPORT_SYMBOL(fsl_shw_diminish_perms);
+EXPORT_SYMBOL(do_scc_encrypt_region);
+EXPORT_SYMBOL(do_scc_decrypt_region);
+
+EXPORT_SYMBOL(do_system_keystore_slot_alloc);
+EXPORT_SYMBOL(do_system_keystore_slot_dealloc);
+EXPORT_SYMBOL(do_system_keystore_slot_load);
+EXPORT_SYMBOL(do_system_keystore_slot_encrypt);
+EXPORT_SYMBOL(do_system_keystore_slot_decrypt);
+#endif
+
+static os_error_code
+shw_handle_scc_sfree(fsl_shw_uco_t * user_ctx, uint32_t info);
+
+static os_error_code
+shw_handle_scc_sstatus(fsl_shw_uco_t * user_ctx, uint32_t info);
+
+static os_error_code
+shw_handle_scc_drop_perms(fsl_shw_uco_t * user_ctx, uint32_t info);
+
+static os_error_code
+shw_handle_scc_encrypt(fsl_shw_uco_t * user_ctx, uint32_t info);
+
+static os_error_code
+shw_handle_scc_decrypt(fsl_shw_uco_t * user_ctx, uint32_t info);
+
+#ifdef FSL_HAVE_SCC2
+static fsl_shw_return_t register_user_partition(fsl_shw_uco_t * user_ctx,
+ uint32_t user_base,
+ void *kernel_base);
+static fsl_shw_return_t deregister_user_partition(fsl_shw_uco_t * user_ctx,
+ uint32_t user_base);
+void *lookup_user_partition(fsl_shw_uco_t * user_ctx, uint32_t user_base);
+
+#endif /* FSL_HAVE_SCC2 */
+
+/******************************************************************************
+ *
+ * Global / Static Variables
+ *
+ *****************************************************************************/
+
+/*!
+ * Major node (user/device interaction value) of this driver.
+ */
+static int shw_major_node = SHW_MAJOR_NODE;
+
+/*!
+ * Flag to know whether the driver has been associated with its user device
+ * node (e.g. /dev/shw).
+ */
+static int shw_device_registered = 0;
+
+/*!
+ * OS-dependent handle used for registering user interface of a driver.
+ */
+static os_driver_reg_t reg_handle;
+
+/*!
+ * Linked List of registered users of the API
+ */
+fsl_shw_uco_t *user_list;
+
+/*!
+ * This is the lock for all user request pools. H/W component drivers may also
+ * use it for their own work queues.
+ */
+os_lock_t shw_queue_lock = NULL;
+
+/* This is the system keystore object */
+fsl_shw_kso_t system_keystore;
+
+#ifndef FSL_HAVE_SAHARA
+/*! Empty list of supported symmetric algorithms. */
+static fsl_shw_key_alg_t pf_syms[] = {
+};
+
+/*! Empty list of supported symmetric modes. */
+static fsl_shw_sym_mode_t pf_modes[] = {
+};
+
+/*! Empty list of supported hash algorithms. */
+static fsl_shw_hash_alg_t pf_hashes[] = {
+};
+#endif /* no Sahara */
+
+/*! This matches SHW capabilities... */
+static fsl_shw_pco_t cap = {
+ 1, 3, /* api version number - major & minor */
+ 2, 3, /* driver version number - major & minor */
+ sizeof(pf_syms) / sizeof(fsl_shw_key_alg_t), /* key alg count */
+ pf_syms, /* key alg list ptr */
+ sizeof(pf_modes) / sizeof(fsl_shw_sym_mode_t), /* sym mode count */
+ pf_modes, /* modes list ptr */
+ sizeof(pf_hashes) / sizeof(fsl_shw_hash_alg_t), /* hash alg count */
+ pf_hashes, /* hash list ptr */
+ /*
+ * The following table must be set to handle all values of key algorithm
+ * and sym mode, and be in the correct order..
+ */
+ { /* Stream, ECB, CBC, CTR */
+ {0, 0, 0, 0}
+ , /* HMAC */
+ {0, 0, 0, 0}
+ , /* AES */
+ {0, 0, 0, 0}
+ , /* DES */
+#ifdef FSL_HAVE_DRYICE
+ {0, 1, 1, 0}
+ , /* 3DES - ECB and CBC */
+#else
+ {0, 0, 0, 0}
+ , /* 3DES */
+#endif
+ {0, 0, 0, 0} /* ARC4 */
+ }
+ ,
+ 0, 0, /* SCC driver version */
+ 0, 0, 0, /* SCC version/capabilities */
+ {{0, 0}
+ }
+ , /* (filled in during OS_INIT) */
+};
+
+/* These are often handy */
+#ifndef FALSE
+/*! Not true. Guaranteed to be zero. */
+#define FALSE 0
+#endif
+#ifndef TRUE
+/*! True. Guaranteed to be non-zero. */
+#define TRUE 1
+#endif
+
+/******************************************************************************
+ *
+ * Function Implementations - Externally Accessible
+ *
+ *****************************************************************************/
+
+/*****************************************************************************/
+/* fn shw_init() */
+/*****************************************************************************/
+/*!
+ * Initialize the driver.
+ *
+ * This routine is called during kernel init or module load (insmod).
+ *
+ * @return OS_ERROR_OK_S on success, errno on failure
+ */
+OS_DEV_INIT(shw_init)
+{
+ os_error_code error_code = OS_ERROR_NO_MEMORY_S; /* assume failure */
+ scc_config_t *shw_capabilities;
+
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW Driver: Loading");
+#endif
+
+ user_list = NULL;
+ shw_queue_lock = os_lock_alloc_init();
+
+ if (shw_queue_lock != NULL) {
+ error_code = shw_setup_user_driver_interaction();
+ if (error_code != OS_ERROR_OK_S) {
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS
+ ("SHW Driver: Failed to setup user i/f: %d",
+ error_code);
+#endif
+ }
+ }
+
+ /* queue_lock not NULL */
+ /* Fill in the SCC portion of the capabilities object */
+ shw_capabilities = scc_get_configuration();
+ cap.scc_driver_major = shw_capabilities->driver_major_version;
+ cap.scc_driver_minor = shw_capabilities->driver_minor_version;
+ cap.scm_version = shw_capabilities->scm_version;
+ cap.smn_version = shw_capabilities->smn_version;
+ cap.block_size_bytes = shw_capabilities->block_size_bytes;
+
+#ifdef FSL_HAVE_SCC
+ cap.u.scc_info.black_ram_size_blocks =
+ shw_capabilities->black_ram_size_blocks;
+ cap.u.scc_info.red_ram_size_blocks =
+ shw_capabilities->red_ram_size_blocks;
+#elif defined(FSL_HAVE_SCC2)
+ cap.u.scc2_info.partition_size_bytes =
+ shw_capabilities->partition_size_bytes;
+ cap.u.scc2_info.partition_count = shw_capabilities->partition_count;
+#endif
+
+#if defined(FSL_HAVE_SCC2) || defined(FSL_HAVE_DRYICE)
+ if (error_code == OS_ERROR_OK_S) {
+ /* set up the system keystore, using the default keystore handler */
+ fsl_shw_init_keystore_default(&system_keystore);
+
+ if (fsl_shw_establish_keystore(NULL, &system_keystore)
+ == FSL_RETURN_OK_S) {
+ error_code = OS_ERROR_OK_S;
+ } else {
+ error_code = OS_ERROR_FAIL_S;
+ }
+
+ if (error_code != OS_ERROR_OK_S) {
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS
+ ("Registering the system keystore failed with error"
+ " code: %d\n", error_code);
+#endif
+ }
+ }
+#endif /* FSL_HAVE_SCC2 */
+
+ if (error_code != OS_ERROR_OK_S) {
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("SHW: Driver initialization failed. %d",
+ error_code);
+#endif
+ shw_cleanup();
+ } else {
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: Driver initialization complete.");
+#endif
+ }
+
+ os_dev_init_return(error_code);
+} /* shw_init */
+
+/*****************************************************************************/
+/* fn shw_shutdown() */
+/*****************************************************************************/
+/*!
+ * Prepare driver for exit.
+ *
+ * This is called during @c rmmod when the driver is unloading or when the
+ * kernel is shutting down.
+ *
+ * Calls shw_cleanup() to do all work to undo anything that happened during
+ * initialization or while driver was running.
+ */
+OS_DEV_SHUTDOWN(shw_shutdown)
+{
+
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: shutdown called");
+#endif
+ shw_cleanup();
+
+ os_dev_shutdown_return(OS_ERROR_OK_S);
+} /* shw_shutdown */
+
+/*****************************************************************************/
+/* fn shw_cleanup() */
+/*****************************************************************************/
+/*!
+ * Prepare driver for shutdown.
+ *
+ * Remove the driver registration.
+ *
+ */
+static void shw_cleanup(void)
+{
+ if (shw_device_registered) {
+
+ /* Turn off the all association with OS */
+ os_driver_remove_registration(reg_handle);
+ shw_device_registered = 0;
+ }
+
+ if (shw_queue_lock != NULL) {
+ os_lock_deallocate(shw_queue_lock);
+ }
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW Driver: Cleaned up");
+#endif
+} /* shw_cleanup */
+
+/*****************************************************************************/
+/* fn shw_open() */
+/*****************************************************************************/
+/*!
+ * Handle @c open() call from user.
+ *
+ * @return OS_ERROR_OK_S on success (always!)
+ */
+OS_DEV_OPEN(shw_open)
+{
+ os_error_code status = OS_ERROR_OK_S;
+
+ os_dev_set_user_private(NULL); /* Make sure */
+
+ os_dev_open_return(status);
+} /* shw_open */
+
+/*****************************************************************************/
+/* fn shw_ioctl() */
+/*****************************************************************************/
+/*!
+ * Process an ioctl() request from user-mode API.
+ *
+ * This code determines which of the API requests the user has made and then
+ * sends the request off to the appropriate function.
+ *
+ * @return ioctl_return()
+ */
+OS_DEV_IOCTL(shw_ioctl)
+{
+ os_error_code code = OS_ERROR_FAIL_S;
+
+ fsl_shw_uco_t *user_ctx = os_dev_get_user_private();
+
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("SHW: IOCTL %d received", os_dev_get_ioctl_op());
+#endif
+ switch (os_dev_get_ioctl_op()) {
+
+ case SHW_IOCTL_REQUEST + SHW_USER_REQ_REGISTER_USER:
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: register_user ioctl received");
+#endif
+ {
+ fsl_shw_uco_t *user_ctx =
+ os_alloc_memory(sizeof(*user_ctx), 0);
+
+ if (user_ctx == NULL) {
+ code = OS_ERROR_NO_MEMORY_S;
+ } else {
+ code =
+ init_uco(user_ctx,
+ (fsl_shw_uco_t *)
+ os_dev_get_ioctl_arg());
+ if (code == OS_ERROR_OK_S) {
+ os_dev_set_user_private(user_ctx);
+ } else {
+ os_free_memory(user_ctx);
+ }
+ }
+ }
+ break;
+
+ case SHW_IOCTL_REQUEST + SHW_USER_REQ_DEREGISTER_USER:
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: deregister_user ioctl received");
+#endif
+ {
+ fsl_shw_uco_t *user_ctx = os_dev_get_user_private();
+ SHW_REMOVE_USER(user_ctx);
+ }
+ break;
+
+ case SHW_IOCTL_REQUEST + SHW_USER_REQ_GET_RESULTS:
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: get_results ioctl received");
+#endif
+ code = get_results(user_ctx,
+ (struct results_req *)
+ os_dev_get_ioctl_arg());
+ break;
+
+ case SHW_IOCTL_REQUEST + SHW_USER_REQ_GET_CAPABILITIES:
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: get_capabilities ioctl received");
+#endif
+ code = get_capabilities(user_ctx,
+ (fsl_shw_pco_t *)
+ os_dev_get_ioctl_arg());
+ break;
+
+ case SHW_IOCTL_REQUEST + SHW_USER_REQ_GET_RANDOM:
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: get_random ioctl received");
+#endif
+ code = get_random(user_ctx,
+ (struct get_random_req *)
+ os_dev_get_ioctl_arg());
+ break;
+
+ case SHW_IOCTL_REQUEST + SHW_USER_REQ_ADD_ENTROPY:
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: add_entropy ioctl received");
+#endif
+ code = add_entropy(user_ctx,
+ (struct add_entropy_req *)
+ os_dev_get_ioctl_arg());
+ break;
+
+ case SHW_IOCTL_REQUEST + SHW_USER_REQ_DROP_PERMS:
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: drop permissions ioctl received");
+#endif
+ code =
+ shw_handle_scc_drop_perms(user_ctx, os_dev_get_ioctl_arg());
+ break;
+
+ case SHW_IOCTL_REQUEST + SHW_USER_REQ_SSTATUS:
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: sstatus ioctl received");
+#endif
+ code = shw_handle_scc_sstatus(user_ctx, os_dev_get_ioctl_arg());
+ break;
+
+ case SHW_IOCTL_REQUEST + SHW_USER_REQ_SFREE:
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: sfree ioctl received");
+#endif
+ code = shw_handle_scc_sfree(user_ctx, os_dev_get_ioctl_arg());
+ break;
+
+ case SHW_IOCTL_REQUEST + SHW_USER_REQ_SCC_ENCRYPT:
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: scc encrypt ioctl received");
+#endif
+ code = shw_handle_scc_encrypt(user_ctx, os_dev_get_ioctl_arg());
+ break;
+
+ case SHW_IOCTL_REQUEST + SHW_USER_REQ_SCC_DECRYPT:
+#ifdef SHW_DEBUG
+ LOG_KDIAG("SHW: scc decrypt ioctl received");
+#endif
+ code = shw_handle_scc_decrypt(user_ctx, os_dev_get_ioctl_arg());
+ break;
+
+ default:
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("SHW: Unexpected ioctl %d",
+ os_dev_get_ioctl_op());
+#endif
+ break;
+ }
+
+ os_dev_ioctl_return(code);
+}
+
+#ifdef FSL_HAVE_SCC2
+
+/*****************************************************************************/
+/* fn get_user_smid() */
+/*****************************************************************************/
+uint32_t get_user_smid(void *proc)
+{
+ /*
+ * A real implementation would have some way to handle signed applications
+ * which wouild be assigned distinct SMIDs. For the reference
+ * implementation, we show where this would be determined (here), but
+ * always provide a fixed answer, thus not separating users at all.
