summaryrefslogtreecommitdiff
path: root/kernel/sched
AgeCommit message (Collapse)Author
2014-08-07printk: rename printk_sched to printk_deferredJohn Stultz
commit aac74dc495456412c4130a1167ce4beb6c1f0b38 upstream. After learning we'll need some sort of deferred printk functionality in the timekeeping core, Peter suggested we rename the printk_sched function so it can be reused by needed subsystems. This only changes the function name. No logic changes. Signed-off-by: John Stultz <john.stultz@linaro.org> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Jan Kara <jack@suse.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Bohac <jbohac@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-28sched: Fix possible divide by zero in avg_atom() calculationMateusz Guzik
commit b0ab99e7736af88b8ac1b7ae50ea287fffa2badc upstream. proc_sched_show_task() does: if (nr_switches) do_div(avg_atom, nr_switches); nr_switches is unsigned long and do_div truncates it to 32 bits, which means it can test non-zero on e.g. x86-64 and be truncated to zero for division. Fix the problem by using div64_ul() instead. As a side effect calculations of avg_atom for big nr_switches are now correct. Signed-off-by: Mateusz Guzik <mguzik@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1402750809-31991-1-git-send-email-mguzik@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-11sched: Fix hotplug vs. set_cpus_allowed_ptr()Lai Jiangshan
commit 6acbfb96976fc3350e30d964acb1dbbdf876d55e upstream. Lai found that: WARNING: CPU: 1 PID: 13 at arch/x86/kernel/smp.c:124 native_smp_send_reschedule+0x2d/0x4b() ... migration_cpu_stop+0x1d/0x22 was caused by set_cpus_allowed_ptr() assuming that cpu_active_mask is always a sub-set of cpu_online_mask. This isn't true since 5fbd036b552f ("sched: Cleanup cpu_active madness"). So set active and online at the same time to avoid this particular problem. Fixes: 5fbd036b552f ("sched: Cleanup cpu_active madness") Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael wang <wangyun@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Toshi Kani <toshi.kani@hp.com> Link: http://lkml.kernel.org/r/53758B12.8060609@cn.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-11sched: Sanitize irq accounting madnessThomas Gleixner
commit 2d513868e2a33e1d5315490ef4c861ee65babd65 upstream. Russell reported, that irqtime_account_idle_ticks() takes ages due to: for (i = 0; i < ticks; i++) irqtime_account_process_tick(current, 0, rq); It's sad, that this code was written way _AFTER_ the NOHZ idle functionality was available. I charge myself guitly for not paying attention when that crap got merged with commit abb74cefa ("sched: Export ns irqtimes through /proc/stat") So instead of looping nr_ticks times just apply the whole thing at once. As a side note: The whole cputime_t vs. u64 business in that context wants to be cleaned up as well. There is no point in having all these back and forth conversions. Lets standardise on u64 nsec for all kernel internal accounting and be done with it. Everything else does not make sense at all for fine grained accounting. Frederic, can you please take care of that? Reported-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Venkatesh Pallipadi <venki@google.com> Cc: Shaun Ruffell <sruffell@digium.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1405022307000.6261@ionos.tec.linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-11sched: Use CPUPRI_NR_PRIORITIES instead of MAX_RT_PRIO in cpupri checkSteven Rostedt (Red Hat)
commit 6227cb00cc120f9a43ce8313bb0475ddabcb7d01 upstream. The check at the beginning of cpupri_find() makes sure that the task_pri variable does not exceed the cp->pri_to_cpu array length. But that length is CPUPRI_NR_PRIORITIES not MAX_RT_PRIO, where it will miss the last two priorities in that array. As task_pri is computed from convert_prio() which should never be bigger than CPUPRI_NR_PRIORITIES, if the check should cause a panic if it is hit. Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1397015410.5212.13.camel@marge.simpson.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-31sched/autogroup: Fix race with task_groups listGerald Schaefer
commit 41261b6a832ea0e788627f6a8707854423f9ff49 upstream. In autogroup_create(), a tg is allocated and added to the task_groups list. If CONFIG_RT_GROUP_SCHED is set, this tg is then modified while on the list, without locking. This can race with someone walking the list, like __enable_runtime() during CPU unplug, and result in a use-after-free bug. To fix this, move sched_online_group(), which adds the tg to the list, to the end of the autogroup_create() function after the modification. Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1369411669-46971-2-git-send-email-gerald.schaefer@de.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-23sched: Fix double normalization of vruntimeGeorge McCollister
commit 791c9e0292671a3bfa95286bb5c08129d8605618 upstream. dequeue_entity() is called when p->on_rq and sets se->on_rq = 0 which appears to guarentee that the !se->on_rq condition is met. If the task has done set_current_state(TASK_INTERRUPTIBLE) without schedule() the second condition will be met and vruntime will be incorrectly adjusted twice. In certain cases this can result in the task's vruntime never increasing past the vruntime of other tasks on the CFS' run queue, starving them of CPU time. This patch changes switched_from_fair() to use !p->on_rq instead of !se->on_rq. I'm able to cause a task with a priority of 120 to starve all other tasks with the same priority on an ARM platform running 3.2.51-rt72 PREEMPT RT by writing one character at time to a serial tty (16550 UART) in a tight loop. I'm also able to verify making this change corrects the problem on that platform and kernel version. Signed-off-by: George McCollister <george.mccollister@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1392767811-28916-1-git-send-email-george.mccollister@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Guarantee new group-entities always have weightPaul Turner
