summaryrefslogtreecommitdiff
path: root/arch/sparc/mm/fault_64.c
AgeCommit message (Collapse)Author
2016-10-06sparc: migrate exception table users off module.h and onto extable.hPaul Gortmaker
These files were only including module.h for exception table related functions. We've now separated that content out into its own file "extable.h" so now move over to that and avoid all the extra header content in module.h that we don't really need to compile these files. Cc: "David S. Miller" <davem@davemloft.net> Cc: sparclinux@vger.kernel.org Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-28sparc64 mm: Fix more TSB sizing issuesMike Kravetz
Commit af1b1a9b36b8 ("sparc64 mm: Fix base TSB sizing when hugetlb pages are used") addressed the difference between hugetlb and THP pages when computing TSB sizes. The following additional issues were also discovered while working with the code. In order to save memory, THP makes use of a huge zero page. This huge zero page does not count against a task's RSS, but it does consume TSB entries. This is similar to hugetlb pages. Therefore, count huge zero page entries in hugetlb_pte_count. Accounting of THP pages is done in the routine set_pmd_at(). Unfortunately, this does not catch the case where a THP page is split. To handle this case, decrement the count in pmdp_invalidate(). pmdp_invalidate is only called when splitting a THP. However, 'sanity checks' are added in case it is ever called for other purposes. A more general issue exists with HPAGE_SIZE accounting. hugetlb_pte_count tracks the number of HPAGE_SIZE (8M) pages. This value is used to size the TSB for HPAGE_SIZE pages. However, each HPAGE_SIZE page consists of two REAL_HPAGE_SIZE (4M) pages. The TSB contains an entry for each REAL_HPAGE_SIZE page. Therefore, the number of REAL_HPAGE_SIZE pages should be used to size the huge page TSB. A new compile time constant REAL_HPAGE_PER_HPAGE is used to multiply hugetlb_pte_count before sizing the TSB. Changes from V1 - Fixed build issue if hugetlb or THP not configured Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-29sparc64: Trim page tables for 8M hugepagesNitin Gupta
For PMD aligned (8M) hugepages, we currently allocate all four page table levels which is wasteful. We now allocate till PMD level only which saves memory usage from page tables. Also, when freeing page table for 8M hugepage backed region, make sure we don't try to access non-existent PTE level. Orabug: 22630259 Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-28sparc64 mm: Fix base TSB sizing when hugetlb pages are usedMike Kravetz
do_sparc64_fault() calculates both the base and huge page RSS sizes and uses this information in calls to tsb_grow(). The calculation for base page TSB size is not correct if the task uses hugetlb pages. hugetlb pages are not accounted for in RSS, therefore the call to get_mm_rss(mm) does not include hugetlb pages. However, the number of pages based on huge_pte_count (which does include hugetlb pages) is subtracted from this value. This will result in an artificially small and often negative RSS calculation. The base TSB size is then often set to max_tsb_size as the passed RSS is unsigned, so a negative value looks really big. THP pages are also accounted for in huge_pte_count, and THP pages are accounted for in RSS so the calculation in do_sparc64_fault() is correct if a task only uses THP pages. A single huge_pte_count is not sufficient for TSB sizing if both hugetlb and THP pages can be used. Instead of a single counter, use two: one for hugetlb and one for THP. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-26mm: do not pass mm_struct into handle_mm_faultKirill A. Shutemov
We always have vma->vm_mm around. Link: http://lkml.kernel.org/r/1466021202-61880-8-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15sparc, thp: remove infrastructure for handling splitting PMDsKirill A. Shutemov
With new refcounting we don't need to mark PMDs splitting. Let's drop code to handle this. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25sparc64: Convert BUG_ON to warningDavid Ahern