+ */
+
+ return 0x42eaae42;
+}
+
+/* user_base: userspace base address of the partition
+ * kernel_base: kernel mode base address of the partition
+ */
+static fsl_shw_return_t register_user_partition(fsl_shw_uco_t * user_ctx,
+ uint32_t user_base,
+ void *kernel_base)
+{
+ fsl_shw_spo_t *partition_info;
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+
+ if (user_ctx == NULL) {
+ goto out;
+ }
+
+ partition_info = os_alloc_memory(sizeof(fsl_shw_spo_t), GFP_KERNEL);
+
+ if (partition_info == NULL) {
+ goto out;
+ }
+
+ /* stuff the partition info, then put it at the front of the chain */
+ partition_info->user_base = user_base;
+ partition_info->kernel_base = kernel_base;
+ partition_info->next = user_ctx->partition;
+
+ user_ctx->partition = (struct fsl_shw_spo_t *)partition_info;
+
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS
+ ("partition with user_base=%p, kernel_base=%p registered.",
+ (void *)user_base, kernel_base);
+#endif
+
+ ret = FSL_RETURN_OK_S;
+
+ out:
+
+ return ret;
+}
+
+/* if the partition is in the users list, remove it */
+static fsl_shw_return_t deregister_user_partition(fsl_shw_uco_t * user_ctx,
+ uint32_t user_base)
+{
+ fsl_shw_spo_t *curr = (fsl_shw_spo_t *) user_ctx->partition;
+ fsl_shw_spo_t *last = (fsl_shw_spo_t *) user_ctx->partition;
+
+ while (curr != NULL) {
+ if (curr->user_base == user_base) {
+
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS
+ ("deregister_user_partition: partition with "
+ "user_base=%p, kernel_base=%p deregistered.\n",
+ (void *)curr->user_base, curr->kernel_base);
+#endif
+
+ if (last == curr) {
+ user_ctx->partition = curr->next;
+ os_free_memory(curr);
+ return FSL_RETURN_OK_S;
+ } else {
+ last->next = curr->next;
+ os_free_memory(curr);
+ return FSL_RETURN_OK_S;
+ }
+ }
+ last = curr;
+ curr = (fsl_shw_spo_t *) curr->next;
+ }
+
+ return FSL_RETURN_ERROR_S;
+}
+
+/* Find the kernel-mode address of the partition.
+ * This can then be passed to the SCC functions.
+ */
+void *lookup_user_partition(fsl_shw_uco_t * user_ctx, uint32_t user_base)
+{
+ /* search through the partition chain to find one that matches the user base
+ * address.
+ */
+ fsl_shw_spo_t *curr = (fsl_shw_spo_t *) user_ctx->partition;
+
+ while (curr != NULL) {
+ if (curr->user_base == user_base) {
+ return curr->kernel_base;
+ }
+ curr = (fsl_shw_spo_t *) curr->next;
+ }
+ return NULL;
+}
+
+#endif /* FSL_HAVE_SCC2 */
+
+/*!
+*******************************************************************************
+* This function implements the smalloc() function for userspace programs, by
+* making a call to the SCC2 mmap() function that acquires a region of secure
+* memory on behalf of the user, and then maps it into the users memory space.
+* Currently, the only memory size supported is that of a single SCC2 partition.
+* Requests for other sized memory regions will fail.
+*/
+OS_DEV_MMAP(shw_mmap)
+{
+ os_error_code status = OS_ERROR_NO_MEMORY_S;
+
+#ifdef FSL_HAVE_SCC2
+ {
+ scc_return_t scc_ret;
+ fsl_shw_return_t fsl_ret;
+ uint32_t partition_registered = FALSE;
+
+ uint32_t user_base;
+ void *partition_base;
+ uint32_t smid;
+ scc_config_t *scc_configuration;
+
+ int part_no = -1;
+ uint32_t part_phys;
+
+ fsl_shw_uco_t *user_ctx =
+ (fsl_shw_uco_t *) os_dev_get_user_private();
+
+ /* Make sure that the user context is valid */
+ if (user_ctx == NULL) {
+ user_ctx =
+ os_alloc_memory(sizeof(*user_ctx), GFP_KERNEL);
+
+ if (user_ctx == NULL) {
+ status = OS_ERROR_NO_MEMORY_S;
+ goto out;
+ }
+ fsl_shw_register_user(user_ctx);
+ os_dev_set_user_private(user_ctx);
+ }
+
+ /* Determine the size of a secure partition */
+ scc_configuration = scc_get_configuration();
+
+ /* Check that the memory size requested is equal to the partition
+ * size, and that the requested destination is on a page boundary.
+ */
+ if (((os_mmap_user_base() % PAGE_SIZE) != 0) ||
+ (os_mmap_memory_size() !=
+ scc_configuration->partition_size_bytes)) {
+ status = OS_ERROR_BAD_ARG_S;
+ goto out;
+ }
+
+ /* Retrieve the SMID associated with the user */
+ smid = get_user_smid(user_ctx->process);
+
+ /* Attempt to allocate a secure partition */
+ scc_ret =
+ scc_allocate_partition(smid, &part_no, &partition_base,
+ &part_phys);
+ if (scc_ret != SCC_RET_OK) {
+ pr_debug
+ ("SCC mmap() request failed to allocate partition;"
+ " error %d\n", status);
+ status = OS_ERROR_FAIL_S;
+ goto out;
+ }
+
+ pr_debug("scc_mmap() acquired partition %d at %08x\n",
+ part_no, part_phys);
+
+ /* Record partition info in the user context */
+ user_base = os_mmap_user_base();
+ fsl_ret =
+ register_user_partition(user_ctx, user_base,
+ partition_base);
+
+ if (fsl_ret != FSL_RETURN_OK_S) {
+ pr_debug
+ ("SCC mmap() request failed to register partition with user"
+ " context, error: %d\n", fsl_ret);
+ status = OS_ERROR_FAIL_S;
+ }
+
+ partition_registered = TRUE;
+
+ status = map_user_memory(os_mmap_memory_ctx(), part_phys,
+ os_mmap_memory_size());
+
+#ifdef SHW_DEBUG
+ if (status == OS_ERROR_OK_S) {
+ LOG_KDIAG_ARGS
+ ("Partition allocated: user_base=%p, partition_base=%p.",
+ (void *)user_base, partition_base);
+ }
+#endif
+
+ out:
+ /* If there is an error it has to be handled here */
+ if (status != OS_ERROR_OK_S) {
+ /* if the partition was registered with the user, unregister it. */
+ if (partition_registered == TRUE) {
+ deregister_user_partition(user_ctx, user_base);
+ }
+
+ /* if the partition was allocated, deallocate it */
+ if (partition_base != NULL) {
+ scc_release_partition(partition_base);
+ }
+ }
+ }
+#endif /* FSL_HAVE_SCC2 */
+
+ return status;
+}
+
+/*****************************************************************************/
+/* fn shw_release() */
+/*****************************************************************************/
+/*!
+ * Handle @c close() call from user.
+ * This is a Linux device driver interface routine.
+ *
+ * @return OS_ERROR_OK_S on success (always!)
+ */
+OS_DEV_CLOSE(shw_release)
+{
+ fsl_shw_uco_t *user_ctx = os_dev_get_user_private();
+ os_error_code code = OS_ERROR_OK_S;
+
+ if (user_ctx != NULL) {
+
+ fsl_shw_deregister_user(user_ctx);
+ os_free_memory(user_ctx);
+ os_dev_set_user_private(NULL);
+
+ }
+
+ os_dev_close_return(code);
+} /* shw_release */
+
+/*****************************************************************************/
+/* fn shw_user_callback() */
+/*****************************************************************************/
+/*!
+ * FSL SHW User callback function.
+ *
+ * This function is set in the kernel version of the user context as the
+ * callback function when the user mode user wants a callback. Its job is to
+ * inform the user process that results (may) be available. It does this by
+ * sending a SIGUSR2 signal which is then caught by the user-mode FSL SHW
+ * library.
+ *
+ * @param user_ctx Kernel version of uco associated with the request.
+ *
+ * @return void
+ */
+static void shw_user_callback(fsl_shw_uco_t * user_ctx)
+{
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("SHW: Signalling callback user process for context %p\n",
+ user_ctx);
+#endif
+ os_send_signal(user_ctx->process, SIGUSR2);
+}
+
+/*****************************************************************************/
+/* fn setup_user_driver_interaction() */
+/*****************************************************************************/
+/*!
+ * Register the driver with the kernel as the driver for shw_major_node. Note
+ * that this value may be zero, in which case the major number will be assigned
+ * by the OS. shw_major_node is never modified.
+ *
+ * The open(), ioctl(), and close() handles for the driver ned to be registered
+ * with the kernel. Upon success, shw_device_registered will be true;
+ *
+ * @return OS_ERROR_OK_S on success, or an os err code
+ */
+static os_error_code shw_setup_user_driver_interaction(void)
+{
+ os_error_code error_code;
+
+ os_driver_init_registration(reg_handle);
+ os_driver_add_registration(reg_handle, OS_FN_OPEN,
+ OS_DEV_OPEN_REF(shw_open));
+ os_driver_add_registration(reg_handle, OS_FN_IOCTL,
+ OS_DEV_IOCTL_REF(shw_ioctl));
+ os_driver_add_registration(reg_handle, OS_FN_CLOSE,
+ OS_DEV_CLOSE_REF(shw_release));
+ os_driver_add_registration(reg_handle, OS_FN_MMAP,
+ OS_DEV_MMAP_REF(shw_mmap));
+ error_code = os_driver_complete_registration(reg_handle, shw_major_node,
+ SHW_DRIVER_NAME);
+
+ if (error_code != OS_ERROR_OK_S) {
+ /* failure ! */
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("SHW Driver: register device driver failed: %d",
+ error_code);
+#endif
+ } else { /* success */
+ shw_device_registered = TRUE;
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("SHW Driver: Major node is %d\n",
+ os_driver_get_major(reg_handle));
+#endif
+ }
+
+ return error_code;
+} /* shw_setup_user_driver_interaction */
+
+/******************************************************************/
+/* User Mode Support */
+/******************************************************************/
+
+/*!
+ * Initialze kernel User Context Object from User-space version.
+ *
+ * Copy user UCO into kernel UCO, set flags and fields for operation
+ * within kernel space. Add user to driver's list of users.