commit 0ac9b1c21874d2490331233b3242085f8151e166 upstream. Currently, group entity load-weights are initialized to zero. This admits some races with respect to the first time they are re-weighted in earlty use. ( Let g[x] denote the se for "g" on cpu "x". ) Suppose that we have root->a and that a enters a throttled state, immediately followed by a[0]->t1 (the only task running on cpu[0]) blocking: put_prev_task(group_cfs_rq(a[0]), t1) put_prev_entity(..., t1) check_cfs_rq_runtime(group_cfs_rq(a[0])) throttle_cfs_rq(group_cfs_rq(a[0])) Then, before unthrottling occurs, let a[0]->b[0]->t2 wake for the first time: enqueue_task_fair(rq[0], t2) enqueue_entity(group_cfs_rq(b[0]), t2) enqueue_entity_load_avg(group_cfs_rq(b[0]), t2) account_entity_enqueue(group_cfs_ra(b[0]), t2) update_cfs_shares(group_cfs_rq(b[0])) < skipped because b is part of a throttled hierarchy > enqueue_entity(group_cfs_rq(a[0]), b[0]) ... We now have b[0] enqueued, yet group_cfs_rq(a[0])->load.weight == 0 which violates invariants in several code-paths. Eliminate the possibility of this by initializing group entity weight. Signed-off-by: Paul Turner <pjt@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20131016181627.22647.47543.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Fix hrtimer_cancel()/rq->lock deadlockBen Segall
commit 927b54fccbf04207ec92f669dce6806848cbec7d upstream. __start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock, waiting for the hrtimer to finish. However, if sched_cfs_period_timer runs for another loop iteration, the hrtimer can attempt to take rq->lock, resulting in deadlock. Fix this by ensuring that cfs_b->timer_active is cleared only if the _latest_ call to do_sched_cfs_period_timer is returning as idle. Then __start_cfs_bandwidth can just call hrtimer_try_to_cancel and wait for that to succeed or timer_active == 1. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181622.22647.16643.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Fix cfs_bandwidth misuse of hrtimer_expires_remainingBen Segall
commit db06e78cc13d70f10877e0557becc88ab3ad2be8 upstream. hrtimer_expires_remaining does not take internal hrtimer locks and thus must be guarded against concurrent __hrtimer_start_range_ns (but returning HRTIMER_RESTART is safe). Use cfs_b->lock to make it safe. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181617.22647.73829.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Fix race on toggling cfs_bandwidth_usedBen Segall
commit 1ee14e6c8cddeeb8a490d7b54cd9016e4bb900b4 upstream. When we transition cfs_bandwidth_used to false, any currently throttled groups will incorrectly return false from cfs_rq_throttled. While tg_set_cfs_bandwidth will unthrottle them eventually, currently running code (including at least dequeue_task_fair and distribute_cfs_runtime) will cause errors. Fix this by turning off cfs_bandwidth_used only after unthrottling all cfs_rqs. Tested: toggle bandwidth back and forth on a loaded cgroup. Caused crashes in minutes without the patch, hasn't crashed with it. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181611.22647.80365.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-09sched: fix the theoretical signal_wake_up() vs schedule() raceOleg Nesterov
commit e0acd0a68ec7dbf6b7a81a87a867ebd7ac9b76c4 upstream. This is only theoretical, but after try_to_wake_up(p) was changed to check p->state under p->pi_lock the code like __set_current_state(TASK_INTERRUPTIBLE); schedule(); can miss a signal. This is the special case of wait-for-condition, it relies on try_to_wake_up/schedule interaction and thus it does not need mb() between __set_current_state() and if(signal_pending). However, this __set_current_state() can move into the critical section protected by rq->lock, now that try_to_wake_up() takes another lock we need to ensure that it can't be reordered with "if (signal_pending(current))" check inside that section. The patch is actually one-liner, it simply adds smp_wmb() before spin_lock_irq(rq->lock). This is what try_to_wake_up() already does by the same reason. We turn this wmb() into the new helper, smp_mb__before_spinlock(), for better documentation and to allow the architectures to change the default implementation. While at it, kill smp_mb__after_lock(), it has no callers. Perhaps we can also add smp_mb__before/after_spinunlock() for prepare_to_wait(). Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-09sched/rt: Fix rq's cpupri leak while enqueue/dequeue child RT entitiesKirill Tkhai
commit 757dfcaa41844595964f1220f1d33182dae49976 upstream. This patch touches the RT group scheduling case. Functions inc_rt_prio_smp() and dec_rt_prio_smp() change (global) rq's priority, while rt_rq passed to them may be not the top-level rt_rq. This is wrong, because changing of priority on a child level does not guarantee that the priority is the highest all over the rq. So, this leak makes RT balancing unusable. The short example: the task having the highest priority among all rq's RT tasks (no one other task has the same priority) are waking on a throttle rt_rq. The rq's cpupri is set to the task's priority equivalent, but real rq->rt.highest_prio.curr is less. The patch below fixes the problem. Signed-off-by: Kirill Tkhai <tkhai@yandex.ru> Signed-off-by: Peter Zijlstra <peterz@infradead.org> CC: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/49231385567953@web4m.yandex.ru Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-09sched: numa: skip inaccessible VMAsMel Gorman
commit 3c67f474558748b604e247d92b55dfe89654c81d upstream. Inaccessible VMA should not be trapping NUMA hint faults. Skip them. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-20sched: Avoid throttle_cfs_rq() racing with period_timer stoppingBen Segall
commit f9f9ffc237dd924f048204e8799da74f9ecf40cf upstream. throttle_cfs_rq() doesn't check to make sure that period_timer is running, and while update_curr/assign_cfs_runtime does, a concurrently running period_timer on another cpu could cancel itself between this cpu's update_curr and throttle_cfs_rq(). If there are no other cfs_rqs running in the tg to restart the timer, this causes the cfs_rq to be stranded forever. Fix this by calling __start_cfs_bandwidth() in throttle if the timer is inactive. (Also add some sched_debug lines for cfs_bandwidth.) Tested: make a run/sleep task in a cgroup, loop switching the cgroup between 1ms/100ms quota and unlimited, checking for timer_active=0 and throttled=1 as a failure. With the throttle_cfs_rq() change commented out this fails, with the full patch it passes. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181632.22647.84174.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-01sched/fair: Fix small race where child->se.parent,cfs_rq might point to ↵Daisuke Nishimura