Pagefault handling has a BUG_ON path that panics the system. Convert it to a warning instead. There is no need to bring down the system for this kind of failure. The following was hit while running: perf sched record -g -- make -j 16 [3609412.782801] kernel BUG at /opt/dahern/linux.git/arch/sparc/mm/fault_64.c:416! [3609412.782833] \|/ ____ \|/ [3609412.782833] "@'/ .. \`@" [3609412.782833] /_| \__/ |_\ [3609412.782833] \__U_/ [3609412.782870] cat(4516): Kernel bad sw trap 5 [#1] [3609412.782889] CPU: 0 PID: 4516 Comm: cat Tainted: G E 4.1.0-rc8+ #6 [3609412.782909] task: fff8000126e31f80 ti: fff8000110d90000 task.ti: fff8000110d90000 [3609412.782931] TSTATE: 0000004411001603 TPC: 000000000096b164 TNPC: 000000000096b168 Y: 0000004e Tainted: G E [3609412.782964] TPC: <do_sparc64_fault+0x5e4/0x6a0> [3609412.782979] g0: 000000000096abe0 g1: 0000000000d314c4 g2: 0000000000000000 g3: 0000000000000001 [3609412.783009] g4: fff8000126e31f80 g5: fff80001302d2000 g6: fff8000110d90000 g7: 00000000000000ff [3609412.783045] o0: 0000000000aff6a8 o1: 00000000000001a0 o2: 0000000000000001 o3: 0000000000000054 [3609412.783080] o4: fff8000100026820 o5: 0000000000000001 sp: fff8000110d935f1 ret_pc: 000000000096b15c [3609412.783117] RPC: <do_sparc64_fault+0x5dc/0x6a0> [3609412.783137] l0: 000007feff996000 l1: 0000000000030001 l2: 0000000000000004 l3: fff8000127bd0120 [3609412.783174] l4: 0000000000000054 l5: fff8000127bd0188 l6: 0000000000000000 l7: fff8000110d9dba8 [3609412.783210] i0: fff8000110d93f60 i1: fff8000110ca5530 i2: 000000000000003f i3: 0000000000000054 [3609412.783244] i4: fff800010000081a i5: fff8000100000398 i6: fff8000110d936a1 i7: 0000000000407c6c [3609412.783286] I7: <sparc64_realfault_common+0x10/0x20> [3609412.783308] Call Trace: [3609412.783329] [0000000000407c6c] sparc64_realfault_common+0x10/0x20 [3609412.783353] Disabling lock debugging due to kernel taint [3609412.783379] Caller[0000000000407c6c]: sparc64_realfault_common+0x10/0x20 [3609412.783449] Caller[fff80001002283e4]: 0xfff80001002283e4 [3609412.783471] Instruction DUMP: 921021a0 7feaff91 901222a8 <91d02005> 82086100 02f87f7b 808a2873 81cfe008 01000000 [3609412.783542] Kernel panic - not syncing: Fatal exception [3609412.784605] Press Stop-A (L1-A) to return to the boot prom [3609412.784615] ---[ end Kernel panic - not syncing: Fatal exception With this patch rather than a panic I occasionally get something like this: perf sched record -g -m 1024 -- make -j N where N is based on number of cpus (128 to 1024 for a T7-4 and 8 for an 8 cpu VM on a T5-2). WARNING: CPU: 211 PID: 52565 at /opt/dahern/linux.git/arch/sparc/mm/fault_64.c:417 do_sparc64_fault+0x340/0x70c() address (7feffcd6000) != regs->tpc (fff80001004873c0) Modules linked in: ipt_REJECT nf_reject_ipv4 nf_conntrack_ipv4 nf_defrag_ipv4 iptable_filter ip_tables ip6t_REJECT nf_reject_ipv6 xt_tcpudp nf_conntrack_ipv6 nf_defrag_ipv6 xt_state nf_conntrack ip6table_filter ip6_tables x_tables ipv6 cdc_ether usbnet mii ixgbe mdio igb i2c_algo_bit i2c_core ptp crc32c_sparc64 camellia_sparc64 des_sparc64 des_generic md5_sparc64 sha512_sparc64 sha1_sparc64 uio_pdrv_genirq uio usb_storage mpt3sas scsi_transport_sas raid_class aes_sparc64 sunvnet sunvdc sha256_sparc64(E) sha256_generic(E) CPU: 211 PID: 52565 Comm: ld Tainted: G W E 4.1.0-rc8+ #19 Call Trace: [000000000045ce30] warn_slowpath_common+0x7c/0xa0 [000000000045ceec] warn_slowpath_fmt+0x30/0x40 [000000000098ad64] do_sparc64_fault+0x340/0x70c [0000000000407c2c] sparc64_realfault_common+0x10/0x20 ---[ end trace 62ee02065a01a049 ]--- ld[52565]: segfault at fff80001004873c0 ip fff80001004873c0 (rpc fff8000100158868) sp 000007feffcd70e1 error 30002 in libc-2.12.so[fff8000100410000+184000] The segfault is horrible, but better than a system panic. An 8-cpu VM on a T5-2 also showed the above traces from time to time, so it is a general problem and not specific to the T7 or baremetal. Signed-off-by: David Ahern <david.ahern@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-19mm/fault, arch: Use pagefault_disable() to check for disabled pagefaults in ↵David Hildenbrand
the handler Introduce faulthandler_disabled() and use it to check for irq context and disabled pagefaults (via pagefault_disable()) in the pagefault handlers. Please note that we keep the in_atomic() checks in place - to detect whether in irq context (in which case preemption is always properly disabled). In contrast, preempt_disable() should never be used to disable pagefaults. With !CONFIG_PREEMPT_COUNT, preempt_disable() doesn't modify the preempt counter, and therefore the result of in_atomic() differs. We validate that condition by using might_fault() checks when calling might_sleep(). Therefore, add a comment to faulthandler_disabled(), describing why this is needed. faulthandler_disabled() and pagefault_disable() are defined in linux/uaccess.h, so let's properly add that include to all relevant files. This patch is based on a patch from Thomas Gleixner. Reviewed-and-tested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David.Laight@ACULAB.COM Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: airlied@linux.ie Cc: akpm@linux-foundation.org Cc: benh@kernel.crashing.org Cc: bigeasy@linutronix.de Cc: borntraeger@de.ibm.com Cc: daniel.vetter@intel.com Cc: heiko.carstens@de.ibm.com Cc: herbert@gondor.apana.org.au Cc: hocko@suse.cz Cc: hughd@google.com Cc: mst@redhat.com Cc: paulus@samba.org Cc: ralf@linux-mips.org Cc: schwidefsky@de.ibm.com Cc: yang.shi@windriver.com Link: http://lkml.kernel.org/r/1431359540-32227-7-git-send-email-dahi@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-29vm: add VM_FAULT_SIGSEGV handling supportLinus Torvalds