+ *
+ * @param user_ctx Pointer to kernel space UCO
+ * @param user_mode_uco User pointer to user space version
+ *
+ * @return os_error_code
+ */
+static os_error_code init_uco(fsl_shw_uco_t * user_ctx, void *user_mode_uco)
+{
+ os_error_code code;
+
+ code = os_copy_from_user(user_ctx, user_mode_uco, sizeof(*user_ctx));
+ if (code == OS_ERROR_OK_S) {
+ user_ctx->flags |= FSL_UCO_USERMODE_USER;
+ user_ctx->result_pool.head = NULL;
+ user_ctx->result_pool.tail = NULL;
+ user_ctx->process = os_get_process_handle();
+ user_ctx->callback = shw_user_callback;
+ SHW_ADD_USER(user_ctx);
+ }
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("SHW: init uco returning %d (flags %x)",
+ code, user_ctx->flags);
+#endif
+
+ return code;
+}
+
+/*!
+ * Copy array from kernel to user space.
+ *
+ * This routine will check bounds before trying to copy, and return failure
+ * on bounds violation or error during the copy.
+ *
+ * @param userloc Location in userloc to place data. If NULL, the function
+ * will do nothing (except return NULL).
+ * @param userend Address beyond allowed copy region at @c userloc.
+ * @param data_start Location of data to be copied
+ * @param element_size sizeof() an element
+ * @param element_count Number of elements of size element_size to copy.
+ * @return New value of userloc, or NULL if there was an error.
+ */
+inline static void *copy_array(void *userloc, void *userend, void *data_start,
+ unsigned element_size, unsigned element_count)
+{
+ unsigned byte_count = element_size * element_count;
+
+ if ((userloc == NULL) || (userend == NULL)
+ || ((userloc + byte_count) >= userend) ||
+ (copy_to_user(userloc, data_start, byte_count) != OS_ERROR_OK_S)) {
+ userloc = NULL;
+ } else {
+ userloc += byte_count;
+ }
+
+ return userloc;
+}
+
+/*!
+ * Send an FSL SHW API return code up into the user-space request structure.
+ *
+ * @param user_header User address of request block / request header
+ * @param result_code The FSL SHW API code to be placed at header.code
+ *
+ * @return an os_error_code
+ *
+ * NOTE: This function assumes that the shw_req_header is at the beginning of
+ * each request structure.
+ */
+inline static os_error_code copy_fsl_code(void *user_header,
+ fsl_shw_return_t result_code)
+{
+ return os_copy_to_user(user_header +
+ offsetof(struct shw_req_header, code),
+ &result_code, sizeof(result_code));
+}
+
+static os_error_code shw_handle_scc_drop_perms(fsl_shw_uco_t * user_ctx,
+ uint32_t info)
+{
+ os_error_code status = OS_ERROR_NO_MEMORY_S;
+#ifdef FSL_HAVE_SCC2
+ scc_return_t scc_ret;
+ scc_partition_info_t partition_info;
+ void *kernel_base;
+
+ status =
+ os_copy_from_user(&partition_info, (void *)info,
+ sizeof(partition_info));
+
+ if (status != OS_ERROR_OK_S) {
+ goto out;
+ }
+
+ /* validate that the user owns this partition, and look up its handle */
+ kernel_base = lookup_user_partition(user_ctx, partition_info.user_base);
+
+ if (kernel_base == NULL) {
+ status = OS_ERROR_FAIL_S;
+#ifdef SHW_DEBUG
+ LOG_KDIAG("_scc_drop_perms(): failed to find partition\n");
+#endif
+ goto out;
+ }
+
+ /* call scc driver to perform the drop */
+ scc_ret = scc_diminish_permissions(kernel_base,
+ partition_info.permissions);
+ if (scc_ret == SCC_RET_OK) {
+ status = OS_ERROR_OK_S;
+ } else {
+ status = OS_ERROR_FAIL_S;
+ }
+
+ out:
+#endif /* FSL_HAVE_SCC2 */
+ return status;
+}
+
+static os_error_code shw_handle_scc_sstatus(fsl_shw_uco_t * user_ctx,
+ uint32_t info)
+{
+ os_error_code status = OS_ERROR_NO_MEMORY_S;
+#ifdef FSL_HAVE_SCC2
+ scc_partition_info_t partition_info;
+ void *kernel_base;
+
+ status = os_copy_from_user(&partition_info,
+ (void *)info, sizeof(partition_info));
+
+ if (status != OS_ERROR_OK_S) {
+ goto out;
+ }
+
+ /* validate that the user owns this partition, and look up its handle */
+ kernel_base = lookup_user_partition(user_ctx, partition_info.user_base);
+
+ if (kernel_base == NULL) {
+ status = OS_ERROR_FAIL_S;
+#ifdef SHW_DEBUG
+ LOG_KDIAG("Failed to find partition\n");
+#endif
+ goto out;
+ }
+
+ /* Call the SCC driver to ask about the partition status */
+ partition_info.status = scc_partition_status(kernel_base);
+
+ /* and copy the structure out */
+ status = os_copy_to_user((void *)info,
+ &partition_info, sizeof(partition_info));
+
+ out:
+#endif /* FSL_HAVE_SCC2 */
+ return status;
+}
+
+static os_error_code shw_handle_scc_sfree(fsl_shw_uco_t * user_ctx,
+ uint32_t info)
+{
+ os_error_code status = OS_ERROR_NO_MEMORY_S;
+#ifdef FSL_HAVE_SCC2
+ {
+ scc_partition_info_t partition_info;
+ void *kernel_base;
+ int ret;
+
+ status = os_copy_from_user(&partition_info,
+ (void *)info,
+ sizeof(partition_info));
+
+ /* check that the copy was successful */
+ if (status != OS_ERROR_OK_S) {
+ goto out;
+ }
+
+ /* validate that the user owns this partition, and look up its handle */
+ kernel_base =
+ lookup_user_partition(user_ctx, partition_info.user_base);
+
+ if (kernel_base == NULL) {
+ status = OS_ERROR_FAIL_S;
+#ifdef SHW_DEBUG
+ LOG_KDIAG("failed to find partition\n");
+#endif /*SHW_DEBUG */
+ goto out;
+ }
+
+ /* Unmap the memory region (see sys_munmap in mmap.c) */
+ ret = unmap_user_memory(partition_info.user_base, 8192);
+
+ /* If the memory was successfully released */
+ if (ret == OS_ERROR_OK_S) {
+
+ /* release the partition */
+ scc_release_partition(kernel_base);
+
+ /* and remove it from the users context */
+ deregister_user_partition(user_ctx,
+ partition_info.user_base);
+
+ status = OS_ERROR_OK_S;
+
+ } else {
+#ifdef SHW_DEBUG
+ LOG_KDIAG("do_munmap not successful!");
+#endif
+ }
+
+ }
+ out:
+#endif /* FSL_HAVE_SCC2 */
+ return status;
+}
+
+static os_error_code shw_handle_scc_encrypt(fsl_shw_uco_t * user_ctx,
+ uint32_t info)
+{
+ os_error_code status = OS_ERROR_FAIL_S;
+#ifdef FSL_HAVE_SCC2
+ {
+ fsl_shw_return_t retval;
+ scc_region_t region_info;
+ void *page_ctx = NULL;
+ void *black_addr = NULL;
+ void *partition_base = NULL;
+ scc_config_t *scc_configuration;
+
+ status =
+ os_copy_from_user(&region_info, (void *)info,
+ sizeof(region_info));
+
+ if (status != OS_ERROR_OK_S) {
+ goto out;
+ }
+
+ /* validate that the user owns this partition, and look up its handle */
+ partition_base = lookup_user_partition(user_ctx,
+ region_info.
+ partition_base);
+
+ if (partition_base == NULL) {
+ status = OS_ERROR_FAIL_S;
+#ifdef SHW_DEBUG
+ LOG_KDIAG("failed to find secure partition\n");
+#endif
+ goto out;
+ }
+
+ /* Check that the memory size requested is correct */
+ scc_configuration = scc_get_configuration();
+ if (region_info.offset + region_info.length >
+ scc_configuration->partition_size_bytes) {
+ status = OS_ERROR_FAIL_S;
+ goto out;
+ }
+
+ /* wire down black_data */
+ black_addr = wire_user_memory(region_info.black_data,
+ region_info.length, &page_ctx);
+
+ if (black_addr == NULL) {
+ status = OS_ERROR_FAIL_S;
+ goto out;
+ }
+
+ retval =
+ do_scc_encrypt_region(NULL, partition_base,
+ region_info.offset,
+ region_info.length, black_addr,
+ region_info.IV,
+ region_info.cypher_mode);
+
+ if (retval == FSL_RETURN_OK_S) {
+ status = OS_ERROR_OK_S;
+ } else {
+ status = OS_ERROR_FAIL_S;
+ }
+
+ /* release black data */
+ unwire_user_memory(&page_ctx);
+ }
+ out:
+
+#endif /* FSL_HAVE_SCC2 */
+ return status;
+}
+
+static os_error_code shw_handle_scc_decrypt(fsl_shw_uco_t * user_ctx,
+ uint32_t info)
+{
+ os_error_code status = OS_ERROR_FAIL_S;
+#ifdef FSL_HAVE_SCC2
+ {
+ fsl_shw_return_t retval;
+ scc_region_t region_info;
+ void *page_ctx = NULL;
+ void *black_addr;
+ void *partition_base;
+ scc_config_t *scc_configuration;
+
+ status =
+ os_copy_from_user(&region_info, (void *)info,
+ sizeof(region_info));
+
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS
+ ("partition_base: %p, offset: %i, length: %i, black data: %p",
+ (void *)region_info.partition_base, region_info.offset,
+ region_info.length, (void *)region_info.black_data);
+#endif
+
+ if (status != OS_ERROR_OK_S) {
+ goto out;
+ }
+
+ /* validate that the user owns this partition, and look up its handle */
+ partition_base = lookup_user_partition(user_ctx,
+ region_info.
+ partition_base);
+
+ if (partition_base == NULL) {
+ status = OS_ERROR_FAIL_S;
+#ifdef SHW_DEBUG
+ LOG_KDIAG("failed to find partition\n");
+#endif
+ goto out;
+ }
+
+ /* Check that the memory size requested is correct */
+ scc_configuration = scc_get_configuration();
+ if (region_info.offset + region_info.length >
+ scc_configuration->partition_size_bytes) {
+ status = OS_ERROR_FAIL_S;
+ goto out;
+ }
+
+ /* wire down black_data */
+ black_addr = wire_user_memory(region_info.black_data,
+ region_info.length, &page_ctx);
+
+ if (black_addr == NULL) {
+ status = OS_ERROR_FAIL_S;
+ goto out;
+ }
+
+ retval =
+ do_scc_decrypt_region(NULL, partition_base,
+ region_info.offset,
+ region_info.length, black_addr,
+ region_info.IV,
+ region_info.cypher_mode);
+
+ if (retval == FSL_RETURN_OK_S) {
+ status = OS_ERROR_OK_S;
+ } else {
+ status = OS_ERROR_FAIL_S;
+ }
+
+ /* release black data */
+ unwire_user_memory(&page_ctx);
+ }
+ out:
+
+#endif /* FSL_HAVE_SCC2 */
+ return status;
+}
+
+fsl_shw_return_t do_system_keystore_slot_alloc(fsl_shw_uco_t * user_ctx,
+ uint32_t key_length,
+ uint64_t ownerid,
+ uint32_t * slot)
+{
+ (void)user_ctx;
+ return keystore_slot_alloc(&system_keystore, key_length, ownerid, slot);
+}
+
+fsl_shw_return_t do_system_keystore_slot_dealloc(fsl_shw_uco_t * user_ctx,
+ uint64_t ownerid,
+ uint32_t slot)
+{
+ (void)user_ctx;
+ return keystore_slot_dealloc(&system_keystore, ownerid, slot);
+}
+
+fsl_shw_return_t do_system_keystore_slot_load(fsl_shw_uco_t * user_ctx,
+ uint64_t ownerid,
+ uint32_t slot,
+ const uint8_t * key,
+ uint32_t key_length)
+{
+ (void)user_ctx;
+ return keystore_slot_load(&system_keystore, ownerid, slot,
+ (void *)key, key_length);
+}
+
+fsl_shw_return_t do_system_keystore_slot_encrypt(fsl_shw_uco_t * user_ctx,
+ uint64_t ownerid,
+ uint32_t slot,
+ uint32_t key_length,
+ uint8_t * black_data)
+{
+ (void)user_ctx;
+ return keystore_slot_encrypt(NULL, &system_keystore, ownerid,
+ slot, key_length, black_data);
+}
+
+fsl_shw_return_t do_system_keystore_slot_decrypt(fsl_shw_uco_t * user_ctx,
+ uint64_t ownerid,
+ uint32_t slot,
+ uint32_t key_length,
+ const uint8_t * black_data)
+{
+ (void)user_ctx;
+ return keystore_slot_decrypt(NULL, &system_keystore, ownerid,
+ slot, key_length, black_data);
+}
+
+fsl_shw_return_t do_system_keystore_slot_read(fsl_shw_uco_t * user_ctx,
+ uint64_t ownerid,
+ uint32_t slot,
+ uint32_t key_length,
+ uint8_t * key_data)
+{
+ (void)user_ctx;
+
+ return keystore_slot_read(&system_keystore, ownerid,
+ slot, key_length, key_data);
+}
+
+/*!