invalid ones commit 6c9a27f5da9609fca46cb2b183724531b48f71ad upstream. There is a small race between copy_process() and cgroup_attach_task() where child->se.parent,cfs_rq points to invalid (old) ones. parent doing fork() | someone moving the parent to another cgroup -------------------------------+--------------------------------------------- copy_process() + dup_task_struct() -> parent->se is copied to child->se. se.parent,cfs_rq of them point to old ones. cgroup_attach_task() + cgroup_task_migrate() -> parent->cgroup is updated. + cpu_cgroup_attach() + sched_move_task() + task_move_group_fair() +- set_task_rq() -> se.parent,cfs_rq of parent are updated. + cgroup_fork() -> parent->cgroup is copied to child->cgroup. (*1) + sched_fork() + task_fork_fair() -> se.parent,cfs_rq of child are accessed while they point to old ones. (*2) In the worst case, this bug can lead to "use-after-free" and cause a panic, because it's new cgroup's refcount that is incremented at (*1), so the old cgroup(and related data) can be freed before (*2). In fact, a panic caused by this bug was originally caught in RHEL6.4. BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff81051e3e>] sched_slice+0x6e/0xa0 [...] Call Trace: [<ffffffff81051f25>] place_entity+0x75/0xa0 [<ffffffff81056a3a>] task_fork_fair+0xaa/0x160 [<ffffffff81063c0b>] sched_fork+0x6b/0x140 [<ffffffff8106c3c2>] copy_process+0x5b2/0x1450 [<ffffffff81063b49>] ? wake_up_new_task+0xd9/0x130 [<ffffffff8106d2f4>] do_fork+0x94/0x460 [<ffffffff81072a9e>] ? sys_wait4+0xae/0x100 [<ffffffff81009598>] sys_clone+0x28/0x30 [<ffffffff8100b393>] stub_clone+0x13/0x20 [<ffffffff8100b072>] ? system_call_fastpath+0x16/0x1b Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/039601ceae06$733d3130$59b79390$@mxp.nes.nec.co.jp Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-01sched/cputime: Do not scale when utime == 0Stanislaw Gruszka
commit 5a8e01f8fa51f5cbce8f37acc050eb2319d12956 upstream. scale_stime() silently assumes that stime < rtime, otherwise when stime == rtime and both values are big enough (operations on them do not fit in 32 bits), the resulting scaling stime can be bigger than rtime. In consequence utime = rtime - stime results in negative value. User space visible symptoms of the bug are overflowed TIME values on ps/top, for example: $ ps aux | grep rcu root 8 0.0 0.0 0 0 ? S 12:42 0:00 [rcuc/0] root 9 0.0 0.0 0 0 ? S 12:42 0:00 [rcub/0] root 10 62422329 0.0 0 0 ? R 12:42 21114581:37 [rcu_preempt] root 11 0.1 0.0 0 0 ? S 12:42 0:02 [rcuop/0] root 12 62422329 0.0 0 0 ? S 12:42 21114581:35 [rcuop/1] root 10 62422329 0.0 0 0 ? R 12:42 21114581:37 [rcu_preempt] or overflowed utime values read directly from /proc/$PID/stat Reference: https://lkml.org/lkml/2013/8/20/259 Reported-and-tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Cc: stable@vger.kernel.org Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Borislav Petkov <bp@alien8.de> Link: http://lkml.kernel.org/r/20130904131602.GC2564@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-20sched: Ensure update_cfs_shares() is called for parents of ↵Peter Zijlstra
continuously-running tasks commit bf0bd948d1682e3996adc093b43021ed391983e6 upstream. We typically update a task_group's shares within the dequeue/enqueue path. However, continuously running tasks sharing a CPU are not subject to these updates as they are only put/picked. Unfortunately, when we reverted f269ae046 (in 17bc14b7), we lost the augmenting periodic update that was supposed to account for this; resulting in a potential loss of fairness. To fix this, re-introduce the explicit update in update_cfs_rq_blocked_load() [called via entity_tick()]. Reported-by: Max Hailperin <max@gustavus.edu> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Reviewed-by: Paul Turner <pjt@google.com> Link: http://lkml.kernel.org/n/tip-9545m3apw5d93ubyrotrj31y@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-06-20Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "Two smaller fixes - plus a context tracking tracing fix that is a bit bigger" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: tracing/context-tracking: Add preempt_schedule_context() for tracing sched: Fix clear NOHZ_BALANCE_KICK sched/x86: Construct all sibling maps if smt
2013-06-19sched: Fix clear NOHZ_BALANCE_KICKVincent Guittot
I have faced a sequence where the Idle Load Balance was sometime not triggered for a while on my platform, in the following scenario: CPU 0 and CPU 1 are running tasks and CPU 2 is idle CPU 1 kicks the Idle Load Balance CPU 1 selects CPU 2 as the new Idle Load Balancer CPU 2 sets NOHZ_BALANCE_KICK for CPU 2 CPU 2 sends a reschedule IPI to CPU 2 While CPU 3 wakes up, CPU 0 or CPU 1 migrates a waking up task A on CPU 2 CPU 2 finally wakes up, runs task A and discards the Idle Load Balance task A quickly goes back to sleep (before a tick occurs on CPU 2) CPU 2 goes back to idle with NOHZ_BALANCE_KICK set Whenever CPU 2 will be selected as the ILB, no reschedule IPI will be sent because NOHZ_BALANCE_KICK is already set and no Idle Load Balance will be performed. We must wait for the sched softirq to be raised on CPU 2 thanks to another part the kernel to come back to clear NOHZ_BALANCE_KICK. The proposed solution clears NOHZ_BALANCE_KICK in schedule_ipi if we can't raise the sched_softirq for the Idle Load Balance. Change since V1: - move the clear of NOHZ_BALANCE_KICK in got_nohz_idle_kick if the ILB can't run on this CPU (as suggested by Peter) Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1370419991-13870-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-31vtime: Use consistent clocks among nohz accountingFrederic Weisbecker