The core VM already knows about VM_FAULT_SIGBUS, but cannot return a "you should SIGSEGV" error, because the SIGSEGV case was generally handled by the caller - usually the architecture fault handler. That results in lots of duplication - all the architecture fault handlers end up doing very similar "look up vma, check permissions, do retries etc" - but it generally works. However, there are cases where the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV. In particular, when accessing the stack guard page, libsigsegv expects a SIGSEGV. And it usually got one, because the stack growth is handled by that duplicated architecture fault handler. However, when the generic VM layer started propagating the error return from the stack expansion in commit fee7e49d4514 ("mm: propagate error from stack expansion even for guard page"), that now exposed the existing VM_FAULT_SIGBUS result to user space. And user space really expected SIGSEGV, not SIGBUS. To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those duplicate architecture fault handlers about it. They all already have the code to handle SIGSEGV, so it's about just tying that new return value to the existing code, but it's all a bit annoying. This is the mindless minimal patch to do this. A more extensive patch would be to try to gather up the mostly shared fault handling logic into one generic helper routine, and long-term we really should do that cleanup. Just from this patch, you can generally see that most architectures just copied (directly or indirectly) the old x86 way of doing things, but in the meantime that original x86 model has been improved to hold the VM semaphore for shorter times etc and to handle VM_FAULT_RETRY and other "newer" things, so it would be a good idea to bring all those improvements to the generic case and teach other architectures about them too. Reported-and-tested-by: Takashi Iwai <tiwai@suse.de> Tested-by: Jan Engelhardt <jengelh@inai.de> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots" Cc: linux-arch@vger.kernel.org Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-09-16sparc64: sun4v TLB error power off eventsbob picco
We've witnessed a few TLB events causing the machine to power off because of prom_halt. In one case it was some nfs related area during rmmod. Another was an mmapper of /dev/mem. A more recent one is an ITLB issue with a bad pagesize which could be a hardware bug. Bugs happen but we should attempt to not power off the machine and/or hang it when possible. This is a DTLB error from an mmapper of /dev/mem: [root@sparcie ~]# SUN4V-DTLB: Error at TPC[fffff80100903e6c], tl 1 SUN4V-DTLB: TPC<0xfffff80100903e6c> SUN4V-DTLB: O7[fffff801081979d0] SUN4V-DTLB: O7<0xfffff801081979d0> SUN4V-DTLB: vaddr[fffff80100000000] ctx[1250] pte[98000000000f0610] error[2] . This is recent mainline for ITLB: [ 3708.179864] SUN4V-ITLB: TPC<0xfffffc010071cefc> [ 3708.188866] SUN4V-ITLB: O7[fffffc010071cee8] [ 3708.197377] SUN4V-ITLB: O7<0xfffffc010071cee8> [ 3708.206539] SUN4V-ITLB: vaddr[e0003] ctx[1a3c] pte[2900000dcc800eeb] error[4] . Normally sun4v_itlb_error_report() and sun4v_dtlb_error_report() would call prom_halt() and drop us to OF command prompt "ok". This isn't the case for LDOMs and the machine powers off. For the HV reported error of HV_ENORADDR for HV HV_MMU_MAP_ADDR_TRAP we cause a SIGBUS error by qualifying it within do_sparc64_fault() for fault code mask of FAULT_CODE_BAD_RA. This is done when trap level (%tl) is less or equal one("1"). Otherwise, for %tl > 1, we proceed eventually to die_if_kernel(). The logic of this patch was partially inspired by David Miller's feedback. Power off of large sparc64 machines is painful. Plus die_if_kernel provides more context. A reset sequence isn't a brief period on large sparc64 but better than power-off/power-on sequence. Cc: sparclinux@vger.kernel.org Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-19Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-nextLinus Torvalds