+ * Handle user-mode Get Capabilities request
+ *
+ * Right now, this function can only have a failure if the user has failed to
+ * provide a pointer to a location in user space with enough room to hold the
+ * fsl_shw_pco_t structure and any associated data. It will treat this failure
+ * as an ioctl failure and return an ioctl error code, instead of treating it
+ * as an API failure.
+ *
+ * @param user_ctx The kernel version of user's context
+ * @param user_mode_pco_request Pointer to user-space request
+ *
+ * @return an os_error_code
+ */
+static os_error_code get_capabilities(fsl_shw_uco_t * user_ctx,
+ void *user_mode_pco_request)
+{
+ os_error_code code;
+ struct capabilities_req req;
+ fsl_shw_pco_t local_cap;
+
+ memcpy(&local_cap, &cap, sizeof(cap));
+ /* Initialize pointers to out-of-struct arrays */
+ local_cap.sym_algorithms = NULL;
+ local_cap.sym_modes = NULL;
+ local_cap.sym_modes = NULL;
+
+ code = os_copy_from_user(&req, user_mode_pco_request, sizeof(req));
+ if (code == OS_ERROR_OK_S) {
+ void *endcap;
+ void *user_bounds;
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("SHE: Received get_cap request: 0x%p/%u/0x%x",
+ req.capabilities, req.size,
+ sizeof(fsl_shw_pco_t));
+#endif
+ endcap = req.capabilities + 1; /* point to end of structure */
+ user_bounds = (void *)req.capabilities + req.size; /* end of area */
+
+ /* First verify that request is big enough for the main structure */
+ if (endcap >= user_bounds) {
+ endcap = NULL; /* No! */
+ }
+
+ /* Copy any Symmetric Algorithm suppport */
+ if (cap.sym_algorithm_count != 0) {
+ local_cap.sym_algorithms = endcap;
+ endcap =
+ copy_array(endcap, user_bounds, cap.sym_algorithms,
+ sizeof(fsl_shw_key_alg_t),
+ cap.sym_algorithm_count);
+ }
+
+ /* Copy any Symmetric Modes suppport */
+ if (cap.sym_mode_count != 0) {
+ local_cap.sym_modes = endcap;
+ endcap = copy_array(endcap, user_bounds, cap.sym_modes,
+ sizeof(fsl_shw_sym_mode_t),
+ cap.sym_mode_count);
+ }
+
+ /* Copy any Hash Algorithm suppport */
+ if (cap.hash_algorithm_count != 0) {
+ local_cap.hash_algorithms = endcap;
+ endcap =
+ copy_array(endcap, user_bounds, cap.hash_algorithms,
+ sizeof(fsl_shw_hash_alg_t),
+ cap.hash_algorithm_count);
+ }
+
+ /* Now copy up the (possibly modified) main structure */
+ if (endcap != NULL) {
+ code =
+ os_copy_to_user(req.capabilities, &local_cap,
+ sizeof(cap));
+ }
+
+ if (endcap == NULL) {
+ code = OS_ERROR_BAD_ADDRESS_S;
+ }
+
+ /* And return the FSL SHW code in the request structure. */
+ if (code == OS_ERROR_OK_S) {
+ code =
+ copy_fsl_code(user_mode_pco_request,
+ FSL_RETURN_OK_S);
+ }
+ }
+
+ /* code may already be set to an error. This is another error case. */
+
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("SHW: get capabilities returning %d", code);
+#endif
+
+ return code;
+}
+
+/*!
+ * Handle user-mode Get Results request
+ *
+ * Get arguments from user space into kernel space, then call
+ * fsl_shw_get_results, and then copy its return code and any results from
+ * kernel space back to user space.
+ *
+ * @param user_ctx The kernel version of user's context
+ * @param user_mode_results_req Pointer to user-space request
+ *
+ * @return an os_error_code
+ */
+static os_error_code get_results(fsl_shw_uco_t * user_ctx,
+ void *user_mode_results_req)
+{
+ os_error_code code;
+ struct results_req req;
+ fsl_shw_result_t *results = NULL;
+ int loop;
+
+ code = os_copy_from_user(&req, user_mode_results_req, sizeof(req));
+ loop = 0;
+
+ if (code == OS_ERROR_OK_S) {
+ results = os_alloc_memory(req.requested * sizeof(*results), 0);
+ if (results == NULL) {
+ code = OS_ERROR_NO_MEMORY_S;
+ }
+ }
+
+ if (code == OS_ERROR_OK_S) {
+ fsl_shw_return_t err =
+ fsl_shw_get_results(user_ctx, req.requested,
+ results, &req.actual);
+
+ /* Send API return code up to user. */
+ code = copy_fsl_code(user_mode_results_req, err);
+
+ if ((code == OS_ERROR_OK_S) && (err == FSL_RETURN_OK_S)) {
+ /* Now copy up the result count */
+ code = os_copy_to_user(user_mode_results_req
+ + offsetof(struct results_req,
+ actual), &req.actual,
+ sizeof(req.actual));
+ if ((code == OS_ERROR_OK_S) && (req.actual != 0)) {
+ /* now copy up the results... */
+ code = os_copy_to_user(req.results, results,
+ req.actual *
+ sizeof(*results));
+ }
+ }
+ }
+
+ if (results != NULL) {
+ os_free_memory(results);
+ }
+
+ return code;
+}
+
+/*!
+ * Process header of user-mode request.
+ *
+ * Mark header as User Mode request. Update UCO's flags and reference fields
+ * with current versions from the header.
+ *
+ * @param user_ctx Pointer to kernel version of UCO.
+ * @param hdr Pointer to common part of user request.
+ *
+ * @return void
+ */
+inline static void process_hdr(fsl_shw_uco_t * user_ctx,
+ struct shw_req_header *hdr)
+{
+ hdr->flags |= FSL_UCO_USERMODE_USER;
+ user_ctx->flags = hdr->flags;
+ user_ctx->user_ref = hdr->user_ref;
+
+ return;
+}
+
+/*!
+ * Handle user-mode Get Random request
+ *
+ * @param user_ctx The kernel version of user's context
+ * @param user_mode_get_random_req Pointer to user-space request
+ *
+ * @return an os_error_code
+ */
+static os_error_code get_random(fsl_shw_uco_t * user_ctx,
+ void *user_mode_get_random_req)
+{
+ os_error_code code;
+ struct get_random_req req;
+
+ code = os_copy_from_user(&req, user_mode_get_random_req, sizeof(req));
+ if (code == OS_ERROR_OK_S) {
+ process_hdr(user_ctx, &req.hdr);
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS
+ ("SHW: get_random() for %d bytes in %sblocking mode",
+ req.size,
+ (req.hdr.flags & FSL_UCO_BLOCKING_MODE) ? "" : "non-");
+#endif
+ req.hdr.code =
+ fsl_shw_get_random(user_ctx, req.size, req.random);
+
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("SHW: get_random() returning %d", req.hdr.code);
+#endif
+
+ /* Copy FSL function status back to user */
+ code = copy_fsl_code(user_mode_get_random_req, req.hdr.code);
+ }
+
+ return code;
+}
+
+/*!
+ * Handle user-mode Add Entropy request
+ *
+ * @param user_ctx Pointer to the kernel version of user's context
+ * @param user_mode_add_entropy_req Address of user-space request
+ *
+ * @return an os_error_code
+ */
+static os_error_code add_entropy(fsl_shw_uco_t * user_ctx,
+ void *user_mode_add_entropy_req)
+{
+ os_error_code code;
+ struct add_entropy_req req;
+ uint8_t *local_buffer = NULL;
+
+ code = os_copy_from_user(&req, user_mode_add_entropy_req, sizeof(req));
+ if (code == OS_ERROR_OK_S) {
+ local_buffer = os_alloc_memory(req.size, 0); /* for random */
+ if (local_buffer != NULL) {
+ code =
+ os_copy_from_user(local_buffer, req.entropy,
+ req.size);
+ }
+ if (code == OS_ERROR_OK_S) {
+ req.hdr.code = fsl_shw_add_entropy(user_ctx, req.size,
+ local_buffer);
+
+ code =
+ copy_fsl_code(user_mode_add_entropy_req,
+ req.hdr.code);
+ }
+ }
+
+ if (local_buffer != NULL) {
+ os_free_memory(local_buffer);
+ }
+
+ return code;
+}
+
+/******************************************************************/
+/* End User Mode Support */
+/******************************************************************/
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_register_user);
+#endif
+/* REQ-S2LRD-PINTFC-API-GEN-004 */
+/*
+ * Handle user registration.
+ *
+ * @param user_ctx The user context for the registration.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_register_user(fsl_shw_uco_t * user_ctx)
+{
+ fsl_shw_return_t code = FSL_RETURN_INTERNAL_ERROR_S;
+
+ if ((user_ctx->flags & FSL_UCO_BLOCKING_MODE) &&
+ (user_ctx->flags & FSL_UCO_CALLBACK_MODE)) {
+ code = FSL_RETURN_BAD_FLAG_S;
+ goto error_exit;
+ } else if (user_ctx->pool_size == 0) {
+ code = FSL_RETURN_NO_RESOURCE_S;
+ goto error_exit;
+ } else {
+ user_ctx->result_pool.head = NULL;
+ user_ctx->result_pool.tail = NULL;
+ SHW_ADD_USER(user_ctx);
+ code = FSL_RETURN_OK_S;
+ }
+
+ error_exit:
+ return code;
+}
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_deregister_user);
+#endif
+/* REQ-S2LRD-PINTFC-API-GEN-005 */
+/*!
+ * Destroy the association between the the user and the provider of the API.
+ *
+ * @param user_ctx The user context which is no longer needed.
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_deregister_user(fsl_shw_uco_t * user_ctx)
+{
+ shw_queue_entry_t *finished_request;
+ fsl_shw_return_t ret = FSL_RETURN_OK_S;
+
+ /* Clean up what we find in result pool. */
+ do {
+ os_lock_context_t lock_context;
+ os_lock_save_context(shw_queue_lock, lock_context);
+ finished_request = user_ctx->result_pool.head;
+
+ if (finished_request != NULL) {
+ SHW_QUEUE_REMOVE_ENTRY(&user_ctx->result_pool,
+ finished_request);
+ os_unlock_restore_context(shw_queue_lock, lock_context);
+ os_free_memory(finished_request);
+ } else {
+ os_unlock_restore_context(shw_queue_lock, lock_context);
+ }
+ } while (finished_request != NULL);
+
+#ifdef FSL_HAVE_SCC2
+ {
+ fsl_shw_spo_t *partition;
+ struct mm_struct *mm = current->mm;
+
+ while ((user_ctx->partition != NULL)
+ && (ret == FSL_RETURN_OK_S)) {
+
+ partition = user_ctx->partition;
+
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS
+ ("Found an abandoned secure partition at %p, releasing",
+ partition);
+#endif
+
+ /* It appears that current->mm is not valid if this is called from a
+ * close routine (perhaps only if the program raised an exception that
+ * caused it to close?) If that is the case, then still free the
+ * partition, but do not remove it from the memory space (dangerous?)