While computing the cputime delta of dynticks CPUs, we are mixing up clocks of differents natures: * local_clock() which takes care of unstable clock sources and fix these if needed. * sched_clock() which is the weaker version of local_clock(). It doesn't compute any fixup in case of unstable source. If the clock source is stable, those two clocks are the same and we can safely compute the difference against two random points. Otherwise it results in random deltas as sched_clock() can randomly drift away, back or forward, from local_clock(). As a consequence, some strange behaviour with unstable tsc has been observed such as non progressing constant zero cputime. (The 'top' command showing no load). Fix this by only using local_clock(), or its irq safe/remote equivalent, in vtime code. Reported-by: Mike Galbraith <efault@gmx.de> Suggested-by: Mike Galbraith <efault@gmx.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-05Merge branch 'timers-nohz-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull 'full dynticks' support from Ingo Molnar: "This tree from Frederic Weisbecker adds a new, (exciting! :-) core kernel feature to the timer and scheduler subsystems: 'full dynticks', or CONFIG_NO_HZ_FULL=y. This feature extends the nohz variable-size timer tick feature from idle to busy CPUs (running at most one task) as well, potentially reducing the number of timer interrupts significantly. This feature got motivated by real-time folks and the -rt tree, but the general utility and motivation of full-dynticks runs wider than that: - HPC workloads get faster: CPUs running a single task should be able to utilize a maximum amount of CPU power. A periodic timer tick at HZ=1000 can cause a constant overhead of up to 1.0%. This feature removes that overhead - and speeds up the system by 0.5%-1.0% on typical distro configs even on modern systems. - Real-time workload latency reduction: CPUs running critical tasks should experience as little jitter as possible. The last remaining source of kernel-related jitter was the periodic timer tick. - A single task executing on a CPU is a pretty common situation, especially with an increasing number of cores/CPUs, so this feature helps desktop and mobile workloads as well. The cost of the feature is mainly related to increased timer reprogramming overhead when a CPU switches its tick period, and thus slightly longer to-idle and from-idle latency. Configuration-wise a third mode of operation is added to the existing two NOHZ kconfig modes: - CONFIG_HZ_PERIODIC: [formerly !CONFIG_NO_HZ], now explicitly named as a config option. This is the traditional Linux periodic tick design: there's a HZ tick going on all the time, regardless of whether a CPU is idle or not. - CONFIG_NO_HZ_IDLE: [formerly CONFIG_NO_HZ=y], this turns off the periodic tick when a CPU enters idle mode. - CONFIG_NO_HZ_FULL: this new mode, in addition to turning off the tick when a CPU is idle, also slows the tick down to 1 Hz (one timer interrupt per second) when only a single task is running on a CPU. The .config behavior is compatible: existing !CONFIG_NO_HZ and CONFIG_NO_HZ=y settings get translated to the new values, without the user having to configure anything. CONFIG_NO_HZ_FULL is turned off by default. This feature is based on a lot of infrastructure work that has been steadily going upstream in the last 2-3 cycles: related RCU support and non-periodic cputime support in particular is upstream already. This tree adds the final pieces and activates the feature. The pull request is marked RFC because: - it's marked 64-bit only at the moment - the 32-bit support patch is small but did not get ready in time. - it has a number of fresh commits that came in after the merge window. The overwhelming majority of commits are from before the merge window, but still some aspects of the tree are fresh and so I marked it RFC. - it's a pretty wide-reaching feature with lots of effects - and while the components have been in testing for some time, the full combination is still not very widely used. That it's default-off should reduce its regression abilities and obviously there are no known regressions with CONFIG_NO_HZ_FULL=y enabled either. - the feature is not completely idempotent: there is no 100% equivalent replacement for a periodic scheduler/timer tick. In particular there's ongoing work to map out and reduce its effects on scheduler load-balancing and statistics. This should not impact correctness though, there are no known regressions related to this feature at this point. - it's a pretty ambitious feature that with time will likely be enabled by most Linux distros, and we'd like you to make input on its design/implementation, if you dislike some aspect we missed. Without flaming us to crisp! :-) Future plans: - there's ongoing work to reduce 1Hz to 0Hz, to essentially shut off the periodic tick altogether when there's a single busy task on a CPU. We'd first like 1 Hz to be exposed more widely before we go for the 0 Hz target though. - once we reach 0 Hz we can remove the periodic tick assumption from nr_running>=2 as well, by essentially interrupting busy tasks only as frequently as the sched_latency constraints require us to do - once every 4-40 msecs, depending on nr_running. I am personally leaning towards biting the bullet and doing this in v3.10, like the -rt tree this effort has been going on for too long - but the final word is up to you as usual. More technical details can be found in Documentation/timers/NO_HZ.txt" * 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits) sched: Keep at least 1 tick per second for active dynticks tasks rcu: Fix full dynticks' dependency on wide RCU nocb mode nohz: Protect smp_processor_id() in tick_nohz_task_switch() nohz_full: Add documentation. cputime_nsecs: use math64.h for nsec resolution conversion helpers nohz: Select VIRT_CPU_ACCOUNTING_GEN from full dynticks config nohz: Reduce overhead under high-freq idling patterns nohz: Remove full dynticks' superfluous dependency on RCU tree nohz: Fix unavailable tick_stop tracepoint in dynticks idle nohz: Add basic tracing nohz: Select wide RCU nocb for full dynticks nohz: Disable the tick when irq resume in full dynticks CPU nohz: Re-evaluate the tick for the new task after a context switch nohz: Prepare to stop the tick on irq exit nohz: Implement full dynticks kick nohz: Re-evaluate the tick from the scheduler IPI sched: New helper to prevent from stopping the tick in full dynticks sched: Kick full dynticks CPU that have more than one task enqueued. perf: New helper to prevent full dynticks CPUs from stopping tick perf: Kick full dynticks CPU if events rotation is needed ...
