summaryrefslogtreecommitdiff
path: root/fs/kernfs/dir.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/kernfs/dir.c')
-rw-r--r--fs/kernfs/dir.c138
1 files changed, 137 insertions, 1 deletions
diff --git a/fs/kernfs/dir.c b/fs/kernfs/dir.c
index d0fd739bf82d..8c63ae1bccb6 100644
--- a/fs/kernfs/dir.c
+++ b/fs/kernfs/dir.c
@@ -761,7 +761,12 @@ static void __kernfs_remove(struct kernfs_node *kn)
lockdep_assert_held(&kernfs_mutex);
- if (!kn)
+ /*
+ * Short-circuit if non-root @kn has already finished removal.
+ * This is for kernfs_remove_self() which plays with active ref
+ * after removal.
+ */
+ if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
return;
pr_debug("kernfs %s: removing\n", kn->name);
@@ -821,6 +826,137 @@ void kernfs_remove(struct kernfs_node *kn)
}
/**
+ * kernfs_break_active_protection - break out of active protection
+ * @kn: the self kernfs_node
+ *
+ * The caller must be running off of a kernfs operation which is invoked
+ * with an active reference - e.g. one of kernfs_ops. Each invocation of
+ * this function must also be matched with an invocation of
+ * kernfs_unbreak_active_protection().
+ *
+ * This function releases the active reference of @kn the caller is
+ * holding. Once this function is called, @kn may be removed at any point
+ * and the caller is solely responsible for ensuring that the objects it
+ * dereferences are accessible.
+ */
+void kernfs_break_active_protection(struct kernfs_node *kn)
+{
+ /*
+ * Take out ourself out of the active ref dependency chain. If
+ * we're called without an active ref, lockdep will complain.
+ */
+ kernfs_put_active(kn);
+}
+
+/**
+ * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
+ * @kn: the self kernfs_node
+ *
+ * If kernfs_break_active_protection() was called, this function must be
+ * invoked before finishing the kernfs operation. Note that while this
+ * function restores the active reference, it doesn't and can't actually
+ * restore the active protection - @kn may already or be in the process of
+ * being removed. Once kernfs_break_active_protection() is invoked, that
+ * protection is irreversibly gone for the kernfs operation instance.
+ *
+ * While this function may be called at any point after
+ * kernfs_break_active_protection() is invoked, its most useful location
+ * would be right before the enclosing kernfs operation returns.
+ */
+void kernfs_unbreak_active_protection(struct kernfs_node *kn)
+{
+ /*
+ * @kn->active could be in any state; however, the increment we do
+ * here will be undone as soon as the enclosing kernfs operation
+ * finishes and this temporary bump can't break anything. If @kn
+ * is alive, nothing changes. If @kn is being deactivated, the
+ * soon-to-follow put will either finish deactivation or restore
+ * deactivated state. If @kn is already removed, the temporary
+ * bump is guaranteed to be gone before @kn is released.
+ */
+ atomic_inc(&kn->active);
+ if (kernfs_lockdep(kn))
+ rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
+}
+
+/**
+ * kernfs_remove_self - remove a kernfs_node from its own method
+ * @kn: the self kernfs_node to remove
+ *
+ * The caller must be running off of a kernfs operation which is invoked
+ * with an active reference - e.g. one of kernfs_ops. This can be used to
+ * implement a file operation which deletes itself.
+ *
+ * For example, the "delete" file for a sysfs device directory can be
+ * implemented by invoking kernfs_remove_self() on the "delete" file
+ * itself. This function breaks the circular dependency of trying to
+ * deactivate self while holding an active ref itself. It isn't necessary
+ * to modify the usual removal path to use kernfs_remove_self(). The
+ * "delete" implementation can simply invoke kernfs_remove_self() on self
+ * before proceeding with the usual removal path. kernfs will ignore later
+ * kernfs_remove() on self.
+ *
+ * kernfs_remove_self() can be called multiple times concurrently on the
+ * same kernfs_node. Only the first one actually performs removal and
+ * returns %true. All others will wait until the kernfs operation which
+ * won self-removal finishes and return %false. Note that the losers wait
+ * for the completion of not only the winning kernfs_remove_self() but also
+ * the whole kernfs_ops which won the arbitration. This can be used to
+ * guarantee, for example, all concurrent writes to a "delete" file to
+ * finish only after the whole operation is complete.
+ */
+bool kernfs_remove_self(struct kernfs_node *kn)
+{
+ bool ret;
+
+ mutex_lock(&kernfs_mutex);
+ kernfs_break_active_protection(kn);
+
+ /*
+ * SUICIDAL is used to arbitrate among competing invocations. Only
+ * the first one will actually perform removal. When the removal
+ * is complete, SUICIDED is set and the active ref is restored
+ * while holding kernfs_mutex. The ones which lost arbitration
+ * waits for SUICDED && drained which can happen only after the
+ * enclosing kernfs operation which executed the winning instance
+ * of kernfs_remove_self() finished.
+ */
+ if (!(kn->flags & KERNFS_SUICIDAL)) {
+ kn->flags |= KERNFS_SUICIDAL;
+ __kernfs_remove(kn);
+ kn->flags |= KERNFS_SUICIDED;
+ ret = true;
+ } else {
+ wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
+ DEFINE_WAIT(wait);
+
+ while (true) {
+ prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
+
+ if ((kn->flags & KERNFS_SUICIDED) &&
+ atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
+ break;
+
+ mutex_unlock(&kernfs_mutex);
+ schedule();
+ mutex_lock(&kernfs_mutex);
+ }
+ finish_wait(waitq, &wait);
+ WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
+ ret = false;
+ }
+
+ /*
+ * This must be done while holding kernfs_mutex; otherwise, waiting
+ * for SUICIDED && deactivated could finish prematurely.
+ */
+ kernfs_unbreak_active_protection(kn);
+
+ mutex_unlock(&kernfs_mutex);
+ return ret;
+}
+
+/**
* kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
* @parent: parent of the target
* @name: name of the kernfs_node to remove