+ */
+
+ if (mm == NULL) {
+#ifdef SHW_DEBUG
+ LOG_KDIAG
+ ("Warning: no mm structure found, not unmapping "
+ "partition from user memory\n");
+#endif
+ } else {
+ /* Unmap the memory region (see sys_munmap in mmap.c) */
+ /* Note that this assumes a single memory partition */
+ unmap_user_memory(partition->user_base, 8192);
+ }
+
+ /* If the memory was successfully released */
+ if (ret == OS_ERROR_OK_S) {
+ /* release the partition */
+ scc_release_partition(partition->kernel_base);
+
+ /* and remove it from the users context */
+ deregister_user_partition(user_ctx,
+ partition->user_base);
+
+ ret = FSL_RETURN_OK_S;
+ } else {
+ ret = FSL_RETURN_ERROR_S;
+
+ goto out;
+ }
+ }
+ }
+ out:
+#endif /* FSL_HAVE_SCC2 */
+
+ SHW_REMOVE_USER(user_ctx);
+
+ return ret;
+}
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_get_results);
+#endif
+/* REQ-S2LRD-PINTFC-API-GEN-006 */
+fsl_shw_return_t fsl_shw_get_results(fsl_shw_uco_t * user_ctx,
+ unsigned result_size,
+ fsl_shw_result_t results[],
+ unsigned *result_count)
+{
+ shw_queue_entry_t *finished_request;
+ unsigned loop = 0;
+
+ do {
+ os_lock_context_t lock_context;
+
+ /* Protect state of user's result pool until we have retrieved and
+ * remove the first entry, or determined that the pool is empty. */
+ os_lock_save_context(shw_queue_lock, lock_context);
+ finished_request = user_ctx->result_pool.head;
+
+ if (finished_request != NULL) {
+ uint32_t code = 0;
+
+ SHW_QUEUE_REMOVE_ENTRY(&user_ctx->result_pool,
+ finished_request);
+ os_unlock_restore_context(shw_queue_lock, lock_context);
+
+ results[loop].user_ref = finished_request->user_ref;
+ results[loop].code = finished_request->code;
+ results[loop].detail1 = 0;
+ results[loop].detail2 = 0;
+ results[loop].user_req =
+ finished_request->user_mode_req;
+ if (finished_request->postprocess != NULL) {
+ code =
+ finished_request->
+ postprocess(finished_request);
+ }
+
+ results[loop].code = finished_request->code;
+ os_free_memory(finished_request);
+ if (code == 0) {
+ loop++;
+ }
+ } else { /* finished_request is NULL */
+ /* pool is empty */
+ os_unlock_restore_context(shw_queue_lock, lock_context);
+ }
+
+ } while ((loop < result_size) && (finished_request != NULL));
+
+ *result_count = loop;
+
+ return FSL_RETURN_OK_S;
+}
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_get_capabilities);
+#endif
+fsl_shw_pco_t *fsl_shw_get_capabilities(fsl_shw_uco_t * user_ctx)
+{
+
+ /* Unused */
+ (void)user_ctx;
+
+ return &cap;
+}
+
+#if !(defined(FSL_HAVE_SAHARA) || defined(FSL_HAVE_RNGA) \
+ || defined(FSL_HAVE_RNGB) || defined(FSL_HAVE_RNGC))
+
+#if defined(LINUX_VERSION_CODE)
+EXPORT_SYMBOL(fsl_shw_get_random);
+#endif
+fsl_shw_return_t fsl_shw_get_random(fsl_shw_uco_t * user_ctx,
+ uint32_t length, uint8_t * data)
+{
+
+ /* Unused */
+ (void)user_ctx;
+ (void)length;
+ (void)data;
+
+ return FSL_RETURN_ERROR_S;
+}
+
+#if defined(LINUX_VERSION_CODE)
+EXPORT_SYMBOL(fsl_shw_add_entropy);
+#endif
+fsl_shw_return_t fsl_shw_add_entropy(fsl_shw_uco_t * user_ctx,
+ uint32_t length, uint8_t * data)
+{
+
+ /* Unused */
+ (void)user_ctx;
+ (void)length;
+ (void)data;
+
+ return FSL_RETURN_ERROR_S;
+}
+#endif
+
+#if !defined(FSL_HAVE_DRYICE) && !defined(FSL_HAVE_SAHARA2)
+#if 0
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_symmetric_decrypt);
+#endif
+fsl_shw_return_t fsl_shw_symmetric_decrypt(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_scco_t * sym_ctx,
+ uint32_t length,
+ const uint8_t * ct, uint8_t * pt)
+{
+
+ /* Unused */
+ (void)user_ctx;
+ (void)key_info;
+ (void)sym_ctx;
+ (void)length;
+ (void)ct;
+ (void)pt;
+
+ return FSL_RETURN_ERROR_S;
+}
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_symmetric_encrypt);
+#endif
+fsl_shw_return_t fsl_shw_symmetric_encrypt(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_scco_t * sym_ctx,
+ uint32_t length,
+ const uint8_t * pt, uint8_t * ct)
+{
+
+ /* Unused */
+ (void)user_ctx;
+ (void)key_info;
+ (void)sym_ctx;
+ (void)length;
+ (void)pt;
+ (void)ct;
+
+ return FSL_RETURN_ERROR_S;
+}
+
+/* DryIce support provided in separate file */
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_establish_key);
+#endif
+fsl_shw_return_t fsl_shw_establish_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_key_wrap_t establish_type,
+ const uint8_t * key)
+{
+
+ /* Unused */
+ (void)user_ctx;
+ (void)key_info;
+ (void)establish_type;
+ (void)key;
+
+ return FSL_RETURN_ERROR_S;
+}
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_extract_key);
+#endif
+fsl_shw_return_t fsl_shw_extract_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ uint8_t * covered_key)
+{
+
+ /* Unused */
+ (void)user_ctx;
+ (void)key_info;
+ (void)covered_key;
+
+ return FSL_RETURN_ERROR_S;
+}
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_release_key);
+#endif
+fsl_shw_return_t fsl_shw_release_key(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info)
+{
+
+ /* Unused */
+ (void)user_ctx;
+ (void)key_info;
+
+ return FSL_RETURN_ERROR_S;
+}
+#endif
+#endif /* SAHARA or DRYICE */
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_hash);
+#endif
+#if !defined(FSL_HAVE_SAHARA)
+fsl_shw_return_t fsl_shw_hash(fsl_shw_uco_t * user_ctx,
+ fsl_shw_hco_t * hash_ctx,
+ const uint8_t * msg,
+ uint32_t length,
+ uint8_t * result, uint32_t result_len)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+
+ /* Unused */
+ (void)user_ctx;
+ (void)hash_ctx;
+ (void)msg;
+ (void)length;
+ (void)result;
+ (void)result_len;
+
+ return ret;
+}
+#endif
+
+#ifndef FSL_HAVE_SAHARA
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_hmac_precompute);
+#endif
+
+fsl_shw_return_t fsl_shw_hmac_precompute(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_hmco_t * hmac_ctx)
+{
+ fsl_shw_return_t status = FSL_RETURN_ERROR_S;
+
+ /* Unused */
+ (void)user_ctx;
+ (void)key_info;
+ (void)hmac_ctx;
+
+ return status;
+}
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_hmac);
+#endif
+
+fsl_shw_return_t fsl_shw_hmac(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info,
+ fsl_shw_hmco_t * hmac_ctx,
+ const uint8_t * msg,
+ uint32_t length,
+ uint8_t * result, uint32_t result_len)
+{
+ fsl_shw_return_t status = FSL_RETURN_ERROR_S;
+
+ /* Unused */
+ (void)user_ctx;
+ (void)key_info;
+ (void)hmac_ctx;
+ (void)msg;
+ (void)length;
+ (void)result;
+ (void)result_len;
+
+ return status;
+}
+#endif
+
+/*!
+ * Call the proper function to encrypt a region of encrypted secure memory
+ *
+ * @brief
+ *
+ * @param user_ctx User context of the partition owner (NULL in kernel)
+ * @param partition_base Base address (physical) of the partition
+ * @param offset_bytes Offset from base address of the data to be encrypted
+ * @param byte_count Length of the message (bytes)
+ * @param black_data Pointer to where the encrypted data is stored
+ * @param IV IV to use for encryption
+ * @param cypher_mode Cyphering mode to use, specified by type
+ * #fsl_shw_cypher_mode_t
+ *
+ * @return status
+ */
+fsl_shw_return_t
+do_scc_encrypt_region(fsl_shw_uco_t * user_ctx,
+ void *partition_base, uint32_t offset_bytes,
+ uint32_t byte_count, uint8_t * black_data,
+ uint32_t * IV, fsl_shw_cypher_mode_t cypher_mode)
+{
+ fsl_shw_return_t retval = FSL_RETURN_ERROR_S;
+#ifdef FSL_HAVE_SCC2
+
+ scc_return_t scc_ret;
+
+#ifdef SHW_DEBUG
+ uint32_t *owner_32 = (uint32_t *) & (owner_id);
+
+ LOG_KDIAG_ARGS
+ ("partition base: %p, offset: %i, count: %i, black data: %p\n",
+ partition_base, offset_bytes, byte_count, (void *)black_data);
+
+ LOG_KDIAG_ARGS("Owner ID: %08x%08x\n", owner_32[1], owner_32[0]);
+#endif /* SHW_DEBUG */
+ (void)user_ctx;
+
+ os_cache_flush_range(black_data, byte_count);
+
+ scc_ret =
+ scc_encrypt_region((uint32_t) partition_base, offset_bytes,
+ byte_count, __virt_to_phys(black_data), IV,
+ cypher_mode);
+
+ if (scc_ret == SCC_RET_OK) {
+ retval = FSL_RETURN_OK_S;
+ } else {
+ retval = FSL_RETURN_ERROR_S;
+ }
+
+ /* The SCC2 DMA engine should have written to the black ram, so we need to
+ * invalidate that region of memory. Note that the red ram is not an
+ * because it is mapped with the cache disabled.
+ */
+ os_cache_inv_range(black_data, byte_count);
+
+#endif /* FSL_HAVE_SCC2 */
+ return retval;
+}
+
+/*!
+ * Call the proper function to decrypt a region of encrypted secure memory
+ *
+ * @brief
+ *
+ * @param user_ctx User context of the partition owner (NULL in kernel)
+ * @param partition_base Base address (physical) of the partition
+ * @param offset_bytes Offset from base address that the decrypted data
+ * shall be placed
+ * @param byte_count Length of the message (bytes)
+ * @param black_data Pointer to where the encrypted data is stored
+ * @param IV IV to use for decryption
+ * @param cypher_mode Cyphering mode to use, specified by type
+ * #fsl_shw_cypher_mode_t
+ *
+ * @return status
+ */
+fsl_shw_return_t
+do_scc_decrypt_region(fsl_shw_uco_t * user_ctx,
+ void *partition_base, uint32_t offset_bytes,
+ uint32_t byte_count, const uint8_t * black_data,
+ uint32_t * IV, fsl_shw_cypher_mode_t cypher_mode)
+{
+ fsl_shw_return_t retval = FSL_RETURN_ERROR_S;
+
+#ifdef FSL_HAVE_SCC2
+
+ scc_return_t scc_ret;
+
+#ifdef SHW_DEBUG
+ uint32_t *owner_32 = (uint32_t *) & (owner_id);
+
+ LOG_KDIAG_ARGS
+ ("partition base: %p, offset: %i, count: %i, black data: %p\n",
+ partition_base, offset_bytes, byte_count, (void *)black_data);
+
+ LOG_KDIAG_ARGS("Owner ID: %08x%08x\n", owner_32[1], owner_32[0]);
+#endif /* SHW_DEBUG */
+
+ (void)user_ctx;
+
+ /* The SCC2 DMA engine will be reading from the black ram, so we need to
+ * make sure that the data is pushed out of the cache. Note that the red
+ * ram is not an issue because it is mapped with the cache disabled.