2013-05-04sched: Keep at least 1 tick per second for active dynticks tasksFrederic Weisbecker
The scheduler doesn't yet fully support environments with a single task running without a periodic tick. In order to ensure we still maintain the duties of scheduler_tick(), keep at least 1 tick per second. This makes sure that we keep the progression of various scheduler accounting and background maintainance even with a very low granularity. Examples include cpu load, sched average, CFS entity vruntime, avenrun and events such as load balancing, amongst other details handled in sched_class::task_tick(). This limitation will be removed in the future once we get these individual items to work in full dynticks CPUs. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2013-05-02Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "This fixes the cputime scaling overflow problems for good without having bad 32-bit overhead, and gets rid of the div64_u64_rem() helper as well." * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: Revert "math64: New div64_u64_rem helper" sched: Avoid prev->stime underflow sched: Do not account bogus utime sched: Avoid cputime scaling overflow
2013-05-02Merge commit '8700c95adb03' into timers/nohzFrederic Weisbecker
The full dynticks tree needs the latest RCU and sched upstream updates in order to fix some dependencies. Merge a common upstream merge point that has these updates. Conflicts: include/linux/perf_event.h kernel/rcutree.h kernel/rcutree_plugin.h Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2013-05-01Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull VFS updates from Al Viro, Misc cleanups all over the place, mainly wrt /proc interfaces (switch create_proc_entry to proc_create(), get rid of the deprecated create_proc_read_entry() in favor of using proc_create_data() and seq_file etc). 7kloc removed. * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits) don't bother with deferred freeing of fdtables proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h proc: Make the PROC_I() and PDE() macros internal to procfs proc: Supply a function to remove a proc entry by PDE take cgroup_open() and cpuset_open() to fs/proc/base.c ppc: Clean up scanlog ppc: Clean up rtas_flash driver somewhat hostap: proc: Use remove_proc_subtree() drm: proc: Use remove_proc_subtree() drm: proc: Use minor->index to label things, not PDE->name drm: Constify drm_proc_list[] zoran: Don't print proc_dir_entry data in debug reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show() proc: Supply an accessor for getting the data from a PDE's parent airo: Use remove_proc_subtree() rtl8192u: Don't need to save device proc dir PDE rtl8187se: Use a dir under /proc/net/r8180/ proc: Add proc_mkdir_data() proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h} proc: Move PDE_NET() to fs/proc/proc_net.c ...
2013-04-30workqueue: include workqueue info when printing debug dump of a worker taskTejun Heo
One of the problems that arise when converting dedicated custom threadpool to workqueue is that the shared worker pool used by workqueue anonimizes each worker making it more difficult to identify what the worker was doing on which target from the output of sysrq-t or debug dump from oops, BUG() and friends. This patch implements set_worker_desc() which can be called from any workqueue work function to set its description. When the worker task is dumped for whatever reason - sysrq-t, WARN, BUG, oops, lockdep assertion and so on - the description will be printed out together with the workqueue name and the worker function pointer. The printing side is implemented by print_worker_info() which is called from functions in task dump paths - sched_show_task() and dump_stack_print_info(). print_worker_info() can be safely called on any task in any state as long as the task struct itself is accessible. It uses probe_*() functions to access worker fields. It may print garbage if something went very wrong, but it wouldn't cause (another) oops. The description is currently limited to 24bytes including the terminating \0. worker->desc_valid and workder->desc[] are added and the 64 bytes marker which was already incorrect before adding the new fields is moved to the correct position. Here's an example dump with writeback updated to set the bdi name as worker desc. Hardware name: Bochs Modules linked in: Pid: 7, comm: kworker/u9:0 Not tainted 3.9.0-rc1-work+ #1 Workqueue: writeback bdi_writeback_workfn (flush-8:0) ffffffff820a3ab0 ffff88000f6e9cb8 ffffffff81c61845 ffff88000f6e9cf8 ffffffff8108f50f 0000000000000000 0000000000000000 ffff88000cde16b0 ffff88000cde1aa8 ffff88001ee19240 ffff88000f6e9fd8 ffff88000f6e9d08 Call Trace: [<ffffffff81c61845>] dump_stack+0x19/0x1b [<ffffffff8108f50f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8108f56a>] warn_slowpath_null+0x1a/0x20 [<ffffffff81200150>] bdi_writeback_workfn+0x2a0/0x3b0 ... Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Acked-by: Jan Kara <jack@suse.cz> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30sched: Avoid prev->stime underflowStanislaw Gruszka
Dave Hansen reported strange utime/stime values on his system: https://lkml.org/lkml/2013/4/4/435 This happens because prev->stime value is bigger than rtime value. Root of the problem are non-monotonic rtime values (i.e. current rtime is smaller than previous rtime) and that should be debugged and fixed. But since problem did not manifest itself before commit 62188451f0d63add7ad0cd2a1ae269d600c1663d "cputime: Avoid multiplication overflow on utime scaling", it should be threated as regression, which we can easily fixed on cputime_adjust() function. For now, let's apply this fix, but further work is needed to fix root of the problem. Reported-and-tested-by: Dave Hansen <dave@sr71.net> Cc: <stable@vger.kernel.org> # 3.9+ Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: rostedt@goodmis.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1367314507-9728-3-git-send-email-sgruszka@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-30sched: Do not account bogus utimeStanislaw Gruszka
Due to rounding in scale_stime(), for big numbers, scaled stime values will grow in chunks. Since rtime grow in jiffies and we calculate utime like below: prev->stime = max(prev->stime, stime); prev->utime = max(prev->utime, rtime - prev->stime); we could erroneously account stime values as utime. To prevent that only update prev->{u,s}time values when they are smaller than current rtime. Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: rostedt@goodmis.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1367314507-9728-2-git-send-email-sgruszka@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-30sched: Avoid cputime scaling overflowStanislaw Gruszka
Here is patch, which adds Linus's cputime scaling algorithm to the kernel. This is a follow up (well, fix) to commit d9a3c9823a2e6a543eb7807fb3d15d8233817ec5 ("sched: Lower chances of cputime scaling overflow") which commit tried to avoid multiplication overflow, but did not guarantee that the overflow would not happen. Linus crated a different algorithm, which completely avoids the multiplication overflow by dropping precision when numbers are big. It was tested by me and it gives good relative error of scaled numbers. Testing method is described here: http://marc.info/?l=linux-kernel&m=136733059505406&w=2 Originally-From: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: rostedt@goodmis.org Cc: Dave Hansen <dave@sr71.net> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130430151441.GC10465@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-30Merge branch 'smp-hotplug-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull SMP/hotplug changes from Ingo Molnar: "This is a pretty large, multi-arch series unifying and generalizing the various disjunct pieces of idle routines that architectures have historically copied from each other and have grown in random, wildly inconsistent and sometimes buggy directions: 101 files changed, 455 insertions(+), 1328 deletions(-) this went through a number of review and test iterations before it was committed, it was tested on various architectures, was exposed to linux-next for quite some time - nevertheless it might cause problems on architectures that don't read the mailing lists and don't regularly test linux-next. This cat herding excercise was motivated by the -rt kernel, and was brought to you by Thomas "the Whip" Gleixner." * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits) idle: Remove GENERIC_IDLE_LOOP config switch um: Use generic idle loop ia64: Make sure interrupts enabled when we "safe_halt()" sparc: Use generic idle loop idle: Remove unused ARCH_HAS_DEFAULT_IDLE bfin: Fix typo in arch_cpu_idle() xtensa: Use generic idle loop x86: Use generic idle loop unicore: Use generic idle loop tile: Use generic idle loop tile: Enter idle with preemption disabled sh: Use generic idle loop score: Use generic idle loop s390: Use generic idle loop powerpc: Use generic idle loop parisc: Use generic idle loop openrisc: Use generic idle loop mn10300: Use generic idle loop mips: Use generic idle loop microblaze: Use generic idle loop ...