Pull sparc fixes from David Miller: "Sparc sparse fixes from Sam Ravnborg" * git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next: (67 commits) sparc64: fix sparse warnings in int_64.c sparc64: fix sparse warning in ftrace.c sparc64: fix sparse warning in kprobes.c sparc64: fix sparse warning in kgdb_64.c sparc64: fix sparse warnings in compat_audit.c sparc64: fix sparse warnings in init_64.c sparc64: fix sparse warnings in aes_glue.c sparc: fix sparse warnings in smp_32.c + smp_64.c sparc64: fix sparse warnings in perf_event.c sparc64: fix sparse warnings in kprobes.c sparc64: fix sparse warning in tsb.c sparc64: clean up compat_sigset_t.seta handling sparc64: fix sparse "Should it be static?" warnings in signal32.c sparc64: fix sparse warnings in sys_sparc32.c sparc64: fix sparse warning in pci.c sparc64: fix sparse warnings in smp_64.c sparc64: fix sparse warning in prom_64.c sparc64: fix sparse warning in btext.c sparc64: fix sparse warnings in sys_sparc_64.c + unaligned_64.c sparc64: fix sparse warning in process_64.c ... Conflicts: arch/sparc/include/asm/pgtable_64.h
2014-05-18sparc64: fix sparse warnings in sys_sparc_64.c + unaligned_64.cSam Ravnborg
Fix following warnings: kernel/sys_sparc_64.c:643:17: warning: symbol 'sys_kern_features' was not declared. Should it be static? kernel/unaligned_64.c:297:17: warning: symbol 'kernel_unaligned_trap' was not declared. Should it be static? kernel/unaligned_64.c:387:5: warning: symbol 'handle_popc' was not declared. Should it be static? kernel/unaligned_64.c:428:5: warning: symbol 'handle_ldf_stq' was not declared. Should it be static? kernel/unaligned_64.c:553:6: warning: symbol 'handle_ld_nf' was not declared. Should it be static? kernel/unaligned_64.c:579:6: warning: symbol 'handle_lddfmna' was not declared. Should it be static? kernel/unaligned_64.c:643:6: warning: symbol 'handle_stdfmna' was not declared. Should it be static? Functions that are only used in kernel/ - add prototypes in kernel.h Functions used outside kernel/ - add prototype in asm/setup.h Removed local prototypes One of the local prototypes had wrong signature (return void - not int). Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-06sparc64: Don't bark so loudly about 32-bit tasks generating 64-bit fault ↵David S. Miller
addresses. This was found using Dave Jone's trinity tool. When a user process which is 32-bit performs a load or a store, the cpu chops off the top 32-bits of the effective address before translating it. This is because we run 32-bit tasks with the PSTATE_AM (address masking) bit set. We can't run the kernel with that bit set, so when the kernel accesses userspace no address masking occurs. Since a 32-bit process will have no mappings in that region we will properly fault, so we don't try to handle this using access_ok(), which can safely just be a NOP on sparc64. Real faults from 32-bit processes should never generate such addresses so a bug check was added long ago, and it barks in the logs if this happens. But it also barks when a kernel user access causes this condition, and that _can_ happen. For example, if a pointer passed into a system call is "0xfffffffc" and the kernel access 4 bytes offset from that pointer. Just handle such faults normally via the exception entries. Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-03sparc64: Fix top-level fault handling bugs.David S. Miller
Make get_user_insn() able to cope with huge PMDs. Next, make do_fault_siginfo() more robust when get_user_insn() can't actually fetch the instruction. In particular, use the MMU announced fault address when that happens, instead of calling compute_effective_address() and computing garbage. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-14sparc64: Implement HAVE_CONTEXT_TRACKINGKirill Tkhai
Mark the places when the system are in user or are in kernel. This is used to make full dynticks system (tickless) -- CONFIG_NO_HZ_FULL dependence. Signed-off-by: Kirill Tkhai <tkhai@yandex.ru> CC: David Miller <davem@davemloft.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-09-12arch: mm: pass userspace fault flag to generic fault handlerJohannes Weiner
Unlike global OOM handling, memory cgroup code will invoke the OOM killer in any OOM situation because it has no way of telling faults occuring in kernel context - which could be handled more gracefully - from user-triggered faults. Pass a flag that identifies faults originating in user space from the architecture-specific fault handlers to generic code so that memcg OOM handling can be improved. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-20sparc64: Fix tsb_grow() in atomic context.David S. Miller