+ */
+ os_cache_flush_range(black_data, byte_count);
+
+ scc_ret =
+ scc_decrypt_region((uint32_t) partition_base, offset_bytes,
+ byte_count,
+ (uint8_t *) __virt_to_phys(black_data), IV,
+ cypher_mode);
+
+ if (scc_ret == SCC_RET_OK) {
+ retval = FSL_RETURN_OK_S;
+ } else {
+ retval = FSL_RETURN_ERROR_S;
+ }
+
+#endif /* FSL_HAVE_SCC2 */
+
+ return retval;
+}
+
+void *fsl_shw_smalloc(fsl_shw_uco_t * user_ctx,
+ uint32_t size, const uint8_t * UMID, uint32_t permissions)
+{
+#ifdef FSL_HAVE_SCC2
+ int part_no;
+ void *part_base;
+ uint32_t part_phys;
+ scc_config_t *scc_configuration;
+
+ /* Check that the memory size requested is correct */
+ scc_configuration = scc_get_configuration();
+ if (size != scc_configuration->partition_size_bytes) {
+ return NULL;
+ }
+
+ /* attempt to grab a partition. */
+ if (scc_allocate_partition(0, &part_no, &part_base, &part_phys)
+ != SCC_RET_OK) {
+ return NULL;
+ }
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("Partition_base: %p, partition_base_phys: %p\n",
+ part_base, (void *)part_phys);
+#endif
+
+ if (scc_engage_partition(part_base, UMID, permissions)
+ != SCC_RET_OK) {
+ /* Engagement failed, so the partition needs to be de-allocated */
+
+#ifdef SHW_DEBUG
+ LOG_KDIAG_ARGS("Failed to engage partition %p, de-allocating",
+ part_base);
+#endif
+ scc_release_partition(part_base);
+
+ return NULL;
+ }
+
+ return part_base;
+
+#else /* FSL_HAVE_SCC2 */
+
+ (void)user_ctx;
+ (void)size;
+ (void)UMID;
+ (void)permissions;
+ return NULL;
+
+#endif /* FSL_HAVE_SCC2 */
+}
+
+/* Release a block of secure memory */
+fsl_shw_return_t fsl_shw_sfree(fsl_shw_uco_t * user_ctx, void *address)
+{
+ (void)user_ctx;
+
+#ifdef FSL_HAVE_SCC2
+ if (scc_release_partition(address) == SCC_RET_OK) {
+ return FSL_RETURN_OK_S;
+ }
+#endif
+
+ return FSL_RETURN_ERROR_S;
+}
+
+/* Check the status of a block of secure memory */
+fsl_shw_return_t fsl_shw_sstatus(fsl_shw_uco_t * user_ctx,
+ void *address,
+ fsl_shw_partition_status_t * part_status)
+{
+ (void)user_ctx;
+
+#ifdef FSL_HAVE_SCC2
+ *part_status = scc_partition_status(address);
+
+ return FSL_RETURN_OK_S;
+#endif
+
+ return FSL_RETURN_ERROR_S;
+}
+
+/* Diminish permissions on some secure memory */
+fsl_shw_return_t fsl_shw_diminish_perms(fsl_shw_uco_t * user_ctx,
+ void *address, uint32_t permissions)
+{
+
+ (void)user_ctx; /* unused parameter warning */
+
+#ifdef FSL_HAVE_SCC2
+ if (scc_diminish_permissions(address, permissions) == SCC_RET_OK) {
+ return FSL_RETURN_OK_S;
+ }
+#endif
+ return FSL_RETURN_ERROR_S;
+}
+
+#ifndef FSL_HAVE_SAHARA
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_gen_encrypt);
+#endif
+
+fsl_shw_return_t fsl_shw_gen_encrypt(fsl_shw_uco_t * user_ctx,
+ fsl_shw_acco_t * auth_ctx,
+ fsl_shw_sko_t * cipher_key_info,
+ fsl_shw_sko_t * auth_key_info,
+ uint32_t auth_data_length,
+ const uint8_t * auth_data,
+ uint32_t payload_length,
+ const uint8_t * payload,
+ uint8_t * ct, uint8_t * auth_value)
+{
+ volatile fsl_shw_return_t status = FSL_RETURN_ERROR_S;
+
+ /* Unused */
+ (void)user_ctx;
+ (void)auth_ctx;
+ (void)cipher_key_info;
+ (void)auth_key_info; /* save compilation warning */
+ (void)auth_data_length;
+ (void)auth_data;
+ (void)payload_length;
+ (void)payload;
+ (void)ct;
+ (void)auth_value;
+
+ return status;
+}
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_auth_decrypt);
+#endif
+/*!
+ * @brief Authenticate and decrypt a (CCM) stream.
+ *
+ * @param user_ctx The user's context
+ * @param auth_ctx Info on this Auth operation
+ * @param cipher_key_info Key to encrypt payload
+ * @param auth_key_info (unused - same key in CCM)
+ * @param auth_data_length Length in bytes of @a auth_data
+ * @param auth_data Any auth-only data
+ * @param payload_length Length in bytes of @a payload
+ * @param ct The encrypted data
+ * @param auth_value The authentication code to validate
+ * @param[out] payload The location to store decrypted data
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_auth_decrypt(fsl_shw_uco_t * user_ctx,
+ fsl_shw_acco_t * auth_ctx,
+ fsl_shw_sko_t * cipher_key_info,
+ fsl_shw_sko_t * auth_key_info,
+ uint32_t auth_data_length,
+ const uint8_t * auth_data,
+ uint32_t payload_length,
+ const uint8_t * ct,
+ const uint8_t * auth_value,
+ uint8_t * payload)
+{
+ volatile fsl_shw_return_t status = FSL_RETURN_ERROR_S;
+
+ /* Unused */
+ (void)user_ctx;
+ (void)auth_ctx;
+ (void)cipher_key_info;
+ (void)auth_key_info; /* save compilation warning */
+ (void)auth_data_length;
+ (void)auth_data;
+ (void)payload_length;
+ (void)ct;
+ (void)auth_value;
+ (void)payload;
+
+ return status;
+}
+
+#endif /* no SAHARA */
+
+#ifndef FSL_HAVE_DRYICE
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_gen_random_pf_key);
+#endif
+/*!
+ * Cause the hardware to create a new random key for secure memory use.
+ *
+ * Have the hardware use the secure hardware random number generator to load a
+ * new secret key into the hardware random key register.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_gen_random_pf_key(fsl_shw_uco_t * user_ctx)
+{
+ volatile fsl_shw_return_t status = FSL_RETURN_ERROR_S;
+
+ return status;
+}
+
+#endif /* not have DRYICE */
+
+fsl_shw_return_t alloc_slot(fsl_shw_uco_t * user_ctx, fsl_shw_sko_t * key_info)
+{
+ fsl_shw_return_t ret = FSL_RETURN_INTERNAL_ERROR_S;
+
+ if (key_info->keystore == NULL) {
+ /* Key goes in system keystore */
+ ret = do_system_keystore_slot_alloc(user_ctx,
+ key_info->key_length,
+ key_info->userid,
+ &(key_info->handle));
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("key length: %i, handle: %i",
+ key_info->key_length, key_info->handle);
+#endif
+
+ } else {
+ /* Key goes in user keystore */
+ ret = keystore_slot_alloc(key_info->keystore,
+ key_info->key_length,
+ key_info->userid,
+ &(key_info->handle));
+ }
+
+ return ret;
+} /* end fn alloc_slot */
+
+fsl_shw_return_t load_slot(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info, const uint8_t * key)
+{
+ fsl_shw_return_t ret = FSL_RETURN_INTERNAL_ERROR_S;
+
+ if (key_info->keystore == NULL) {
+ /* Key goes in system keystore */
+ ret = do_system_keystore_slot_load(user_ctx,
+ key_info->userid,
+ key_info->handle, key,
+ key_info->key_length);
+ } else {
+ /* Key goes in user keystore */
+ ret = keystore_slot_load(key_info->keystore,
+ key_info->userid,
+ key_info->handle, key,
+ key_info->key_length);
+ }
+
+ return ret;
+} /* end fn load_slot */
+
+fsl_shw_return_t dealloc_slot(fsl_shw_uco_t * user_ctx,
+ fsl_shw_sko_t * key_info)
+{
+ fsl_shw_return_t ret = FSL_RETURN_INTERNAL_ERROR_S;
+
+ if (key_info->keystore == NULL) {
+ /* Key goes in system keystore */
+ do_system_keystore_slot_dealloc(user_ctx,
+ key_info->userid,
+ key_info->handle);
+ } else {
+ /* Key goes in user keystore */
+ keystore_slot_dealloc(key_info->keystore,
+ key_info->userid, key_info->handle);
+ }
+
+ key_info->flags &= ~(FSL_SKO_KEY_ESTABLISHED | FSL_SKO_KEY_PRESENT);
+
+ return ret;
+} /* end fn slot_dealloc */
diff --git a/drivers/mxc/security/rng/shw_dryice.c b/drivers/mxc/security/rng/shw_dryice.c
new file mode 100644
index 000000000000..bcf1794f7351
--- /dev/null
+++ b/drivers/mxc/security/rng/shw_dryice.c
@@ -0,0 +1,204 @@
+/*
+ * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+#include "shw_driver.h"
+#include "../dryice.h"
+
+#include <diagnostic.h>
+
+#ifdef FSL_HAVE_DRYICE
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_gen_random_pf_key);
+#endif
+/*!
+ * Cause the hardware to create a new random key for secure memory use.
+ *
+ * Have the hardware use the secure hardware random number generator to load a
+ * new secret key into the hardware random key register.
+ *
+ * @param user_ctx A user context from #fsl_shw_register_user().
+ *
+ * @return A return code of type #fsl_shw_return_t.
+ */
+fsl_shw_return_t fsl_shw_gen_random_pf_key(fsl_shw_uco_t * user_ctx)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+ di_return_t di_ret;
+
+ /* For now, only blocking mode calls are supported */
+ if (!(user_ctx->flags & FSL_UCO_BLOCKING_MODE)) {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ di_ret = dryice_set_random_key(0);
+ if (di_ret != DI_SUCCESS) {
+ printk("dryice_set_random_key returned %d\n", di_ret);
+ goto out;
+ }
+
+ ret = FSL_RETURN_OK_S;
+
+ out:
+ return ret;
+}
+
+#ifdef LINUX_VERSION_CODE
+EXPORT_SYMBOL(fsl_shw_read_tamper_event);
+#endif
+fsl_shw_return_t fsl_shw_read_tamper_event(fsl_shw_uco_t * user_ctx,
+ fsl_shw_tamper_t * tamperp,
+ uint64_t * timestampp)
+{
+ fsl_shw_return_t ret = FSL_RETURN_ERROR_S;
+ di_return_t di_ret;
+ uint32_t di_events = 0;
+ uint32_t di_time_stamp;
+
+ /* Only blocking mode calls are supported */
+ if (!(user_ctx->flags & FSL_UCO_BLOCKING_MODE)) {
+ ret = FSL_RETURN_BAD_FLAG_S;
+ goto out;
+ }
+
+ di_ret = dryice_get_tamper_event(&di_events, &di_time_stamp, 0);
+ if ((di_ret != DI_SUCCESS) && (di_ret != DI_ERR_STATE)) {
+#ifdef DIAG_SECURITY_FUNC
+ LOG_DIAG_ARGS("dryice_get_tamper_event returned %s\n",
+ di_error_string(di_ret));
+#endif
+ goto out;
+ }
+
+ /* Pass time back to caller */
+ *timestampp = (uint64_t) di_time_stamp;
+
+ if (di_events & DI_TAMPER_EVENT_WTD) {
+ *tamperp = FSL_SHW_TAMPER_WTD;
+ } else if (di_events & DI_TAMPER_EVENT_ETBD) {
+ *tamperp = FSL_SHW_TAMPER_ETBD;
+ } else if (di_events & DI_TAMPER_EVENT_ETAD) {
+ *tamperp = FSL_SHW_TAMPER_ETAD;
+ } else if (di_events & DI_TAMPER_EVENT_EBD) {
+ *tamperp = FSL_SHW_TAMPER_EBD;
+ } else if (di_events & DI_TAMPER_EVENT_SAD) {
+ *tamperp = FSL_SHW_TAMPER_SAD;
+ } else if (di_events & DI_TAMPER_EVENT_TTD) {
+ *tamperp = FSL_SHW_TAMPER_TTD;
+ } else if (di_events & DI_TAMPER_EVENT_CTD) {
+ *tamperp = FSL_SHW_TAMPER_CTD;
+ } else if (di_events & DI_TAMPER_EVENT_VTD) {
+ *tamperp = FSL_SHW_TAMPER_VTD;
+ } else if (di_events & DI_TAMPER_EVENT_MCO) {
+ *tamperp = FSL_SHW_TAMPER_MCO;
+ } else if (di_events & DI_TAMPER_EVENT_TCO) {
+ *tamperp = FSL_SHW_TAMPER_TCO;
+ } else if (di_events != 0) {
+ /* Apparentliy a tamper type not known to this driver was detected */
+ goto out;
+ } else {
+ *tamperp = FSL_SHW_TAMPER_NONE;
+ }
+
+ ret = FSL_RETURN_OK_S;
+
+ out:
+ return ret;
+} /* end fn fsl_shw_read_tamper_event */
+#endif
+/*!
+ * Convert an SHW HW key reference into a DI driver key reference
+ *
+ * @param shw_pf_key An SHW HW key value
+ * @param di_keyp Location to store the equivalent DI driver key
+ *
+ * @return FSL_RETURN_OK_S, or error if key is unknown or cannot translate.