2013-04-30Merge branch 'sched-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler changes from Ingo Molnar: "The main changes in this development cycle were: - full dynticks preparatory work by Frederic Weisbecker - factor out the cpu time accounting code better, by Li Zefan - multi-CPU load balancer cleanups and improvements by Joonsoo Kim - various smaller fixes and cleanups" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits) sched: Fix init NOHZ_IDLE flag sched: Prevent to re-select dst-cpu in load_balance() sched: Rename load_balance_tmpmask to load_balance_mask sched: Move up affinity check to mitigate useless redoing overhead sched: Don't consider other cpus in our group in case of NEWLY_IDLE sched: Explicitly cpu_idle_type checking in rebalance_domains() sched: Change position of resched_cpu() in load_balance() sched: Fix wrong rq's runnable_avg update with rt tasks sched: Document task_struct::personality field sched/cpuacct/UML: Fix header file dependency bug on the UML build cgroup: Kill subsys.active flag sched/cpuacct: No need to check subsys active state sched/cpuacct: Initialize cpuacct subsystem earlier sched/cpuacct: Initialize root cpuacct earlier sched/cpuacct: Allocate per_cpu cpuusage for root cpuacct statically sched/cpuacct: Clean up cpuacct.h sched/cpuacct: Remove redundant NULL checks in cpuacct_acount_field() sched/cpuacct: Remove redundant NULL checks in cpuacct_charge() sched/cpuacct: Add cpuacct_acount_field() sched/cpuacct: Add cpuacct_init() ...
2013-04-29Merge branch 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wqLinus Torvalds
Pull workqueue updates from Tejun Heo: "A lot of activities on workqueue side this time. The changes achieve the followings. - WQ_UNBOUND workqueues - the workqueues which are per-cpu - are updated to be able to interface with multiple backend worker pools. This involved a lot of churning but the end result seems actually neater as unbound workqueues are now a lot closer to per-cpu ones. - The ability to interface with multiple backend worker pools are used to implement unbound workqueues with custom attributes. Currently the supported attributes are the nice level and CPU affinity. It may be expanded to include cgroup association in future. The attributes can be specified either by calling apply_workqueue_attrs() or through /sys/bus/workqueue/WQ_NAME/* if the workqueue in question is exported through sysfs. The backend worker pools are keyed by the actual attributes and shared by any workqueues which share the same attributes. When attributes of a workqueue are changed, the workqueue binds to the worker pool with the specified attributes while leaving the work items which are already executing in its previous worker pools alone. This allows converting custom worker pool implementations which want worker attribute tuning to use workqueues. The writeback pool is already converted in block tree and there are a couple others are likely to follow including btrfs io workers. - WQ_UNBOUND's ability to bind to multiple worker pools is also used to make it NUMA-aware. Because there's no association between work item issuer and the specific worker assigned to execute it, before this change, using unbound workqueue led to unnecessary cross-node bouncing and it couldn't be helped by autonuma as it requires tasks to have implicit node affinity and workers are assigned randomly. After these changes, an unbound workqueue now binds to multiple NUMA-affine worker pools so that queued work items are executed in the same node. This is turned on by default but can be disabled system-wide or for individual workqueues. Crypto was requesting NUMA affinity as encrypting data across different nodes can contribute noticeable overhead and doing it per-cpu was too limiting for certain cases and IO throughput could be bottlenecked by one CPU being fully occupied while others have idle cycles. While the new features required a lot of changes including restructuring locking, it didn't complicate the execution paths much. The unbound workqueue handling is now closer to per-cpu ones and the new features are implemented by simply associating a workqueue with different sets of backend worker pools without changing queue, execution or flush paths. As such, even though the amount of change is very high, I feel relatively safe in that it isn't likely to cause subtle issues with basic correctness of work item execution and handling. If something is wrong, it's likely to show up as being associated with worker pools with the wrong attributes or OOPS while workqueue attributes are being changed or during CPU hotplug. While this creates more backend worker pools, it doesn't add too many more workers unless, of course, there are many workqueues with unique combinations of attributes. Assuming everything else is the same, NUMA awareness costs an extra worker pool per NUMA node with online CPUs. There are also a couple things which are being routed outside the workqueue tree. - block tree pulled in workqueue for-3.10 so that writeback worker pool can be converted to unbound workqueue with sysfs control exposed. This simplifies the code, makes writeback workers NUMA-aware and allows tuning nice level and CPU affinity via sysfs. - The conversion to workqueue means that there's no 1:1 association between a specific worker, which makes writeback folks unhappy as they want to be able to tell which filesystem caused a problem from backtrace on systems with many filesystems mounted. This is resolved by allowing work items to set debug info string which is printed when the task is dumped. As this change involves unifying implementations of dump_stack() and friends in arch codes, it's being routed through Andrew's -mm tree." * 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (84 commits) workqueue: use kmem_cache_free() instead of kfree() workqueue: avoid false negative WARN_ON() in destroy_workqueue() workqueue: update sysfs interface to reflect NUMA awareness and a kernel param to disable NUMA affinity workqueue: implement NUMA affinity for unbound workqueues workqueue: introduce put_pwq_unlocked() workqueue: introduce numa_pwq_tbl_install() workqueue: use NUMA-aware allocation for pool_workqueues workqueue: break init_and_link_pwq() into two functions and introduce alloc_unbound_pwq() workqueue: map an unbound workqueues to multiple per-node pool_workqueues workqueue: move hot fields of workqueue_struct to the end workqueue: make workqueue->name[] fixed len workqueue: add workqueue->unbound_attrs workqueue: determine NUMA node of workers accourding to the allowed cpumask workqueue: drop 'H' from kworker names of unbound worker pools workqueue: add wq_numa_tbl_len and wq_numa_possible_cpumask[] workqueue: move pwq_pool_locking outside of get/put_unbound_pool() workqueue: fix memory leak in apply_workqueue_attrs() workqueue: fix unbound workqueue attrs hashing / comparison workqueue: fix race condition in unbound workqueue free path workqueue: remove pwq_lock which is no longer used ...