If our first THP installation for an MM is via the set_pmd_at() done during khugepaged's collapsing we'll end up in tsb_grow() trying to do a GFP_KERNEL allocation with several locks held. Simply using GFP_ATOMIC in this situation is not the best option because we really can't have this fail, so we'd really like to keep this an order 0 GFP_KERNEL allocation if possible. Also, doing the TSB allocation from khugepaged is a really bad idea because we'll allocate it potentially from the wrong NUMA node in that context. So what we do is defer the hugepage TSB allocation until the first TLB miss we take on a hugepage. This is slightly tricky because we have to handle two unusual cases: 1) Taking the first hugepage TLB miss in the window trap handler. We'll call the winfix_trampoline when that is detected. 2) An initial TSB allocation via TLB miss races with a hugetlb fault on another cpu running the same MM. We handle this by unconditionally loading the TSB we see into the current cpu even if it's non-NULL at hugetlb_setup time. Reported-by: Meelis Roos <mroos@ut.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-10sparc64: Fix deficiencies in sun4v error reporting.David S. Miller
Missing error types, attributes, and report fields. Pad out to 64-bytes. Make string reporting cleaner and easier to extend in the future using "const char *" arrays that index by either bit position, or absolute field value. Report the raw 64-byte error report as a sequence of u64s before the annotated version. Only report fields which are valid, given the context and the attribute bits which are set. For shutdown requests, use the local copy of the error report not the one we just freed up back to the queue. Also, use orderly_poweroff() just like the Domain Services shutdown request code does. If the real-address reported is "-1" (unknown) try to disassemble the instruction to report the effective address of the access. Only do this in privileged mode. Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-09sparc64: Support transparent huge pages.David Miller
This is relatively easy since PMD's now cover exactly 4MB of memory. Our PMD entries are 32-bits each, so we use a special encoding. The lowest bit, PMD_ISHUGE, determines the interpretation. This is possible because sparc64's page tables are purely software entities so we can use whatever encoding scheme we want. We just have to make the TLB miss assembler page table walkers aware of the layout. set_pmd_at() works much like set_pte_at() but it has to operate in two page from a table of non-huge PTEs, so we have to queue up TLB flushes based upon what mappings are valid in the PTE table. In the second regime we are going from huge-page to non-huge-page, and in that case we need only queue up a single TLB flush to push out the huge page mapping. We still have 5 bits remaining in the huge PMD encoding so we can very likely support any new pieces of THP state tracking that might get added in the future. With lots of help from Johannes Weiner. Signed-off-by: David S. Miller <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09readahead: fault retry breaks mmap file read random detectionShaohua Li
.fault now can retry. The retry can break state machine of .fault. In filemap_fault, if page is miss, ra->mmap_miss is increased. In the second try, since the page is in page cache now, ra->mmap_miss is decreased. And these are done in one fault, so we can't detect random mmap file access. Add a new flag to indicate .fault is tried once. In the second try, skip ra->mmap_miss decreasing. The filemap_fault state machine is ok with it. I only tested x86, didn't test other archs, but looks the change for other archs is obvious, but who knows :) Signed-off-by: Shaohua Li <shaohua.li@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-04-04sparc/mm/fault_64.c: Port OOM changes to do_sparc64_faultKautuk Consul
Commit d065bd810b6deb67d4897a14bfe21f8eb526ba99 (mm: retry page fault when blocking on disk transfer) and commit 37b23e0525d393d48a7d59f870b3bc061a30ccdb (x86,mm: make pagefault killable) The above commits introduced changes into the x86 pagefault handler for making the page fault handler retryable as well as killable. These changes reduce the mmap_sem hold time, which is crucial during OOM killer invocation. Port these changes to 64-bit sparc. Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-01perf: Remove the nmi parameter from the swevent and overflow interfacePeter Zijlstra