+ */
+fsl_shw_return_t shw_convert_pf_key(fsl_shw_pf_key_t shw_pf_key,
+ di_key_t * di_keyp)
+{
+ fsl_shw_return_t ret = FSL_RETURN_BAD_FLAG_S;
+
+ switch (shw_pf_key) {
+ case FSL_SHW_PF_KEY_IIM:
+ *di_keyp = DI_KEY_FK;
+ break;
+ case FSL_SHW_PF_KEY_RND:
+ *di_keyp = DI_KEY_RK;
+ break;
+ case FSL_SHW_PF_KEY_IIM_RND:
+ *di_keyp = DI_KEY_FRK;
+ break;
+ case FSL_SHW_PF_KEY_PRG:
+ *di_keyp = DI_KEY_PK;
+ break;
+ case FSL_SHW_PF_KEY_IIM_PRG:
+ *di_keyp = DI_KEY_FPK;
+ break;
+ default:
+ goto out;
+ }
+
+ ret = FSL_RETURN_OK_S;
+
+ out:
+ return ret;
+}
+
+#ifdef DIAG_SECURITY_FUNC
+const char *di_error_string(int code)
+{
+ char *str = "unknown";
+
+ switch (code) {
+ case DI_SUCCESS:
+ str = "operation was successful";
+ break;
+ case DI_ERR_BUSY:
+ str = "device or resource busy";
+ break;
+ case DI_ERR_STATE:
+ str = "dryice is in incompatible state";
+ break;
+ case DI_ERR_INUSE:
+ str = "resource is already in use";
+ break;
+ case DI_ERR_UNSET:
+ str = "resource has not been initialized";
+ break;
+ case DI_ERR_WRITE:
+ str = "error occurred during register write";
+ break;
+ case DI_ERR_INVAL:
+ str = "invalid argument";
+ break;
+ case DI_ERR_FAIL:
+ str = "operation failed";
+ break;
+ case DI_ERR_HLOCK:
+ str = "resource is hard locked";
+ break;
+ case DI_ERR_SLOCK:
+ str = "resource is soft locked";
+ break;
+ case DI_ERR_NOMEM:
+ str = "out of memory";
+ break;
+ default:
+ break;
+ }
+
+ return str;
+}
+#endif /* HAVE DRYICE */
diff --git a/drivers/mxc/security/rng/shw_hash.c b/drivers/mxc/security/rng/shw_hash.c
new file mode 100644
index 000000000000..3aac05235bfa
--- /dev/null
+++ b/drivers/mxc/security/rng/shw_hash.c
@@ -0,0 +1,328 @@
+/*
+ * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+/*!
+ * @file shw_hash.c
+ *
+ * This file contains implementations for use of the (internal) SHW hash
+ * software computation. It defines the usual three steps:
+ *
+ * - #shw_hash_init()
+ * - #shw_hash_update()
+ * - #shw_hash_final()
+ *
+ * In support of the above functions, it also contains these functions:
+ * - #sha256_init()
+ * - #sha256_process_block()
+ *
+ *
+ * These functions depend upon the Linux Endian functions __be32_to_cpu(),
+ * __cpu_to_be32() to convert a 4-byte big-endian array to an integer and
+ * vice-versa. For those without Linux, it should be pretty obvious what they
+ * do.
+ *
+ * The #shw_hash_update() and #shw_hash_final() functions are generic enough to
+ * support SHA-1/SHA-224/SHA-256, as needed. Some extra tweaking would be
+ * necessary to get them to support SHA-384/SHA-512.
+ *
+ */
+
+#include "shw_driver.h"
+#include "shw_hash.h"
+
+#ifndef __KERNEL__
+#include <asm/types.h>
+#include <linux/byteorder/little_endian.h> /* or whichever is proper for target arch */
+#define printk printf
+#endif
+
+/*!
+ * Rotate a value right by a number of bits.
+ *
+ * @param x Word of data which needs rotating
+ * @param y Number of bits to rotate
+ *
+ * @return The new value
+ */
+inline uint32_t rotr32fixed(uint32_t x, unsigned int y)
+{
+ return (uint32_t) ((x >> y) | (x << (32 - y)));
+}
+
+#define blk0(i) (W[i] = data[i])
+// Referencing parameters so many times is really poor practice. Do not imitate these macros
+#define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] + s0(W[(i - 15) & 15]))
+
+#define Ch(x,y,z) (z ^ (x & (y ^ z)))
+#define Maj(x,y,z) ((x & y) | (z & (x | y)))
+
+#define a(i) T[(0 - i) & 7]
+#define b(i) T[(1 - i) & 7]
+#define c(i) T[(2 - i) & 7]
+#define d(i) T[(3 - i) & 7]
+#define e(i) T[(4 - i) & 7]
+#define f(i) T[(5 - i) & 7]
+#define g(i) T[(6 - i) & 7]
+#define h(i) T[(7 - i) & 7]
+
+// This is a bad way to write a multi-statement macro... and referencing 'i' so many
+// times is really poor practice. Do not imitate.
+#define R(i) h(i) += S1( e(i)) + Ch(e(i), f(i), g(i)) + K[i + j] +(j ? blk2(i) : blk0(i));\
+ d(i) += h(i);h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
+
+// for SHA256
+#define S0(x) (rotr32fixed(x, 2) ^ rotr32fixed(x, 13) ^ rotr32fixed(x, 22))
+#define S1(x) (rotr32fixed(x, 6) ^ rotr32fixed(x, 11) ^ rotr32fixed(x, 25))
+#define s0(x) (rotr32fixed(x, 7) ^ rotr32fixed(x, 18) ^ (x >> 3))
+#define s1(x) (rotr32fixed(x, 17) ^ rotr32fixed(x, 19) ^ (x >> 10))
+
+/*!
+ * Initialize the Hash State
+ *
+ * Constructs the SHA256 hash engine.
+ * Specification:
+ * State Size = 32 bytes
+ * Block Size = 64 bytes
+ * Digest Size = 32 bytes
+ *
+ * @param state Address of hash state structure
+ *
+ */
+void sha256_init(shw_hash_state_t * state)
+{
+ state->bit_count = 0;
+ state->partial_count_bytes = 0;
+
+ state->state[0] = 0x6a09e667;
+ state->state[1] = 0xbb67ae85;
+ state->state[2] = 0x3c6ef372;
+ state->state[3] = 0xa54ff53a;
+ state->state[4] = 0x510e527f;
+ state->state[5] = 0x9b05688c;
+ state->state[6] = 0x1f83d9ab;
+ state->state[7] = 0x5be0cd19;
+}
+
+const uint32_t K[64] = {
+ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
+ 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
+ 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
+ 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
+ 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
+ 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
+ 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
+ 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
+ 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
+ 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
+ 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
+ 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
+ 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
+ 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
+ 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
+ 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
+};
+
+/*!
+ * Hash a block of data into the SHA-256 hash state.
+ *
+ * This function hash the block of data in the @c partial_block
+ * element of the state structure into the state variables of the
+ * state structure.
+ *
+ * @param state Address of hash state structure
+ *
+ */
+static void sha256_process_block(shw_hash_state_t * state)
+{
+ uint32_t W[16];
+ uint32_t T[8];
+ uint32_t stack_buffer[SHW_HASH_BLOCK_WORD_SIZE];
+ uint32_t *data = &stack_buffer[0];
+ uint8_t *input = state->partial_block;
+ unsigned int i;
+ unsigned int j;
+
+ /* Copy byte-oriented input block into word-oriented registers */
+ for (i = 0; i < SHW_HASH_BLOCK_LEN / sizeof(uint32_t);
+ i++, input += sizeof(uint32_t)) {
+ stack_buffer[i] = __be32_to_cpu(*(uint32_t *) input);
+ }
+
+ /* Copy context->state[] to working vars */
+ memcpy(T, state->state, sizeof(T));
+
+ /* 64 operations, partially loop unrolled */
+ for (j = 0; j < SHW_HASH_BLOCK_LEN; j += 16) {
+ R(0);
+ R(1);
+ R(2);
+ R(3);
+ R(4);
+ R(5);
+ R(6);
+ R(7);
+ R(8);
+ R(9);
+ R(10);
+ R(11);
+ R(12);
+ R(13);
+ R(14);
+ R(15);
+ }
+ /* Add the working vars back into context.state[] */
+ state->state[0] += a(0);
+ state->state[1] += b(0);
+ state->state[2] += c(0);
+ state->state[3] += d(0);
+ state->state[4] += e(0);
+ state->state[5] += f(0);
+ state->state[6] += g(0);
+ state->state[7] += h(0);
+
+ /* Wipe variables */
+ memset(W, 0, sizeof(W));
+ memset(T, 0, sizeof(T));
+}
+
+/*!
+ * Initialize the hash state structure
+ *
+ * @param state Address of hash state structure.
+ * @param alg Which hash algorithm to use (must be FSL_HASH_ALG_SHA1)
+ *
+ * @return FSL_RETURN_OK_S if all went well, otherwise an error code.
+ */
+fsl_shw_return_t shw_hash_init(shw_hash_state_t * state, fsl_shw_hash_alg_t alg)
+{
+ if (alg != FSL_HASH_ALG_SHA256) {
+ return FSL_RETURN_BAD_ALGORITHM_S;
+ }
+
+ sha256_init(state);
+
+ return FSL_RETURN_OK_S;
+}
+
+/*!
+ * Add input bytes to the hash
+ *
+ * The bytes are added to the partial_block element of the hash state, and as
+ * the partial block is filled, it is processed by sha1_process_block(). This
+ * function also updates the bit_count element of the hash state.
+ *
+ * @param state Address of hash state structure
+ * @param input Address of bytes to add to the hash
+ * @param input_len Numbef of bytes at @c input
+ *
+ */
+fsl_shw_return_t shw_hash_update(shw_hash_state_t * state,
+ const uint8_t * input, unsigned int input_len)
+{
+ unsigned int bytes_needed; /* Needed to fill a block */
+ unsigned int bytes_to_copy; /* to copy into the block */
+
+ /* Account for new data */
+ state->bit_count += 8 * input_len;
+
+ /*
+ * Process input bytes into the ongoing block; process the block when it
+ * gets full.
+ */
+ while (input_len > 0) {
+ bytes_needed = SHW_HASH_BLOCK_LEN - state->partial_count_bytes;
+ bytes_to_copy = ((input_len < bytes_needed) ?
+ input_len : bytes_needed);
+
+ /* Add in the bytes and do the accounting */
+ memcpy(state->partial_block + state->partial_count_bytes,
+ input, bytes_to_copy);
+ input += bytes_to_copy;
+ input_len -= bytes_to_copy;
+ state->partial_count_bytes += bytes_to_copy;
+
+ /* Run a full block through the transform */
+ if (state->partial_count_bytes == SHW_HASH_BLOCK_LEN) {
+ sha256_process_block(state);
+ state->partial_count_bytes = 0;
+ }
+ }
+
+ return FSL_RETURN_OK_S;
+} /* end fn shw_hash_update */
+
+/*!
+ * Finalize the hash
+ *
+ * Performs the finalize operation on the previous input data & returns the
+ * resulting digest. The finalize operation performs the appropriate padding
+ * up to the block size.
+ *
+ * @param state Address of hash state structure
+ * @param result Location to store the hash result
+ * @param result_len Number of bytes of @c result to be stored.
+ *
+ * @return FSL_RETURN_OK_S if all went well, FSL_RETURN_BAD_DATA_LENGTH_S if
+ * hash_len is too long, otherwise an error code.
+ */
+fsl_shw_return_t shw_hash_final(shw_hash_state_t * state, uint8_t * result,
+ unsigned int result_len)
+{
+ static const uint8_t pad[SHW_HASH_BLOCK_LEN * 2] = {
+ 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ };
+
+ uint8_t data[sizeof(state->bit_count)];
+ uint32_t pad_length;
+ uint64_t bit_count = state->bit_count;
+ uint8_t hash[SHW_HASH_LEN];
+ int i;
+
+ if (result_len > SHW_HASH_LEN) {
+ return FSL_RETURN_BAD_DATA_LENGTH_S;
+ }
+
+ /* Save the length before padding. */
+ for (i = sizeof(state->bit_count) - 1; i >= 0; i--) {
+ data[i] = bit_count & 0xFF;
+ bit_count >>= 8;
+ }
+ pad_length = ((state->partial_count_bytes < 56) ?