2013-04-29fix a leak in /proc/schedstatsAl Viro
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-29Merge branch 'core-locking-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking changes from Ingo Molnar: "The most noticeable change are mutex speedups from Waiman Long, for higher loads. These scalability changes should be most noticeable on larger server systems. There are also cleanups, fixes and debuggability improvements." * 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: lockdep: Consolidate bug messages into a single print_lockdep_off() function lockdep: Print out additional debugging advice when we hit lockdep BUGs mutex: Back out architecture specific check for negative mutex count mutex: Queue mutex spinners with MCS lock to reduce cacheline contention mutex: Make more scalable by doing less atomic operations mutex: Move mutex spinning code from sched/core.c back to mutex.c locking/rtmutex/tester: Set correct permissions on sysfs files lockdep: Remove unnecessary 'hlock_next' variable
2013-04-26sched: Fix init NOHZ_IDLE flagVincent Guittot
On my SMP platform which is made of 5 cores in 2 clusters, I have the nr_busy_cpu field of sched_group_power struct that is not null when the platform is fully idle - which makes the scheduler unhappy. The root cause is: During the boot sequence, some CPUs reach the idle loop and set their NOHZ_IDLE flag while waiting for others CPUs to boot. But the nr_busy_cpus field is initialized later with the assumption that all CPUs are in the busy state whereas some CPUs have already set their NOHZ_IDLE flag. More generally, the NOHZ_IDLE flag must be initialized when new sched_domains are created in order to ensure that NOHZ_IDLE and nr_busy_cpus are aligned. This condition can be ensured by adding a synchronize_rcu() between the destruction of old sched_domains and the creation of new ones so the NOHZ_IDLE flag will not be updated with old sched_domain once it has been initialized. But this solution introduces a additionnal latency in the rebuild sequence that is called during cpu hotplug. As suggested by Frederic Weisbecker, another solution is to have the same rcu lifecycle for both NOHZ_IDLE and sched_domain struct. A new nohz_idle field is added to sched_domain so both status and sched_domain will share the same RCU lifecycle and will be always synchronized. In addition, there is no more need to protect nohz_idle against concurrent access as it is only modified by 2 exclusive functions called by local cpu. This solution has been prefered to the creation of a new struct with an extra pointer indirection for sched_domain. The synchronization is done at the cost of : - An additional indirection and a rcu_dereference for accessing nohz_idle. - We use only the nohz_idle field of the top sched_domain. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: linaro-kernel@lists.linaro.org Cc: peterz@infradead.org Cc: fweisbec@gmail.com Cc: pjt@google.com Cc: rostedt@goodmis.org Cc: efault@gmx.de Link: http://lkml.kernel.org/r/1366729142-14662-1-git-send-email-vincent.guittot@linaro.org [ Fixed !NO_HZ build bug. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-24sched: Prevent to re-select dst-cpu in load_balance()Joonsoo Kim
Commit 88b8dac0 makes load_balance() consider other cpus in its group. But, in that, there is no code for preventing to re-select dst-cpu. So, same dst-cpu can be selected over and over. This patch add functionality to load_balance() in order to exclude cpu which is selected once. We prevent to re-select dst_cpu via env's cpus, so now, env's cpus is a candidate not only for src_cpus, but also dst_cpus. With this patch, we can remove lb_iterations and max_lb_iterations, because we decide whether we can go ahead or not via env's cpus. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: Jason Low <jason.low2@hp.com> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1366705662-3587-7-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-24sched: Rename load_balance_tmpmask to load_balance_maskJoonsoo Kim
This name doesn't represent specific meaning. So rename it to imply it's purpose. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: Jason Low <jason.low2@hp.com> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1366705662-3587-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-24sched: Move up affinity check to mitigate useless redoing overheadJoonsoo Kim
Currently, LBF_ALL_PINNED is cleared after affinity check is passed. So, if task migration is skipped by small load value or small imbalance value in move_tasks(), we don't clear LBF_ALL_PINNED. At last, we trigger 'redo' in load_balance(). Imbalance value is often so small that any tasks cannot be moved to other cpus and, of course, this situation may be continued after we change the target cpu. So this patch move up affinity check code and clear LBF_ALL_PINNED before evaluating load value in order to mitigate useless redoing overhead. In addition, re-order some comments correctly. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: Jason Low <jason.low2@hp.com> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1366705662-3587-5-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-24sched: Don't consider other cpus in our group in case of NEWLY_IDLEJoonsoo Kim
Commit 88b8dac0 makes load_balance() consider other cpus in its group, regardless of idle type. When we do NEWLY_IDLE balancing, we should not consider it, because a motivation of NEWLY_IDLE balancing is to turn this cpu to non idle state if needed. This is not the case of other cpus. So, change code not to consider other cpus for NEWLY_IDLE balancing. With this patch, assign 'if (pulled_task) this_rq->idle_stamp = 0' in idle_balance() is corrected, because NEWLY_IDLE balancing doesn't consider other cpus. Assigning to 'this_rq->idle_stamp' is now valid. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Tested-by: Jason Low <jason.low2@hp.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1366705662-3587-4-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-24sched: Explicitly cpu_idle_type checking in rebalance_domains()Joonsoo Kim