The nmi parameter indicated if we could do wakeups from the current context, if not, we would set some state and self-IPI and let the resulting interrupt do the wakeup. For the various event classes: - hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from the PMI-tail (ARM etc.) - tracepoint: nmi=0; since tracepoint could be from NMI context. - software: nmi=[0,1]; some, like the schedule thing cannot perform wakeups, and hence need 0. As one can see, there is very little nmi=1 usage, and the down-side of not using it is that on some platforms some software events can have a jiffy delay in wakeup (when arch_irq_work_raise isn't implemented). The up-side however is that we can remove the nmi parameter and save a bunch of conditionals in fast paths. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Michael Cree <mcree@orcon.net.nz> Cc: Will Deacon <will.deacon@arm.com> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Cc: Anton Blanchard <anton@samba.org> Cc: Eric B Munson <emunson@mgebm.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: David S. Miller <davem@davemloft.net> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Don Zickus <dzickus@redhat.com> Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-01sparc: Support show_unhandled_signals.David S. Miller
Just faults right now, will add other traps later. Signed-off-by: David S. Miller <davem@davemloft.net>
2010-01-20sparc: Add missing SW perf fault events.David S. Miller
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-12-10sparc64: Add some missing __kprobes annotations to kernel fault paths.David S. Miller
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-12-10sparc64: Use kprobes_built_in() to avoid ifdefs in fault_64.cDavid S. Miller
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-08-02sparc: Use page_fault_out_of_memory() for VM_FAULT_OOM.David S. Miller
As noted by Nick Piggin. Signed-off-by: David S. Miller <davem@davemloft.net>
2009-06-21Move FAULT_FLAG_xyz into handle_mm_fault() callersLinus Torvalds
This allows the callers to now pass down the full set of FAULT_FLAG_xyz flags to handle_mm_fault(). All callers have been (mechanically) converted to the new calling convention, there's almost certainly room for architectures to clean up their code and then add FAULT_FLAG_RETRY when that support is added. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-03sparc64: Kill bogus TPC/address truncation during 32-bit faults.David S. Miller
This builds upon eeabac7386ca13bfe1a58afeb04326a9e1a3a20e ("sparc64: Validate kernel generated fault addresses on sparc64.") Upon further consideration, we actually should never see any fault addresses for 32-bit tasks with the upper 32-bits set. If it does every happen, by definition it's a bug. Whatever context created that fault would only have that fault satisfied if we used the full 64-bit address. If we truncate it, we'll always fault the wrong address and we'll always loop faulting forever. So catch such conditions and mark them as errors always. Log the error and fail the fault. Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-02sparc64: Validate kernel generated fault addresses on sparc64.David S. Miller
In order to handle all of the cases of address calculation overflow properly, we run sparc 32-bit processes in "address masking" mode when running on a 64-bit kernel. Address masking mode zeros out the top 32-bits of the address calculated for every load and store instruction. However, when we're in privileged mode we have to run with that address masking mode disabled even when accessing userspace from the kernel. To "simulate" the address masking mode we clear the top-bits by hand for 32-bit processes in the fault handler. It is the responsibility of code in the compat layer to properly zero extend addresses used to access userspace. If this isn't followed properly we can get into a fault loop. Say that the user address is 0xf0000000 but for whatever reason the kernel code sign extends this to 64-bit, and then the kernel tries to access the result. In such a case we'll fault on address 0xfffffffff0000000 but the fault handler will process that fault as if it were to address 0xf0000000. We'll loop faulting forever because the fault never gets satisfied. So add a check specifically for this case, when the kernel is faulting on a user address access and the addresses don't match up. This code path is sufficiently slow path, and this bug is sufficiently painful to diagnose, that this kind of bug check is warranted. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-12-04sparc,sparc64: unify mm/Sam Ravnborg
- move all sparc64/mm/ files to arch/sparc/mm/ - commonly named files are named _64.c - add files to sparc/mm/Makefile preserving link order - delete now unused sparc64/mm/Makefile - sparc64 now finds mm/ in sparc Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>