+ (56 - state->partial_count_bytes) :
+ (120 - state->partial_count_bytes));
+
+ /* Pad to 56 bytes mod 64 (BLOCK_SIZE). */
+ shw_hash_update(state, pad, pad_length);
+
+ /*
+ * Append the length. This should trigger transform of the final block.
+ */
+ shw_hash_update(state, data, sizeof(state->bit_count));
+
+ /* Copy the result into a byte array */
+ for (i = 0; i < SHW_HASH_STATE_WORDS; i++) {
+ *(uint32_t *) (hash + 4 * i) = __cpu_to_be32(state->state[i]);
+ }
+
+ /* And copy the result out to caller */
+ memcpy(result, hash, result_len);
+
+ return FSL_RETURN_OK_S;
+} /* end fn shw_hash_final */
diff --git a/drivers/mxc/security/rng/shw_hmac.c b/drivers/mxc/security/rng/shw_hmac.c
new file mode 100644
index 000000000000..57c086405a49
--- /dev/null
+++ b/drivers/mxc/security/rng/shw_hmac.c
@@ -0,0 +1,145 @@
+/*
+ * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+/*!
+ * @file shw_hmac.c
+ *
+ * This file contains implementations for use of the (internal) SHW HMAC
+ * software computation. It defines the usual three steps:
+ *
+ * - #shw_hmac_init()
+ * - #shw_hmac_update()
+ * - #shw_hmac_final()
+ *
+ *
+ */
+
+#include "shw_driver.h"
+#include "shw_hmac.h"
+
+#ifndef __KERNEL__
+#include <asm/types.h>
+#include <linux/byteorder/little_endian.h> /* or whichever is proper for target arch */
+#define printk printf
+#endif
+
+/*! XOR value for HMAC inner key */
+#define INNER_HASH_CONSTANT 0x36
+
+/*! XOR value for HMAC outer key */
+#define OUTER_HASH_CONSTANT 0x5C
+
+/*!
+ * Initialize the HMAC state structure with the HMAC key
+ *
+ * @param state Address of HMAC state structure
+ * @param key Address of the key to be used for the HMAC.
+ * @param key_len Number of bytes of @c key.
+ *
+ * Convert the key into its equivalent inner and outer hash state objects.
+ *
+ * @return FSL_RETURN_OK_S if all went well, otherwise an error code.
+ */
+fsl_shw_return_t shw_hmac_init(shw_hmac_state_t * state,
+ const uint8_t * key, unsigned int key_len)
+{
+ fsl_shw_return_t code = FSL_RETURN_ERROR_S;
+ uint8_t first_block[SHW_HASH_BLOCK_LEN];
+ unsigned int i;
+
+ /* Don't bother handling the pre-hash. */
+ if (key_len > SHW_HASH_BLOCK_LEN) {
+ code = FSL_RETURN_BAD_KEY_LENGTH_S;
+ goto out;
+ }
+
+ /* Prepare inner hash */
+ for (i = 0; i < SHW_HASH_BLOCK_LEN; i++) {
+ if (i < key_len) {
+ first_block[i] = key[i] ^ INNER_HASH_CONSTANT;
+ } else {
+ first_block[i] = INNER_HASH_CONSTANT;
+ }
+ }
+ code = shw_hash_init(&state->inner_hash, FSL_HASH_ALG_SHA256);
+ if (code != FSL_RETURN_OK_S) {
+ goto out;
+ }
+ shw_hash_update(&state->inner_hash, first_block, SHW_HASH_BLOCK_LEN);
+
+ /* Prepare outer hash */
+ for (i = 0; i < SHW_HASH_BLOCK_LEN; i++) {
+ if (i < key_len) {
+ first_block[i] = key[i] ^ OUTER_HASH_CONSTANT;
+ } else {
+ first_block[i] = OUTER_HASH_CONSTANT;
+ }
+ }
+ code = shw_hash_init(&state->outer_hash, FSL_HASH_ALG_SHA256);
+ if (code != FSL_RETURN_OK_S) {
+ goto out;
+ }
+ shw_hash_update(&state->outer_hash, first_block, SHW_HASH_BLOCK_LEN);
+
+ /* Wipe evidence of key */
+ memset(first_block, 0, SHW_HASH_BLOCK_LEN);
+
+ out:
+ return code;
+}
+
+/*!
+ * Put data into the HMAC calculation
+ *
+ * Send the msg data inner inner hash's update function.
+ *
+ * @param state Address of HMAC state structure.
+ * @param msg Address of the message data for the HMAC.
+ * @param msg_len Number of bytes of @c msg.
+ *
+ * @return FSL_RETURN_OK_S if all went well, otherwise an error code.
+ */
+fsl_shw_return_t shw_hmac_update(shw_hmac_state_t * state,
+ const uint8_t * msg, unsigned int msg_len)
+{
+ shw_hash_update(&state->inner_hash, msg, msg_len);
+
+ return FSL_RETURN_OK_S;
+}
+
+/*!
+ * Calculate the final HMAC
+ *
+ * @param state Address of HMAC state structure.
+ * @param hmac Address of location to store the HMAC.
+ * @param hmac_len Number of bytes of @c mac to be stored. Probably best if
+ * this value is no greater than #SHW_HASH_LEN.
+ *
+ * This function finalizes the internal hash, and uses that result as
+ * data for the outer hash. As many bytes of that result are passed
+ * to the user as desired.
+ *
+ * @return FSL_RETURN_OK_S if all went well, otherwise an error code.
+ */
+fsl_shw_return_t shw_hmac_final(shw_hmac_state_t * state,
+ uint8_t * hmac, unsigned int hmac_len)
+{
+ uint8_t hash_result[SHW_HASH_LEN];
+
+ shw_hash_final(&state->inner_hash, hash_result, sizeof(hash_result));
+ shw_hash_update(&state->outer_hash, hash_result, SHW_HASH_LEN);
+
+ shw_hash_final(&state->outer_hash, hmac, hmac_len);
+
+ return FSL_RETURN_OK_S;
+}
diff --git a/drivers/mxc/security/rng/shw_memory_mapper.c b/drivers/mxc/security/rng/shw_memory_mapper.c
new file mode 100644
index 000000000000..d7b82576a6cd
--- /dev/null
+++ b/drivers/mxc/security/rng/shw_memory_mapper.c
@@ -0,0 +1,213 @@
+/*
+ * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+
+
+/**
+ * Memory management functions, from Sahara Crypto API
+ *
+ * This is a subset of the memory management functions from the Sahara Crypto
+ * API, and is intended to support user secure partitions.
+ */
+
+#include "portable_os.h"
+#include "fsl_shw.h"
+
+#include <linux/mm.h>
+#include <linux/slab.h>
+#include <linux/pagemap.h>
+
+#ifdef SHW_DEBUG
+#include <diagnostic.h>
+#endif
+
+/* Page context structure. Used by wire_user_memory and unwire_user_memory */
+typedef struct page_ctx_t {
+ uint32_t count;
+ struct page **local_pages;
+} page_ctx_t;
+
+/**
+*******************************************************************************
+* Map and wire down a region of user memory.
+*
+*
+* @param address Userspace address of the memory to wire
+* @param length Length of the memory region to wire
+* @param page_ctx Page context, to be passed to unwire_user_memory
+*
+* @return (if successful) Kernel virtual address of the wired pages
+*/
+void* wire_user_memory(void* address, uint32_t length, void **page_ctx)
+{
+ void* kernel_black_addr = NULL;
+ int result = -1;
+ int page_index = 0;
+ page_ctx_t *page_context;
+ int nr_pages = 0;
+ unsigned long start_page;
+ fsl_shw_return_t status;
+
+ /* Determine the number of pages being used for this link */
+ nr_pages = (((unsigned long)(address) & ~PAGE_MASK)
+ + length + ~PAGE_MASK) >> PAGE_SHIFT;
+
+ start_page = (unsigned long)(address) & PAGE_MASK;
+
+ /* Allocate some memory to keep track of the wired user pages, so that
+ * they can be deallocated later. The block of memory will contain both
+ * the structure and the array of pages.
+ */
+ page_context = kmalloc(sizeof(page_ctx_t)
+ + nr_pages * sizeof(struct page *), GFP_KERNEL);
+
+ if (page_context == NULL) {
+ status = FSL_RETURN_NO_RESOURCE_S; /* no memory! */
+#ifdef DIAG_DRV_IF
+ LOG_KDIAG("kmalloc() failed.");
+#endif
+ return NULL;
+ }
+
+ /* Set the page pointer to point to the allocated region of memory */
+ page_context->local_pages = (void*)page_context + sizeof(page_ctx_t);
+
+#ifdef DIAG_DRV_IF
+ LOG_KDIAG_ARGS("page_context at: %p, local_pages at: %p",
+ (void *)page_context,
+ (void *)(page_context->local_pages));
+#endif
+
+ /* Wire down the pages from user space */
+ down_read(&current->mm->mmap_sem);
+ result = get_user_pages(current, current->mm,
+ start_page, nr_pages,
+ WRITE, 0 /* noforce */,
+ (page_context->local_pages), NULL);
+ up_read(&current->mm->mmap_sem);
+
+ if (result < nr_pages) {
+#ifdef DIAG_DRV_IF
+ LOG_KDIAG("get_user_pages() failed.");
+#endif
+ if (result > 0) {
+ for (page_index = 0; page_index < result; page_index++)
+ page_cache_release((page_context->local_pages[page_index]));
+
+ kfree(page_context);
+ }
+ return NULL;
+ }
+
+ kernel_black_addr = page_address(page_context->local_pages[0]) +
+ ((unsigned long)address & ~PAGE_MASK);
+
+ page_context->count = nr_pages;
+ *page_ctx = page_context;
+
+ return kernel_black_addr;
+}
+
+
+/**
+*******************************************************************************
+* Release and unmap a region of user memory.
+*
+* @param page_ctx Page context from wire_user_memory
+*/
+void unwire_user_memory(void** page_ctx)
+{
+ int page_index = 0;
+ struct page_ctx_t *page_context = *page_ctx;
+
+#ifdef DIAG_DRV_IF
+ LOG_KDIAG_ARGS("page_context at: %p, first page at:%p, count: %i",
+ (void *)page_context,
+ (void *)(page_context->local_pages),
+ page_context->count);
+#endif
+
+ if ((page_context != NULL) && (page_context->local_pages != NULL)) {
+ for (page_index = 0; page_index < page_context->count; page_index++)
+ page_cache_release(page_context->local_pages[page_index]);
+
+ kfree(page_context);
+ *page_ctx = NULL;
+ }
+}
+
+
+/**
+*******************************************************************************
+* Map some physical memory into a users memory space
+*
+* @param vma Memory structure to map to
+* @param physical_addr Physical address of the memory to be mapped in
+* @param size Size of the memory to map (bytes)
+*
+* @return
+*/
+os_error_code
+map_user_memory(struct vm_area_struct *vma, uint32_t physical_addr, uint32_t size)
+{
+ os_error_code retval;
+
+ /* Map the acquired partition into the user's memory space */
+ vma->vm_end = vma->vm_start + size;
+
+ /* set cache policy to uncached so that each write of the UMID and
+ * permissions get directly to the SCC2 in order to engage it
+ * properly. Once the permissions have been written, it may be
+ * useful to provide a service for the user to request a different
+ * cache policy
+ */
+ vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
+
+ /* Make sure that the user cannot fork() a child which will inherit
+ * this mapping, as it creates a security hole. Likewise, do not
+ * allow the user to 'expand' his mapping beyond this partition.
+ */
+ vma->vm_flags |= VM_IO | VM_RESERVED | VM_DONTCOPY | VM_DONTEXPAND;
+
+ retval = remap_pfn_range(vma,
+ vma->vm_start,
+ __phys_to_pfn(physical_addr),
+ size,
+ vma->vm_page_prot);
+
+ return retval;
+}
+
+
+/**
+*******************************************************************************
+* Remove some memory from a user's memory space
+*
+* @param user_addr Userspace address of the memory to be unmapped
+* @param size Size of the memory to map (bytes)
+*
+* @return
+*/
+os_error_code
+unmap_user_memory(uint32_t user_addr, uint32_t size)
+{
+ os_error_code retval;
+ struct mm_struct *mm = current->mm;
+
+ /* Unmap the memory region (see sys_munmap in mmap.c) */
+ down_write(&mm->mmap_sem);
+ retval = do_munmap(mm, (unsigned long)user_addr, size);
+ up_write(&mm->mmap_sem);
+
+ return retval;
+}