After commit 88b8dac0, dst-cpu can be changed in load_balance(), then we can't know cpu_idle_type of dst-cpu when load_balance() return positive. So, add explicit cpu_idle_type checking. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Tested-by: Jason Low <jason.low2@hp.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1366705662-3587-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-24sched: Change position of resched_cpu() in load_balance()Joonsoo Kim
cur_ld_moved is reset if env.flags hit LBF_NEED_BREAK. So, there is possibility that we miss doing resched_cpu(). Correct it as changing position of resched_cpu() before checking LBF_NEED_BREAK. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Tested-by: Jason Low <jason.low2@hp.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1366705662-3587-2-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-22nohz: Re-evaluate the tick for the new task after a context switchFrederic Weisbecker
When a task is scheduled in, it may have some properties of its own that could make the CPU reconsider the need for the tick: posix cpu timers, perf events, ... So notify the full dynticks subsystem when a task gets scheduled in and re-check the tick dependency at this stage. This is done through a self IPI to avoid messing up with any current lock scenario. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2013-04-22nohz: Re-evaluate the tick from the scheduler IPIFrederic Weisbecker
The scheduler IPI is used by the scheduler to kick full dynticks CPUs asynchronously when more than one task are running or when a new timer list timer is enqueued. This way the destination CPU can decide to restart the tick to handle this new situation. Now let's call that kick in the scheduler IPI. (Reusing the scheduler IPI rather than implementing a new IPI was suggested by Peter Zijlstra a while ago) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2013-04-22sched: New helper to prevent from stopping the tick in full dynticksFrederic Weisbecker
Provide a new helper to be called from the full dynticks engine before stopping the tick in order to make sure we don't stop it when there is more than one task running on the CPU. This way we make sure that the tick stays alive to maintain fairness. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2013-04-22sched: Kick full dynticks CPU that have more than one task enqueued.Frederic Weisbecker
Kick the tick on full dynticks CPUs when they get more than one task running on their queue. This makes sure that local fairness is maintained by the tick on the destination. This is done regardless of these tasks' class. We should be able to be more clever in the future depending on these. eg: a CPU that runs a SCHED_FIFO task doesn't need to maintain fairness against local pending tasks of the fair class. But keep things simple for now. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2013-04-21sched: Fix wrong rq's runnable_avg update with rt tasksVincent Guittot
The current update of the rq's load can be erroneous when RT tasks are involved. The update of the load of a rq that becomes idle, is done only if the avg_idle is less than sysctl_sched_migration_cost. If RT tasks and short idle duration alternate, the runnable_avg will not be updated correctly and the time will be accounted as idle time when a CFS task wakes up. A new idle_enter function is called when the next task is the idle function so the elapsed time will be accounted as run time in the load of the rq, whatever the average idle time is. The function update_rq_runnable_avg is removed from idle_balance. When a RT task is scheduled on an idle CPU, the update of the rq's load is not done when the rq exit idle state because CFS's functions are not called. Then, the idle_balance, which is called just before entering the idle function, updates the rq's load and makes the assumption that the elapsed time since the last update, was only running time. As a consequence, the rq's load of a CPU that only runs a periodic RT task, is close to LOAD_AVG_MAX whatever the running duration of the RT task is. A new idle_exit function is called when the prev task is the idle function so the elapsed time will be accounted as idle time in the rq's load. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: linaro-kernel@lists.linaro.org Cc: peterz@infradead.org Cc: pjt@google.com Cc: fweisbec@gmail.com Cc: efault@gmx.de Link: http://lkml.kernel.org/r/1366302867-5055-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-19mutex: Move mutex spinning code from sched/core.c back to mutex.cWaiman Long
As mentioned by Ingo, the SCHED_FEAT_OWNER_SPIN scheduler feature bit was really just an early hack to make with/without mutex-spinning testable. So it is no longer necessary. This patch removes the SCHED_FEAT_OWNER_SPIN feature bit and move the mutex spinning code from kernel/sched/core.c back to kernel/mutex.c which is where they should belong. Signed-off-by: Waiman Long <Waiman.Long@hp.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Chandramouleeswaran Aswin <aswin@hp.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: Norton Scott J <scott.norton@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: David Howells <dhowells@redhat.com> Cc: Dave Jones <davej@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1366226594-5506-2-git-send-email-Waiman.Long@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-15nohz: Switch from "extended nohz" to "full nohz" based namingFrederic Weisbecker
"Extended nohz" was used as a naming base for the full dynticks API and Kconfig symbols. It reflects the fact the system tries to stop the tick in more places than just idle. But that "extended" name is a bit opaque and vague. Rename it to "full" makes it clearer what the system tries to do under this config: try to shutdown the tick anytime it can. The various constraints that prevent that to happen shouldn't be considered as fundamental properties of this feature but rather technical issues that may be solved in the future. Reported-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2013-04-14Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "Misc fixlets" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/cputime: Fix accounting on multi-threaded processes sched/debug: Fix sd->*_idx limit range avoiding overflow sched_clock: Prevent 64bit inatomicity on 32bit systems sched: Convert BUG_ON()s in try_to_wake_up_local() to WARN_ON_ONCE()s